
The Platform Design Problem
Christos Papadimitriou, Kiran Vodrahalli, Mihalis Yannakakis

Columbia University
NetEcon 2021



Platform Design
• Key Idea: Google builds various 

apps (Maps, Search, Social Network, 
etc.) and profits based on usage of 
these apps.

• The usage of apps modifies the 
transitions of the Markov Chain of 
the user’s life

• Assume the Designer has linear 
rewards over the steady state 
distribution of the resulting Markov 
chain (agent policy + Life MDP)



The Stackelberg Game

• Designer moves first: 
• Adds platforms which, if adopted, modify transitions to an existing Markov 

Chain

• Agent moves second:
• Receives MDP from Designer, plays optimal behavior

• Example of bi-level MDP optimization

• What is the computational complexity of solving for equilibrium?



Computational Tractability I: General Case

• It is strongly NP-hard to decide whether the Designer can obtain 
positive profit – and therefore hard to approximate.

• Reduction from Set Cover
• Designer builds platforms which each solve subset of Agent’s problems.
• Most cost-effective covering set is NP hard.

• In economic terms, the reduction exploits the complexity of 
“complementary goods.”
• Ex: Brick-and-mortar retail ads help the Agent discover the store, Maps helps 

the Agent get to the store.



A More Tractable Case: The Flower



A More Tractable Case: The Flower

• Problem can be solved by an FPTAS

• Why tractable? 
• Substitutes rather than complements

• Allocate time spent in each platform

• Simpler low-level behavior (greedy agent)

• Admits a DP upon discretization (knapsack DP)



The Agent’s Greedy Algorithm

• Sort states by potential function and add until utility = potential:



The Designer’s Dynamic Program

• Designer’s profit function for set of platforms S:

• Assume z is discretized and costs are polynomially bounded
• Goal: (1 - !) approximate algorithm in polynomial time.



The Designer’s Dynamic Program

• Hash (total profit, revenue, revenue denominator) into a table
• Scale the first two terms by ! * max profit/ num. states and round
• Similar to standard Knapsack DP

• Store only platform sets that Agent accepts 
• Easy to simulate

• Update the platform set if revenue numerator is smaller
• Smaller numerator + any successor set of states is feasible (Agent’s behavior)
• Profit is at least current profit minus ! * max profit/ num. states
• Overall suboptimality is at most ! * max profit



Extensions

• Optimize rewards over many Agents
• Similar DP exists, but exponential in # of Agent types

• Pre-Existing Designers
• What if other Designers have already built platforms?

• Similar DP exists



Future Work

• Designer vs. Designer

• We assumed everything is known to both sides
• What about learning settings?

• Privacy/Fairness questions for Agent

• Many others…


