The Platform Design Problem

Christos Papadimitriou, Kiran Vodrahalli, Mihalis Yannakakis

Columbia University
NetEcon 2021

Platform Design

* Key ldea: Google builds various

Proble.m- . apps (Maps, Search, Social Network,
Model the revenue-maximization problem of etc.) and profits based on usage of
today’s online firms (e.g. Google, FB, etc.) these apps.

and understand computational tractability.

* The usage of apps modifies the
transitions of the Markov Chain of
the user’s life

Bi-Level MDP Optimization Model
Agent: participates in Life MDP

Designer: tweaks the Life MDP by

building platforms. . .
* Assume the Designer has linear
Goal: Designer wants to indirectly

optimize its reward via Agent’s re.wa.rds .OVEI“ the Steady .State
optimal behavior! (Find Stackelberg) distribution of the resulting Markov
chain (agent policy + Life MDP)

The Stackelberg Game

* Designer moves first:

* Adds platforms which, if adopted, modify transitions to an existing Markov
Chain

* Agent moves second:
* Receives IVIDP from Designer, plays optimal behavior

* Example of bi-level MDP optimization

* What is the computational complexity of solving for equilibrium?

Computational Tractability |: General Case

* It is strongly NP-hard to decide whether the Designer can obtain
positive profit — and therefore hard to approximate.

* Reduction from Set Cover
e Designer builds platforms which each solve subset of Agent’s problems.
* Most cost-effective covering set is NP hard.

* In economic terms, the reduction exploits the complexity of
“complementary goods.”

e Ex: Brick-and-mortar retail ads help the Agent discover the store, Maps helps
the Agent get to the store.

A More Tractable Case: The Flower

Life MDP

1-q =y /. ~Pn

o Pr 1-gq,~- J’n f‘\}
Gn + Yn

q, + ¥

Tweaked MDP via y;

A More Tractable Case: The Flower

* Problem can be solved by an FPTAS

* Why tractable?

* Substitutes rather than complements
» Allocate time spent in each platform

e Simpler low-level behavior (greedy agent)

 Admits a DP upon discretization (knapsack DP)

The Agent’s Greedy Algorithm

* Sort states by potential function and add until utility = potential:

Lemma 1. The agent’s objective for an optimal policy defined in Section[g can be re-written as the following
optimization in the special case of the flower MDP (Definition @

A+ ZjES z]¢(j)

argmax (1)
SCn] B+2jes Zj
where ;
A= /\ Chfc B:=1+)‘z';)\z = b , Zi = P — P > O,
Z Z 1—g l—¢i—yi 1—gq

¢() cglatform + % (Cg)latform . C}iifc) if 2z > 0
1) = ¢ ;

We therefore define
A+Z]eb .7 (.7)

B + Z]Eb Zj

utility*8°"(8) :=

The Designer’s Dynamic Program

* Designer’s profit function for set of platforms S:

Pi

2 icAgent(s) & " T=g =,
profit(S) := 5 di 5 cost;
B+ ZiEAgcnt(S) “i ?,EZS

* Assume z is discretized and costs are polynomially bounded
* Goal: (1 - €) approximate algorithm in polynomial time.

The Desigher’s Dynamic Program

e Hash (total profit, revenue, revenue denominator) into a table
* Scale the first two terms by € * max profit/ num. states and round
 Similar to standard Knapsack DP

* Store only platform sets that Agent accepts
* Easy to simulate

* Update the platform set if revenue numerator is smaller
* Smaller numerator + any successor set of states is feasible (Agent’s behavior)
* Profit is at least current profit minus € * max profit/ num. states
e Overall suboptimality is at most € * max profit

Extensions

* Optimize rewards over many Agents
* Similar DP exists, but exponential in # of Agent types

* Pre-Existing Designers
 What if other Designers have already built platforms?

e Similar DP exists

Future Work

* Designer vs. Designer

* We assumed everything is known to both sides
 What about learning settings?

* Privacy/Fairness questions for Agent

* Many others...

