A Compressed Sensing View of Unsupervised Text Embeddings, Bag-of-n-Grams, and LSTMs

Sanjeev Arora Mikhail Khodak Nikunj Saunshi

Kiran Vodrahalli

Overview

Motivation:

- Success of modern NLP is based around *distributed* representations low-dimensional semantic text embeddings that are used and produced by neural networks.
- Deep networks work well in practice but are not yet dominant in all NLP tasks and are largely uninterpretable

Goal:

Reason formally about distributed representations for text:

- What information do they encode?
- How will they perform on downstream tasks?

Contributions

Theoretical Results

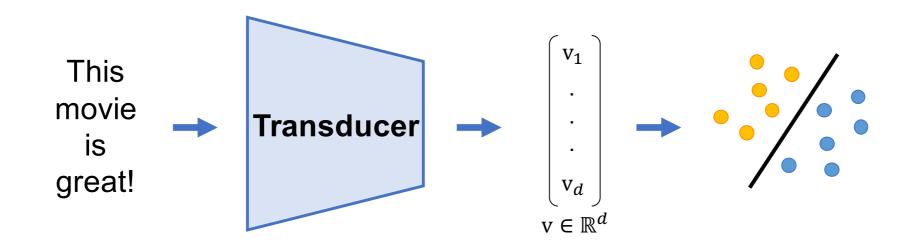
 We prove that LSTMs can compute compressed representations of simple (but very effective) sparse feature representations (e.g. Bag-of-Words) that are approximately as powerful for linear document classification.

Empirical finding

 We also observe empirically that word embeddings provide a surprisingly effective design matrix for sparse recovery of Bag-of-Words.

Setting

- Assume a distribution **D** of documents, each a sequence of at-most **T** words w₁, ..., w_T drawn from a vocabulary of size **V**.
- We are interested in fixed-dimensional document representations over which we can learn a binary linear classifier.



Sparse Representation: Bag-of-n-Grams (BonG)

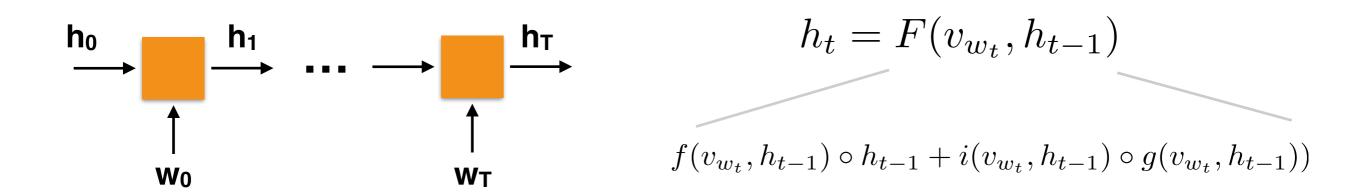
- Bag-of-Words: represent each document by a vector counting the number of times each word appears.
- Bag-of-n-Grams: represent each document by a vector counting the number of times each unigram, bigram, ..., n-gram appears.
 - Surprisingly effective (Wang & Manning 2012).

Distributed Representation: Linear Scheme

- Assign a real-vector $\mathbf{v_w}$ to every word \mathbf{w} . Take a sum of the vectors of word in a document.
 - Empirically shown to be effective on some tasks (Wieting et al. 2016, Arora et al. 2017)
 - Can be viewed as a linear compression Ax of the BoW vector x, where the columns of A are the vectors vw

Distributed Representation: LSTM

• Assign a real-vector $\mathbf{v_w}$ to every word \mathbf{w} . An LSTM takes a sequence of words ($\mathbf{w_1}, \dots, \mathbf{w_T}$) as input and computes a hidden state vector $\mathbf{h_t}$ at each word in document as follows



- Represent the document as the last state h_T.
- Use (un)supervised training to learn the LSTM parameters.

Related Work on BonG Compression

- Compressed representation that can recover BonG vector
 - Plate (1995): represent objects (words) using lowdimensional random vectors, compose objects (ngrams) using circular convolution, and represent collections of items (documents) using summation.
 - Paskov et al. (2013): use a LZ77-inspired approach to reduce the number of features; good classification performance but still quite high-dimensional.
- None of them analyze performance on downstream tasks.

Main Theorem

Theorem [AKSV'18]: Let w_0 be the optimal linear classifier for BonGs for some convex Lipschitz loss ℓ . Then we can initialize a $\mathcal{O}(nd)$ -memory LSTM and learn a linear classifier \hat{w} so that with probability $1 - \delta$

$$\ell(\hat{w}) \le \ell(w_0) + \mathcal{O}\left(\|w_0\|_2 \sqrt{\varepsilon + \frac{1}{m} \log \frac{1}{\delta}}\right)$$

for $d = \tilde{\Omega}\left(\frac{T}{\varepsilon^2}\log\frac{nV}{\delta}\right)$. Here T is the maximum document length, V is the vocabulary size, and m is the number of samples.

Proof Outline

- Design an RIP matrix A such that a *low-memory* LSTM can compute a document representation Ax, where x is a BonG vector.
- Show that learning is possible under compression: a linear classifier learned over {Axi} is almost as good as a linear classifier learned over {xi} if the vectors xi are sparse and A satisfies an RIP condition.

Restricted Isometry Property

A is (k, ϵ) -RIP if $(1 - \epsilon) ||x||_2 \le ||Ax||_2 \le (1 + \epsilon) ||x||_2$ for all k-sparse x

Assumptions

- n-grams are order-invariant ((a,b) ~ (b,a))
 - reasonable performance is about the same
- no word occurs in any n-gram more than once (no (a,a), (a,b,a))
 - violated in real documents, but can be removed by a preprocessing step

Proof Outline

- Design an RIP matrix A such that a low-memory LSTM can compute a document representation Ax, where x is a BonG vector.
- Show that learning is possible under compression: a linear classifier learned over {Axi} is almost as good as a linear classifier learned over {xi} if the vectors xi are sparse and A satisfies an RIP condition.

Document Representation

Words: For every word w sample i.i.d. $v_w \sim \frac{1}{\sqrt{d}} \{\pm 1\}^d$

n-gram: For $g = w_1, \ldots, w_n$, use element wise product of word vectors

$$v_g = v_{w_1} \circ \cdots \circ v_{w_n}$$

Document: Sum of p-gram embeddings for all $p \leq n$

$$v_D = \sum_{p \le n} \sum_{g \in p-\text{gram}} v_g$$

Linear Compression

$$v_D = Ax_{BonG}$$

where the columns of A are the n-gram embeddings

Compositionality

 v_D can be computed using

a low-memory LSTM

Randomness

A is (T, ϵ) -RIP for

$$d = \tilde{\mathcal{O}}\left(\frac{T}{\epsilon^2}\right)$$

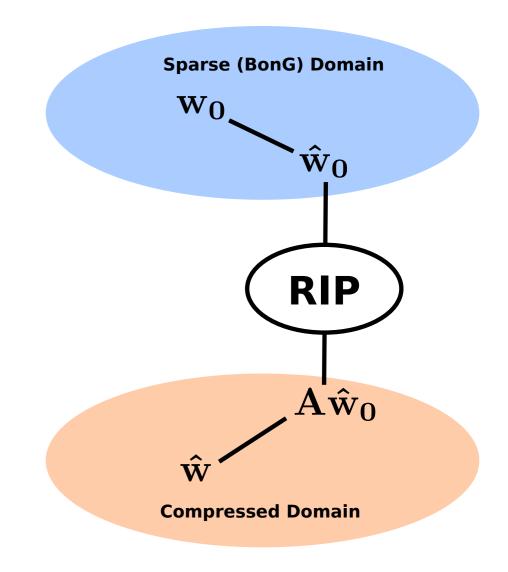
Proof Outline

- Design an RIP matrix A such that a low-memory LSTM can compute a document representation Ax, where x is a BonG vector.
- Show that learning is possible under compression: a linear classifier learned over {Axi} is almost as good as a linear classifier learned over {xi} if the vectors xi are sparse and A satisfies an RIP condition.

Compressed Learning (Calderbank et al. 2009)

We examine four different classifiers:

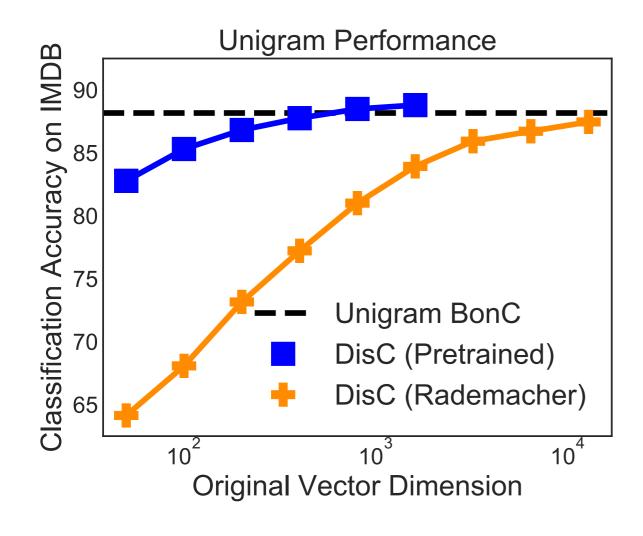
- 1. the optimal sparse classifier $\mathbf{w_0}$
- 2. the sparse classifier $\hat{\mathbf{w}}_{\mathbf{0}}$ minimizing the (regularized) loss over $\{(x_i, y_i)\}_{i=1}^m$
- 3. the dense classifier $\mathbf{A}\hat{\mathbf{w}_0}$
- 4. the classifier $\hat{\mathbf{w}}$ minimizing the (regularized) loss over $\{(Ax_i, y_i)\}_{i=1}^m$

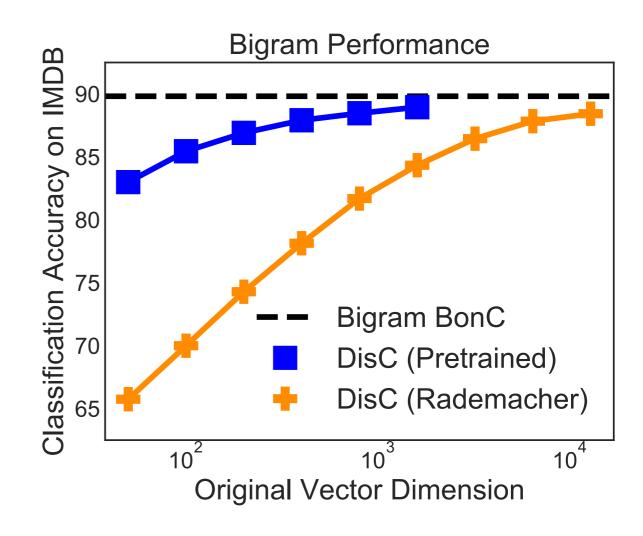


Bounding $\ell(\hat{w}_0)$ in terms of $\ell(w_0)$ and $\ell(\hat{w})$ in terms of $\ell(A\hat{w}_0)$ can be done using standard techniques. We need the RIP condition on A to bound $\ell(A\hat{w}_0)$ in terms of $\ell(\hat{w}_0)$.

Classification Performance

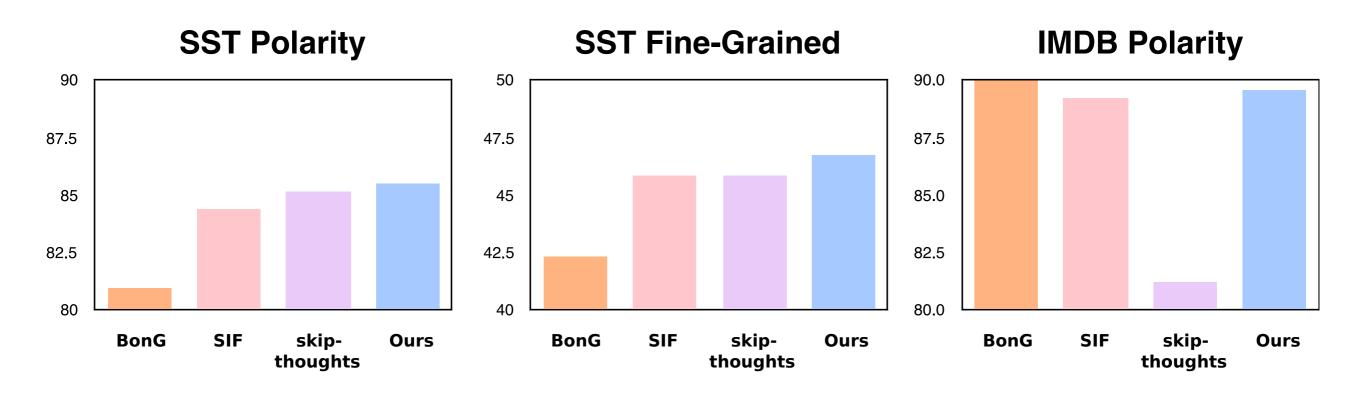
$$\ell(\hat{w}) \le \ell(w_0) + \mathcal{O}\left(\|w_0\|_2 \sqrt{\varepsilon + \frac{1}{m} \log \frac{1}{\delta}}\right)$$
 $d = \tilde{\mathcal{O}}(\frac{T}{\epsilon^2})$





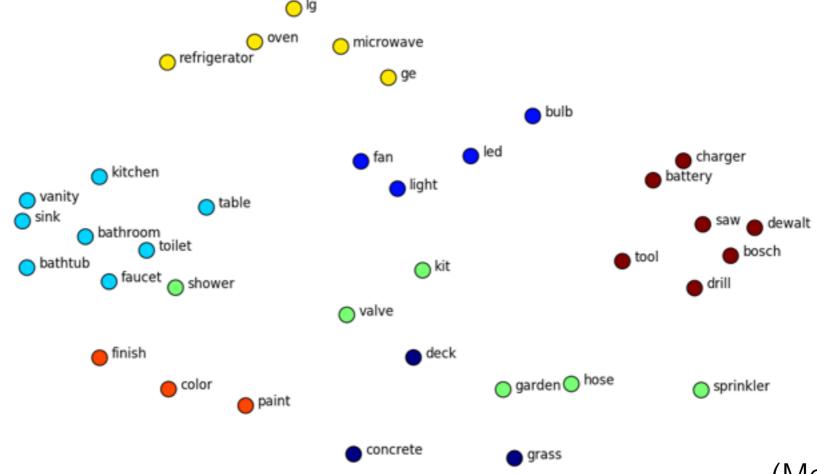
Classification Performance

 Our method is simple, compositional, and compares well against both Bag-of-n-Grams and deep LSTM representations.



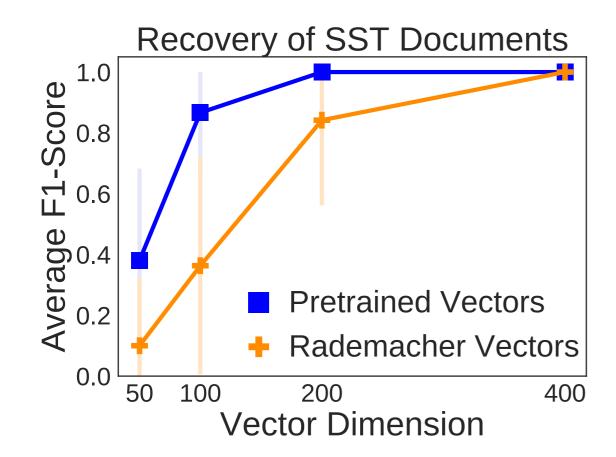
Word Embeddings

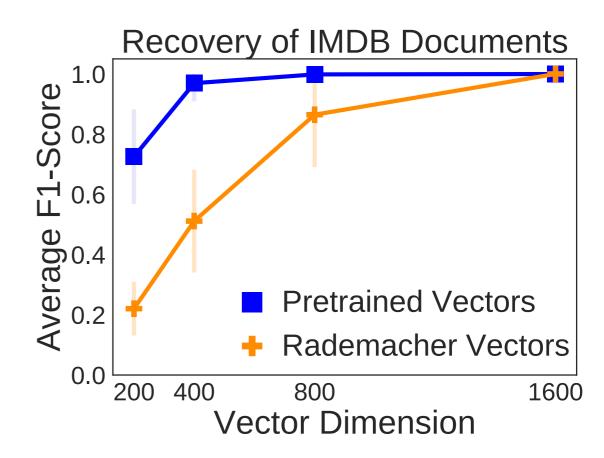
- Guarantees for compressed learning assume words represented by Rademacher random vectors.
- In practice pretrained embeddings capturing the 'meaning' of words are used instead.
- These vectors are trained so that similar words are closer together and thus cannot satisfy RIP. How can we understand their better performance?



A Sparse Recovery Experiment

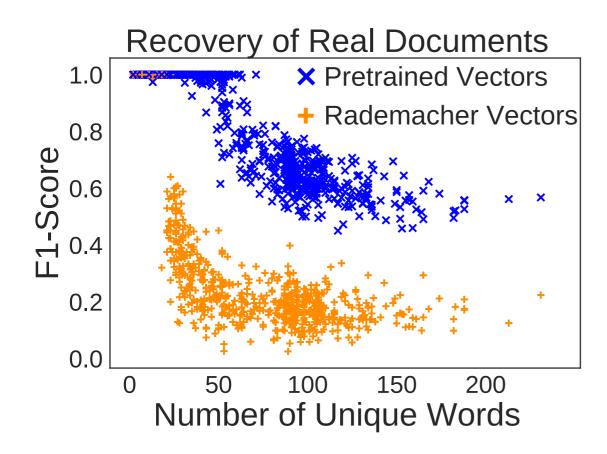
- What do word embedding-based document representations encode?
 - Compress a BoW vector x: b = Ax
 - Recover x using Basis Pursuit (BP): min lxl₁ s.t. Ax = b
 - Note: RIP provides exact recovery guarantees for BP.

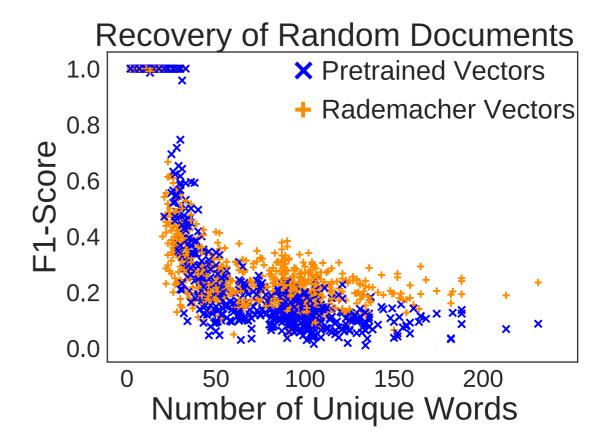




Why Are Embeddings Good for Compressed Sensing?

- RIP is a very strong condition sufficient but not necessary
- Word embeddings only perform well when the compressed signal is a BoW vector; for random sparse vectors they perform poorly:





Recovery Properties

Restricted Isometry Property (RIP):

- guarantees recovery for all sparse signals
- Too Strong: does not use signal structure

Nullspace Property (NSP):

- guarantees recovery for all sparse signals with a given support
- do not know how to check efficiently

Nonnegative Recovery

BoW signals are nonnegative, so we can solve BP+:

min $|x|_1$ s.t. Ax = b, $x \ge 0$

Donoho & Tanner (2005) (Polytope Condition):

BP+ recovers all x with supp(x)=S from Ax iff the columns of A indexed by S form a face of conv(A).

A Verifiable Sparse Recovery Condition

We say that a matrix A and index set S satisfy the **Supporting Hyperplane Property (SHP)** if there exists a hyperplane going through the columns of A indexed by S and all other columns of A are on the same side of the hyperplane as the origin.

Theorem:

BP+ recovers all x with supp(x) from Ax iff A and supp(x) satisfy SHP.

A Verifiable Sparse Recovery Condition

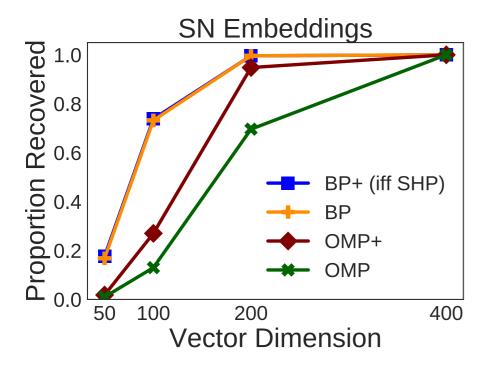
To verify SHP:

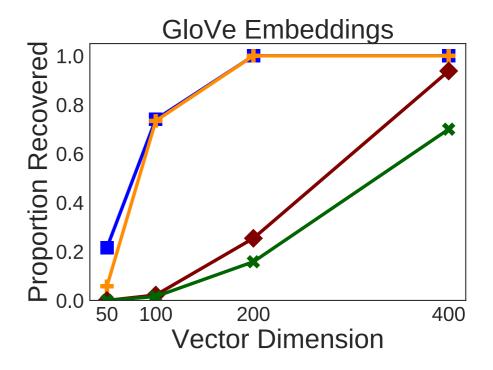
- solve the following convex program
- check if the optimal objective value is zero

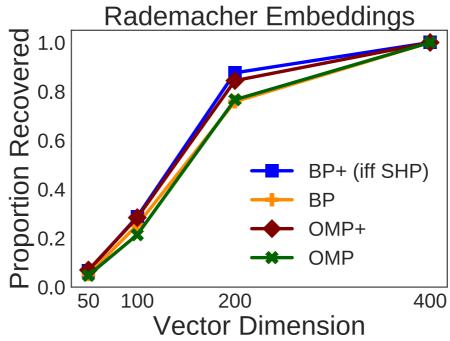
$$\min_{h \in \mathbb{R}^{d+1}} \sum_{i \notin S} \max \left\{ \tilde{A}_i^T h + \varepsilon, 0 \right\}^p \quad \text{subject to} \quad \tilde{A}_S^T h = \mathbf{0}_{|S|}$$

where
$$\tilde{A} = \begin{pmatrix} A & \mathbf{0}_d \\ \mathbf{1}_N^T & 1 \end{pmatrix}$$
 and $\varepsilon > 0, \ p \ge 1$

Recovery vs Embedding



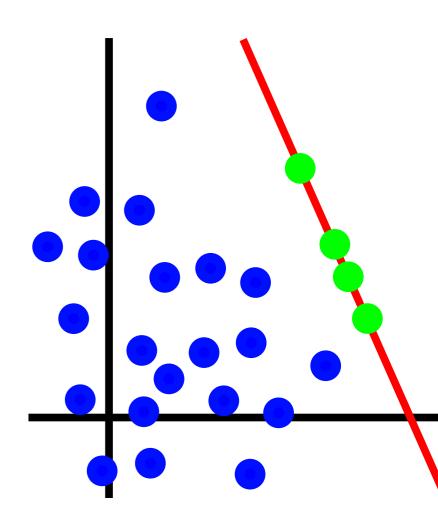




A Geometric Understanding of Recovery

Can SHP explain better recovery using word embeddings?

- Words occurring in the same document tend to have similar vectors - perhaps they are more likely to have a hyperplane separating them out.
- May be explained via a generative model of text where words are emitted based on similarity with a fixed context vector.



Future Work: Recovery vs. Classification

- Compressed learning results depend on RIP.
 Empirical results only show that word embeddings satisfy some weaker recovery property.
- We need an intermediate condition that:
 - provides compressed learning guarantees relative to BoW/BonG
 - guarantees recovery for certain signal distributions such as document BoW

Future Work: Applications of Recovery

- Train bigram/trigram embeddings that also recover
 - can reconstruct word order.

- Apply to simple encoding schemes in NLP
 - Simple approach to machine translation
 - Continuous representation for GAN training

THANK YOU