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Overview

Motivation:

e Success of modern NLP is based around distributed

representations - low-dimensional semantic text embeddings that
are used and produced by neural networks.

* Deep networks work well in practice but are not yet dominant in
all NLP tasks and are largely uninterpretable

Goal:

Reason formally about distributed representations for text:
« \What information do they encode”

 How will they perform on downstream tasks?



Contributions

Theoretical Results

* We prove that LSTMs can compute compressed
representations of simple (but very effective) sparse
feature representations (e.g. Bag-of-Words) that are

approximately as powerful for linear document
classification.

Empirical finding

* We also observe empirically that word embeddings

provide a surprisingly effective design matrix for sparse
recovery of Bag-of-Words.



Setting

e Assume a distribution D of documents, each a

sequence of at-most T words wy, ..., Wt drawn from
a vocabulary of size V.
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Sparse Representation:
Bag-of-n-Grams (BonG)

 Bag-of-Words: represent each document by a
vector counting the number of times each word
appears.

 Bag-of-n-Grams: represent each document by a
vector counting the number of times each unigram,
bigram, ..., n-gram appears.

o Surprisingly eftective (Wang & Manning 2012).



Distributed Representation:
L inear Scheme

* Assign a real-vector vy to every word w. Take a
sum of the vectors of word in a document.

* Empirically shown to be etfective on some tasks
(Wieting et al. 2016, Arora et al. 2017)

 Can be viewed as a linear compression Ax of the
BoW vector X, where the columns of A are the
vVectors Vw



Distributed Representation:
| STM

e Assign a real-vector vy t0 every word w, An LSTM takes a
sequence of words (wjy, ..., Wt) as input and computes a
hidden state vector hy at each word in document as follows

hi hrt ht — F(th, ht—l)

f(th, ht—l) ohi_q + i(th, ht—l) O g(th, ht—1))

 Represent the document as the last state hr.

e Use (un)supervised training to learn the LSTM parameters.



Related Work on
BonG Compression

 Compressed representation that can recover BonG vector

e Plate (1995): represent objects (words) using low-
dimensional random vectors, compose objects (n-
grams) using circular convolution, and represent
collections of items (documents) using summation.

o Paskov et al. (2013): use a LZ77-inspired approach to
reduce the number of features; good classification
performance but still quite high-dimensional.

 None of them analyze performance on downstream tasks.



Main Theorem

Theorem [AKSV’18]: Let wy be the optimal linear classifier for BonGs for
some convex Lipschitz loss ¢. Then we can initialize a O(nd)-memory LSTM
and learn a linear classifier w so that with probability 1 — ¢

m

l(w) < L(wgy) + O (\ong\/s + 1 log %)

for d = Q (612 log %) Here T' is the maximum document length, V is the
vocabulary size, and m is the number of samples.



Proof Outline

* Design an RIP matrix A such that a low-memory

LSTM can compute a document representation AX,
where x is a BonG vector.

* Show that learning is possible under compression: a
inear classitier learned over {AX;} is almost as good
as a linear classifier learned over {x} if the vectors X;
are sparse and A satisfies an RIP condition.

Restricted Isometry Property
Ais (k,e)-RIP if (1 —¢€)||z||o < ||Az||2 < (1 4 €)||z||2 for all k-sparse x



Assumptions

e n-grams are order-invariant ((a,b) ~ (b,a))
e reasonable - performance is about the same

e NO word occurs in any n-gram more than once (no
(a,a), (a,b,a))

e violated in real documents, but can be removed
by a preprocessing step



Proof Outline

* Design an RIP matrix A such that a low-memory
LSTM can compute a document representation AX,
where x is a BonG vector.



Document Representation

Words: For every word w sample i.i.d. v,, ~ %{zzl}d

n-gram: For g = wq,...,w,, use element wise product of word vectors
Ug :vwl O...van

Document: Sum of p-gram embeddings for all p < n

Up = ) >, g

p<n gEp—gram

Linear Compression Compositionality Randomness

vp = ATBonG vp can be computed using A is (T, €)-RIP for

where the columns of A
are the n-gram embeddings

a low-memory LSTM d=0 (%)



Proof Outline

* Show that learning is possible under compression: a
inear classitier learned over {AX;} is almost as good
as a linear classifier learned over {x} if the vectors X;
are sparse and A satisfies an RIP condition.



Compressed Learning
(Calderbank et al. 2009)

We examine four different classifiers: SETEQ (o) e
Wo
1. the optimal sparse classifier wg \W
o
2. the sparse classifier wg minimizing

the (regularized) loss over {(x;,y;)}i%, @
the dense classifier Awg

. the classifier w minimizing the Awg

(regularized) loss over {(Ax;, y;)}i%,

A

W

Compressed Domain

Bounding /(wg) in terms of ¢(wy) and £(w) in terms of ¢(Awy) can be done
using standard techniques. We need the RIP condition on A to bound
((Awg) in terms of £(wy).



Classification Performance

. 1 1 -
l(w) < l(wg) + O Hong\/e—l—Elogg d=0(%)

Unigram Performance Bigram Performance
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Classification Performance

 Our method is simple, compositional, and
compares well against both Bag-of-n-Grams and
deep LSTM representations.

SST Polarity SST Fine-Grained IMDB Polarity
90 50 90.0
87.5 47.5 87.5
85 45 85.0
82.5 42.5 82.5
80 40 80.0
BonG SIF skip- Ours BonG SIF skip- Ours BonG SIF skip-

thoughts thoughts thoughts



Word Embeddings

« Guarantees for compressed learning assume words represented by
Rademacher random vectors.

* In practice pretrained embeddings capturing the ‘meaning’ of words are
used instead.

* These vectors are trained so that similar words are closer together and
thus cannot satisty RIP. How can we understand their better performance?
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(Merentitis et al. 2016)



A Sparse Recovery
EXperiment

* What do word embedding-based document representations encode?
e Compress a BoW vector x: b = Ax
* Recover x using Basis Pursuit (BP): min Ixl; s.t. Ax=Db

* Note: RIP provides exact recovery guarantees for BP.

Recovery of SST Documents Recovery of IMDB Documents
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F1-Score

Why Are Embeddings Good
for Compressed Sensing?

 RIP is a very strong condition - sufficient but not necessary

 Word embeddings only perform well when the compressed
signal is a BoW vector; for random sparse vectors they

pertorm poorly:

Recovery of Real Documents
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Recovery Properties

Restricted Isometry Property (RIP):
* guarantees recovery for all sparse signals

* Too Strong: does not use signal structure

Nullspace Property (NSP):

* guarantees recovery for all sparse signals
with a given support

* do not know how to check efticiently



Nonnegative Recovery

BoW signals are nonnegative, so we can solve BP+:

Donoho &

min Ixl; s.t. Ax=b, x=0

anner (2005) (Polytope Condition):

BP+ recovers all x with supp(x)=S from Ax iff the
columns of A indexed by S form a tface of conv(A).



A Verifiable Sparse
Recovery Condition

We say that a matrix A and index set S satisty the
Supporting Hyperplane Property (SHP) if there exists

a hyperplane going through the columns of A indexed
by S and all other columns of A are on the same side of
the hyperplane as the origin. ° \
®le

(o) ® \

Theorem: o % e
(o)

BP+ recovers all x with supp(x) from ‘0‘ ®

Ax iff A and supp(x) satisty SHP.




A Verifiable Sparse
Recovery Condition

To verity SHP:
* solve the following convex program

* check if the optimal objective value is zero

- p ~
min max {A?h + €, O} subject to Agh = Oyg
heRd+1 (25

where Az(é Od) and >0, p>1
1y 1
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A Geometric Understanding
of Recovery

Can SHP explain better recovery using word embeddings”

* Words occurring in the same document
tend to have similar vectors - perhaps
they are more likely to have a hyperplane ® \
separating them out.

* May be explained via a generative model @@ o @ o
of text where words are emitted based on @ o !
similarity with a fixed context vector. “‘ ®




Future Work:
Recovery vs. Classification

 Compressed learning results depend on RIP.
Empirical results only show that word embeddings
satisty some weaker recovery property.

e \WWe need an intermediate condition that:

* provides compressed learning guarantees
relative to BoW/BonG

* guarantees recovery for certain signal
distributions such as document BoW



Future Work:
Applications of Recovery

Train bigram/trigram embeddings that also recover
- can reconstruct word order.

Apply to simple encoding schemes in NLP
e Simple approach to machine translation

* Continuous representation for GAN training
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