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Overview
• The success of modern NLP is based around distributed 

representations - low-dimensional semantic text embeddings that are 
used and produced by neural networks. 

• Our goal is to reason formally about distributed representations: 
• What information do they encode? 
• How will they perform on downstream tasks? 

• We prove that LSTMs can compute compressed representations of older 
(but very effective) sparse feature representations (e.g. Bag-of-Words) 
that are approximately as powerful for linear document classification. 

• We also observe empirically that word embeddings provide a 
surprisingly effective design matrix for sparse recovery of Bag-of-Words.



Setting

• Assume a distribution D of documents, each a 
sequence of at-most T words w1, …, wT drawn from 
a vocabulary of size V. 

• We are interested in real-vector document 
representations over which we can learn a high-
accuracy binary linear classifier.



Classical Approach:  
Bag-of-n-Grams

• Bag-of-Words: represent each document by a 
vector counting the number of times each word 
appears. 

• Bag-of-n-Grams: represent each document by a 
vector counting the number of times each unigram, 
bigram, …, n-gram appears. 
• Surprisingly effective (Wang & Manning 2012).



Distributed Approach: 
Hidden State of an RNN

• Assign to each word w a real vector vw and use 
them as inputs to an LSTM that computes a hidden 
state vector ht at each word in document w1, …, wT  

• Represent the document as the last state hT. 

• Use supervised or unsupervised training to learn 
the LSTM parameters.

ht = f(vwt , ht�1) � ht�1 + i(vwt , ht�1) � g(vwt , ht�1)



Linear Scheme
• Between sparse and neural representations are 

linear embedding schemes: taking the sum over 
the word embeddings in a document. 

• Empirically shown to be effective on some tasks 
(Wieting et al. 2016, Arora et al. 2017) 

• Can be viewed as a linear compression Ax of the 
BoW vector x.



Related Work on  
BonG Compression

• Past work has shown how to construct compressed 
representations from which the original BonG vectors can be 
recovered: 

• Plate (1995): represent objects (words) using low-dimensional 
random vectors, compose objects (n-grams) using circular 
convolution, and represent collections of items (documents) 
using summation. 

• Paskov et al. (2013): use a LZ77-inspired approach to reduce 
the number of features; good classification performance but still 
quite high-dimensional. 

• Our work is the first to analyze performance on downstream tasks.



Main Theorem
Theorem [AKSV’18]: Let w0 be the optimal linear classifier for BonGs for
some convex Lipschitz loss `. Then we can initialize a O(nd)-memory LSTM
and learn a linear classifier ŵ so that with probability 1� �
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. Here T is the maximum document length, V is the

vocabulary size, and m is the number of samples.



Proof Outline
• Design an RIP matrix A such that a low-memory 

LSTM can compute a document representation Ax, 
where x is a BonG vector. 

• Show that learning is possible under compression: a 
linear classifier learned over {Axi} is almost as good 
as a linear classifier learned over {xi} if the vectors xi 
are sparse and A satisfies an RIP condition.

Restricted Isometry Property (RIP):

A is (k, ")-RIP if (1� ")kxk2  kAxk2  (1 + ")kxk2 for all k-sparse x.



Assumptions

• n-grams are order-invariant ((a,b) ~ (b,a)) 
• reasonable - performance is about the same 

• no word occurs in any n-gram more than once (no 
(a,a), (a,b,a)) 
• violated in real documents, but can be removed 

by a preprocessing step



Proof Outline
• Design an RIP matrix A such that a low-memory 

LSTM can compute a document representation Ax, 
where x is a BonG vector. 

• Show that learning is possible under compression: a 
linear classifier learned over {Axi} is almost as good 
as a linear classifier learned over {xi} if the vectors xi 
are sparse and A satisfies an RIP condition.



Document Representation
Represent each word w by an i.i.d. random Rademacher vector vw 2 {±1/
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Then the matrix A whose columns are the n-gram vectors vg satisfies hT = Ax

for any document, where x is the document’s BonG vector.

ht = f(vwt , ht�1) � ht�1 + i(vwt , ht�1) � g(vwt , ht�1)



A is RIP
For random variables x
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where each �i corresponds to a unique n-gram. This system has the following

two properties:

1. Each �i is a mononomial in n variables and thus has norm bounded by 1.
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with probability 1� � (Foucart & Rauhut 2013).



Proof Outline
• Design an RIP matrix A such that a low-memory 

LSTM can compute a document representation Ax, 
where x is a BonG vector. 

• Show that learning is possible under compression: a 
linear classifier learned over {Axi} is almost as good 
as a linear classifier learned over {xi} if the vectors xi 
are sparse and A satisfies an RIP condition.



Compressed Learning 
(Calderbank et al. 2009)

We examine four di↵erent classifiers:

1. the optimal sparse classifier w0

2. the sparse classifier ŵ0 minimizing

the (regularized) loss over {(xi, yi)}mi=1

3. the dense classifier Aŵ0

4. the classifier ŵ minimizing the

(regularized) loss over {(Axi, yi)}mi=1

Bounding `(ŵ0) in terms of `(w0) and `(ŵ) in terms of `(Aŵ0) can be done

using standard techniques. We need the RIP condition on A to bound

`(Aŵ0) in terms of `(ŵ0).

Sparse (BonG) Domain

Compressed Domain

RIP



Proof Sketch
Consider the following two facts:
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Classification Performance
`(ŵ)  `(w0) +O
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Word Embeddings
• For the main result we assumed words were represented by Rademacher 

random vectors. 

• In practice pretrained embeddings capturing the ‘meaning’ of words are 
used instead. 

• These vectors are trained so that similar words are closer together and 
thus cannot satisfy RIP. How can we understand their better performance?

(Merentitis et al. 2016)



A Sparse Recovery 
Experiment

• What do word embedding-based document representations encode? 
• Compress a BoW vector x: b = Ax
• Recover x using Basis Pursuit (BP): min |x|1 s.t. Ax = b
• Note: RIP provides exact recovery guarantees for BP.



Why Are Embeddings Good 
for Compressed Sensing?

• RIP is a very strong condition - sufficient but not necessary 

• Word embeddings only perform well when the compressed 
signal is a BoW vector; for random sparse vectors they 
perform poorly:



A Geometric Explanation?
• Using a theorem due to Donoho & Tanner 

(2005) we show that perfect recovery of a 
sparse signal x with support S from Ax is 
equivalent to the existence of a 
hyperplane going through the columns of 
AS such that all other columns of A are on 
the same side as the origin. 

• Since words occurring in the same 
document tend to have similar vectors, 
perhaps they are more likely to have a 
hyperplane separating them out.



Future Work
• Train an RNN initialized or regularized by the 

constructed linear scheme. 

• Incorporate better n-gram embeddings. 

• Open Problems: 
• Is compressed learning possible under weaker 

conditions on A? 
• Provide a generative or information-theoretic 

explanation of recovery for word embeddings.


