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Overview

The success of modern NLP is based around distributed
representations - low-dimensional semantic text embeddings that are
used and produced by neural networks.

Our goal is to reason formally about distributed representations:
 What information do they encode?
* How will they perform on downstream tasks?

We prove that LSTMs can compute compressed representations of older
(but very effective) sparse feature representations (e.g. Bag-of-Words)
that are approximately as powerful for linear document classification.

We also observe empirically that word embeddings provide a
surprisingly effective design matrix for sparse recovery of Bag-of-Words.



Setting

 Assume a distribution D of documents, each a
sequence of at-most T words wy, ..., Wt drawn from
a vocabulary of size V.

 We are interested Iin real-vector document
representations over which we can learn a high-
accuracy binary linear classitier.




Classical Approach:
Bag-of-n-Grams

 Bag-of-Words: represent each document by a
vector counting the number of times each word
appears.

 Bag-of-n-Grams: represent each document by a
vector counting the number of times each unigram,
bigram, ..., n-gram appears.

o Surprisingly eftective (Wang & Manning 2012).



Distributed Approach:
Hidden State of an RNN

* Assign to each word w a real vector vw and use
them as inputs to an LSTM that computes a hidden
state vector ht at each word in document w1, ..., Wt

hy = f(”th, ht—l) o hy_1 + i(tha ht—l) O Q(th, ht—l)
* Represent the document as the last state hr.

* Use supervised or unsupervised training to learn
the LSTM parameters.



| Inear Scheme

Between sparse and neural representations are
iInear embedding schemes: taking the sum over
the word embeddings in a document.

 Empirically shown to be effective on some tasks
(Wieting et al. 2016, Arora et al. 2017)

 Can be viewed as a linear compression Ax of the
BoW vector Xx.



Related Work on
BonG Compression

* Past work has shown how to construct compressed
representations from which the original BonG vectors can be
recovered:

e Plate (1995): represent objects (words) using low-dimensional
random vectors, compose objects (n-grams) using circular
convolution, and represent collections of items (documents)
using summation.

e Paskov et al. (2013): use a LZ77-inspired approach to reduce
the number of features; good classification performance but still
quite high-dimensional.

e Our work is the first to analyze performance on downstream tasks.



Main Theorem

Theorem [AKSV’18]: Let wy be the optimal linear classifier for BonGs for
some convex Lipschitz loss ¢. Then we can initialize a O(nd)-memory LSTM
and learn a linear classifier w so that with probability 1 — ¢

() < l(wg) + O (\onz\/s + 1 log %)

m

for d = Q (522 log %) Here T is the maximum document length, V' is the
vocabulary size, and m is the number of samples.



Proof Outline

* Design an RIP matrix A such that a low-memory

LSTM can compute a document representation AX,
where x is a BonG vector.

* Show that learning is possible under compression: a
inear classitier learned over {AX;} is almost as good
as a linear classifier learned over {x} if the vectors X;
are sparse and A satisfies an RIP condition.

Restricted Isometry Property (RIP):
Ais (k,e)-RIP if (1 —¢)||x||2 < ||[Az||l2 < (1 4 ¢)||z||2 for all k-sparse .



Assumptions

e n-grams are order-invariant ((a,b) ~ (b,a))
e reasonable - performance is about the same

e NO word occurs in any n-gram more than once (no
(a,a), (a,b,a))

e violated in real documents, but can be removed
by a preprocessing step



Proof Outline

* Design an RIP matrix A such that a low-memory
LSTM can compute a document representation AX,
where x is a BonG vector.



Document Representation

Represent each word w by an i.i.d. random Rademacher vector v,, € {£1/v/d}?

and each n-gram g = (wy,...,wy) as v, = 4"z (Vi; @ - ® Uy, ). Then there
exists an LSTM that can compute the vector

(o S

word w in document

s s S

n-gram g in document

Then the matrix A whose columns are the n-gram vectors v, satisfies hy = Ax
for any document, where x is the document’s BonG vector.

he = f(tha ht—l) o hy_1 + i(tha ht—l) O g(’th, ht—l)



A IS

RIP

For random variables (1), ... (@ ~ 1/{-

VdA =

/¢1(x(1)) \

\61 (2

-1, j=1,...,d we can write

(d)) )

where each ¢; corresponds to a unique n-gram. This system has the following

two properties:

1. Each ¢; is a mononomial in n variables and thus has norm bounded by 1.

2. Each monomial is unique = E{¢;(z®)), ¢;(z*))) =0V i # j.

Properties 1 and 2 imply that v/dA corresponds to a bounded or-

thonormal system (BOS) and so A

is (k,e)-RIP for d = Q (% log ¥)

with probability 1 —  (Foucart & Rauhut 2013).



Proof Outline

* Show that learning is possible under compression: a
inear classitier learned over {AX;} is almost as good
as a linear classifier learned over {x} if the vectors X;
are sparse and A satisfies an RIP condition.



Compressed Learning
(Calderbank et al. 2009)

We examine four different classifiers: SETEQ (o) e
Wo
1. the optimal sparse classifier wg \W
o
2. the sparse classifier wg minimizing

the (regularized) loss over {(x;,y;)}i%, @
the dense classifier Awg

. the classifier w minimizing the Awg

(regularized) loss over {(Ax;, y;)}i%,

A

W

Compressed Domain

Bounding /(wg) in terms of ¢(wy) and £(w) in terms of ¢(Awy) can be done
using standard techniques. We need the RIP condition on A to bound
((Awg) in terms of £(wy).



Proof Sketch

Consider the following two facts:
™m
1. The minimizer wy of = > l(w'z;,y;) + 55||w||3 can be written as the
i=1

m
linear combination Wy = Y a;y;x;, with bounded coefficients |a;| < 2<.
i=1

2. Ais (2k,e)-RIP = (1+¢e)xla’— R% < (Az)! (A2') < (1—¢e)zt a2’ + R?¢
for k-sparse x,x’ with ||z||2, [[2']|2 < R.

So for any k-sparse x with ||z||: < R:

(Awo)T(AfE) = Z &iyi(Axi)T(Ax)

< Z a;y; (1 —e)x) x + 2R%) + Z aiyi (1 +¢)zj x — 2R%)

1 y; >0 1oy <0

— g x—¢ Z loyyi|zi © + 2R%e Z o] < g x4+ BACR?e
i=1 i=1

Similarly (Awg)? (Ax) > wd'z — 3ACRe.

Taking expectations over x ~ D yields £(Awg) < £(g) + 3N*CR?¢.
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Word Embeddings

e For the main result we assumed words were represented by Rademacher
random vectors.

* In practice pretrained embeddings capturing the ‘meaning’ of words are
used instead.

* These vectors are trained so that similar words are closer together and
thus cannot satisty RIP. How can we understand their better performance?

Ol
©oven () microwave
refrigerator
Qreing
O9e
' bulb
‘ @ n @ led @ charger
O kitchen Py light @) battery
@ vanity @ tble
sink saw
© @ bathroom ' O @ dewalt
bathtub kit @ '©°
O O faucet . ., S drill
© shower @
O valve
O finish @} deck
color gardenQ hose sprinkler
O o o
@ concrete @ s

(Merentitis et al. 2016)



A Sparse Recovery
EXperiment

* What do word embedding-based document representations encode?
e Compress a BoW vector x: b = Ax
* Recover x using Basis Pursuit (BP): min Ixl; s.t. Ax=Db

* Note: RIP provides exact recovery guarantees for BP.
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F1-Score

Why Are Embeddings Good
for Compressed Sensing?

 RIP is a very strong condition - sufficient but not necessary

 Word embeddings only perform well when the compressed
signal is a BoW vector; for random sparse vectors they

pertorm poorly:

Recovery of Real Documents
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A Geometric Explanation?

e Using a theorem due to Donoho & Tanner
(2005) we show that perfect recovery of a
sparse signal x with support S from AX is
equivalent to the existence of a
hyperplane going through the columns of
As such that all other columns of A are on ®
the same side as the origin.

Ole \

e Since words occurring in the same ® 00%g
document tend to have similar vectors, O ® \

perhaps they are more likely to have a “‘ (o)

hyperplane separating them out.




Future Work

* Jrain an RNN initialized or regularized by the
constructed linear scheme.

* |ncorporate better n-gram embeddings.

* Open Problems:

* |s compressed learning possible under weaker
conditions on A"

* Provide a generative or information-theoretic
explanation of recovery for word embeddings.



