The Platform Design Problem

Christos Papadimitriou, Kiran Vodrahalli, Mihalis Yannakakis

Columbia University

Google Learning Theory Reading Group

October 11, 2021

The Data-Collection Problem

- Modern machine learning requires large amounts of high-quality data
- Collecting supervised labels is expensive
- Unsupervised learning is challenging to use
- Is it possible to create environments which generate useful data?
 - Ex: Reddit users provide sarcasm labels using the "/s" tag

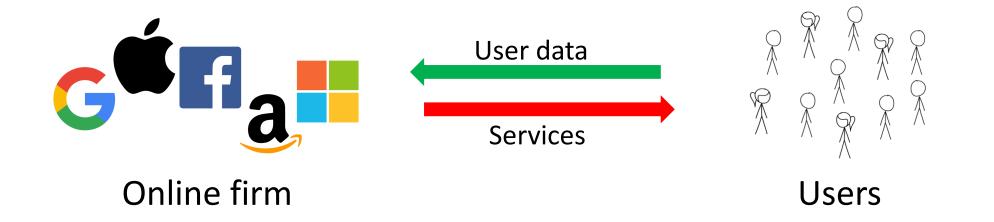
The Data-Collection Problem

- Modern machine learning requires large amounts of high-quality data
- Collecting supervised labels is expensive
- Unsupervised learning is challenging to use

Is it possible to create environments which generate useful data?
 Ex: Reddit users provide sarcasm labels using the "/s" tag

Modern tech companies try to solve this problem.

Economics of the Online Firm



- User data feeds revenue
 - Better demand segmentation
 - Ad/recommendation revenue
 - Better models => better services

- Online services bring value
 - Convenience
 - Knowledge

Outline

- Problem Definition
- General Case
- Tractable "Flower" Case
 - Agent Behavior
 - Designer's Algorithm
- Extensions
- Summary
- Future Work

Problem Definition

Platform Design

Problem

Model the revenue-maximization problem of today's online firms (e.g. Google, FB, etc.) and understand computational tractability.

Bi-Level MDP Optimization Model

Agent: participates in Life MDP

Designer: tweaks the Life MDP by building platforms.

Goal: Designer wants to indirectly optimize its reward via Agent's optimal behavior! (Find Stackelberg)

- Key Idea: Google builds various apps (Maps, Search, Social Network, etc.) and profits based on usage of these apps.
- The usage of apps modifies the transitions of the Markov Chain of the user's life
- Assume the Designer has linear rewards over the steady state distribution of the resulting Markov chain (agent policy + Life MDP)

The Stackelberg Game

- Designer moves first:
 - Adds platforms which, if adopted, modify transitions to an existing Markov Chain
- Agent moves second:
 - Receives MDP from Designer, plays optimal behavior
- Example of bi-level MDP optimization
- What is the computational complexity of solving for equilibrium?

Formal Problem Statement

- An **agent** lives in an irreducible Markov chain with A = [n] states.
- The **designer** chooses $S \subseteq A$ states to add platforms to.
- The agent may **adopt or not adopt** the platform at each state:
 - If **adopt**, the transitions change. Otherwise they do not.
 - Assume the chain remains irreducible.

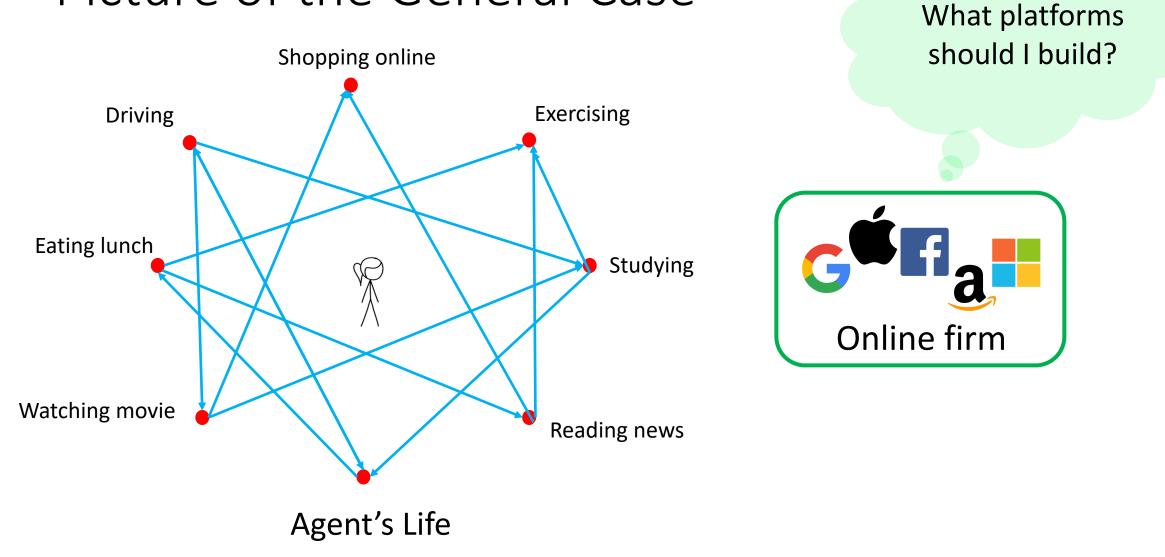
Formal Problem Statement

- Assign a utility rate for the agent (c_i) and the designer (d_i) at $i \in [n]$.
- The agent solves the resulting Markov Decision Process.
 - Resulting steady-state probabilities are given by π .
- The designer optimizes over *S*:

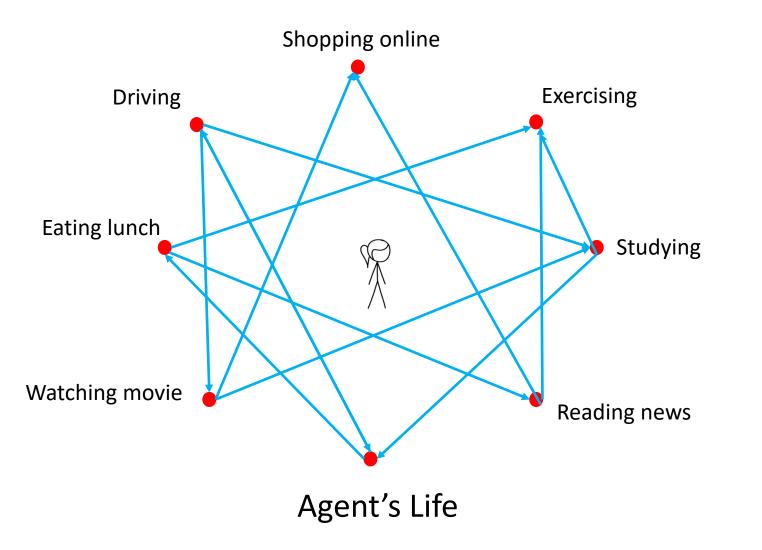
$$\operatorname{profit}(S) := \sum_{i \in S} d_i \cdot \pi_i(S) - \sum_{i \in S} \operatorname{cost}_i$$

General Case

Picture of the General Case

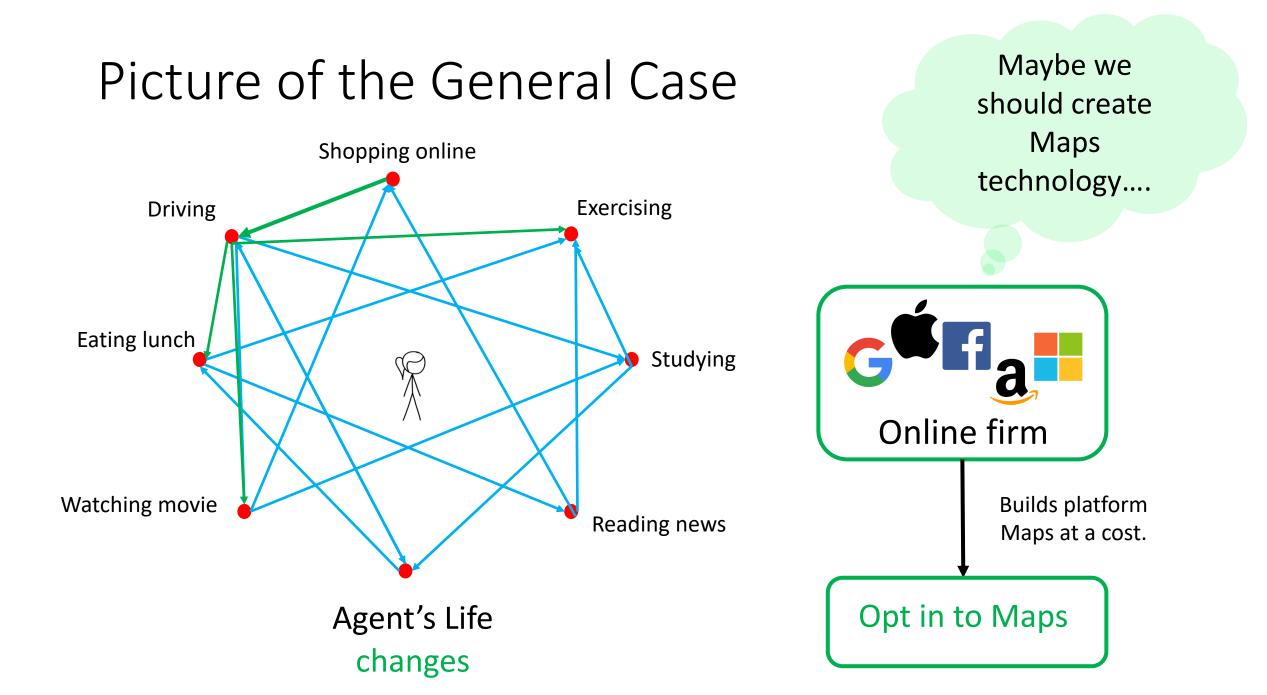


Picture of the General Case



What platforms should I build?

At a cost, the firm can **add an opt-in action** to platforms they create (ex: Google Maps).

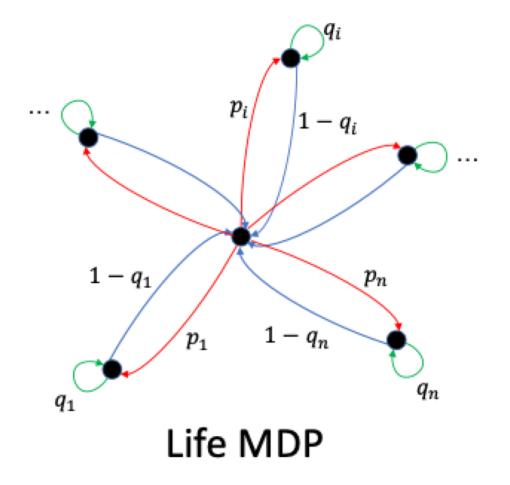


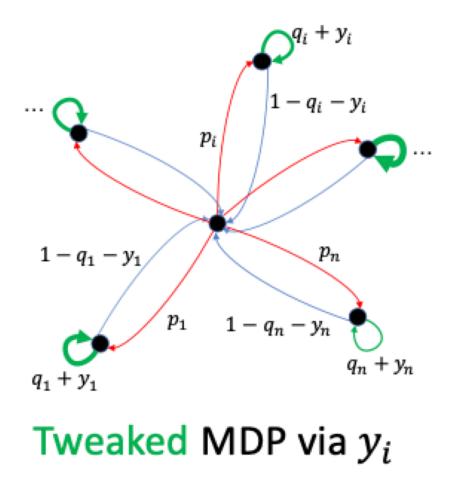
Computational Tractability I: General Case

- It is strongly NP-hard to decide whether the Designer can obtain positive profit – and therefore hard to approximate.
- Reduction from SET COVER
 - Designer builds platforms which each solve subset of Agent's problems.
 - Most cost-effective covering set is NP hard.
- In economic terms, the reduction exploits the complexity of "complementary goods."
 - Ex: Brick-and-mortar retail ads help the Agent discover the store, Maps helps the Agent get to the store.

Tractable "Flower" Case

A More Tractable Case: The Flower





A More Tractable Case: The Flower

- Problem can be solved by an FPTAS
- Why tractable?
 - Substitutes rather than complements
 - Allocate time spent in each platform
 - Simpler low-level behavior (greedy agent)
 - Admits a DP upon discretization (knapsack DP)

Agent Behavior

The Agent's Greedy Algorithm

 Solving for the steady state distribution yields a quasi-concave combinatorial optimization problem:

Lemma 1. The agent's objective for an optimal policy defined in Section 2 can be re-written as the following optimization in the special case of the flower MDP (Definition 2):

$$\underset{S\subseteq[n]}{\operatorname{argmax}} \ \frac{A + \sum_{j\in S} z_j \phi(j)}{B + \sum_{j\in S} z_j}$$
(1)

where

$$\begin{split} A &\coloneqq \sum_{i=1}^n \lambda_i c_i^{\text{life}}; \quad B \coloneqq 1 + \sum_{i=1}^n \lambda_i; \quad \lambda_i = \frac{p_i}{1 - q_i}; \quad z_i = \frac{p_i}{1 - q_i - y_i} - \frac{p_i}{1 - q_i} \ge 0; \\ \phi(i) &\coloneqq \begin{cases} c_i^{\text{platform}} + \frac{\lambda_i}{z_i} \left(c_i^{\text{platform}} - c_i^{\text{life}} \right) & \text{if } z_i > 0\\ 0 & \text{if } z_i = 0 \end{cases}; \end{split}$$

We therefore define

$$ext{utility}^{ ext{Agent}}(S) \coloneqq rac{A + \sum_{j \in S} z_j \phi(j)}{B + \sum_{j \in S} z_j}$$

The Agent's Greedy Algorithm

 Solving for the steady state distribution yields quasi-concave combinatorial optimization problem:

Lemma 1. The agent's objective for an optimal policy defined in Section 2 can be re-written as the following optimization in the special case of the flower MDP (Definition 2):

$$\underset{S\subseteq[n]}{\operatorname{argmax}} \ \frac{A + \sum_{j\in S} z_j \phi(j)}{B + \sum_{j\in S} z_j}$$
(1)

where

We therefore

$$\begin{split} A &\coloneqq \sum_{i=1}^{n} \lambda_i c_i^{\text{life}}; \quad B \coloneqq 1 + \sum_{i=1}^{n} \lambda_i; \quad \lambda_i = \frac{p_i}{1 - q_i}; \quad z_i = \frac{p_i}{1 - q_i - y_i} - \frac{p_i}{1 - q_i} \ge 0; \\ \phi(i) &\coloneqq \begin{cases} c_i^{\text{platform}} + \frac{\lambda_i}{z_i} \left(c_i^{\text{platform}} - c_i^{\text{life}} \right) & \text{if } z_i > 0 \\ 0 & \text{if } z_i = 0 \end{cases} \\ \text{function} \end{split}$$

$$\begin{aligned} \text{re define} \\ \text{utility}^{\text{Agent}}(S) &\coloneqq \frac{A + \sum_{j \in S} z_j \phi(j)}{B + \sum_{j \in S} z_j} \end{aligned}$$

The Agent's Greedy Algorithm

ALGORITHM 1: GREEDY ALGORITHM

Input: Parameters of the Agent's problem: transition probabilities and utility coefficients in and out of the platform.

Output: An optimal subset $S \subseteq [n]$ of states where the Agent accepts the platform.

```
Initialize S := \{\}

for k \in [n] sorted<sup>9</sup> from largest to smallest \phi(k) do

if utility<sup>Agent</sup>(S) < \phi(k) then

| Update S := S \cup \{k\}

else

| return S

end

return S
```

Sort states by potential function and add until utility = potential

Proof Outline

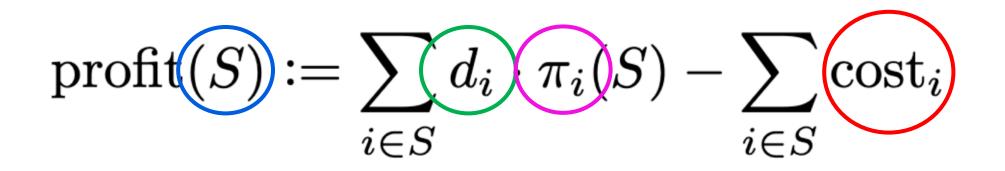
• Application of the mediant inequality:

$$\frac{x}{y} < \frac{r}{s} \iff \frac{x}{y} < \frac{x+r}{y+s} < \frac{r}{s} \quad \text{ where } y, s > 0.$$

- Optimal policy must be "prefix": must contain first m states, sorting by potential function ϕ .
- Proof and algorithm slightly more complex when $z_i < 0$.
- ϕ is the platform reward + scaled gain over regular life.
- Agent accepts when
 - Base platform reward is high
 - Amount of time spent on platform is high and platform is better

Designer's Algorithm

Recall: Designer's Objective



Set of states to build platforms

Designer's steady-state reward rates

Agent's steady state probabilities

Designer's one-time costs for building each platform

Restrictions

• Expanding the profit function given agent behavior:

$$\operatorname{profit}(S) := \underbrace{\frac{\sum_{i \in \operatorname{Agent}(S)} d_i \cdot \frac{p_i}{1 - q_i - y_i}}{B + \sum_{i \in \operatorname{Agent}(S)} z_i}} - \sum_{i \in S} \operatorname{cost}_i$$
$$P_1(S) \qquad D(S)$$

- Define $\max_i d_i =: K$
 - Maximum profit is *nK*
- Assume z_i are poly(n) and discretized with gap δ and costs are K * poly(n)

Target Algorithm

- Deciding whether it is possible to attain a certain profit is NP complete
- Reduction from PARTITION
- Thus, our goal: A (1ϵ) approximate algorithm in polynomial time.

The Designer's Dynamic Program

- Key Idea: Use a (poly-sized) hash table with rounded rewards
- Difficulty comes from profit scale and non-discretized z_i
- Hash function:

$$\operatorname{hash}(S) := \left(\left\lceil \frac{\operatorname{profit}(S)}{\epsilon K/2n} \right\rceil, \left\lceil \frac{P_1(S)}{\epsilon K/2n} \right\rceil, \mathbf{D}(S)/\delta \right)$$

• Similar to standard Knapsack FPTAS (Ibarra & Kim, 1975)

The Designer's Dynamic Program

ALGORITHM 2: DESIGNER'S FPTAS FOR THE PDP

Input: The parameters of the PDP: transition probabilities, utility and cost coefficients for the Agent and the Designer, and small positive reals ϵ, δ

Output: A $(1 - \epsilon)$ -approximately optimal subset of states S^* for which to deploy platforms.

N(S) and D(S) denote the numerator and the denominator of the Agent's objective function, with the constant terms omitted

 $P_1(S)$ denotes the first term in the Designer's profit function

SET is a hash table of subsets of [n] indexed by triples of integers

The hash function is $\operatorname{hash}(S) := \left(\left\lceil \frac{\operatorname{profit}(S)}{\epsilon K/2n} \right\rceil, \left\lceil \frac{P_1(S)}{\epsilon K/2n} \right\rceil, \mathbf{D}(S)/\delta \right)$

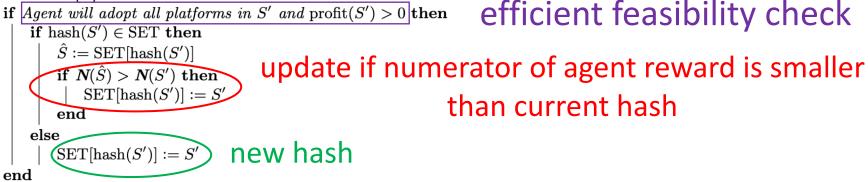
Initialize the hash table SET to contain only the empty set in the bin (0, 0, 0)

for $k \in [n]$ do

end

```
for S \in SET in lexicographic order do
```

 $S' := S \cup \{k\}$



end return the set S in the hash table with largest first hash value

Proof Outline: Key Lemma

- For S, S' that hash to same bin; if N(S) ≤ N(S'), for any postfix set T:
 If S' ∪ T is feasible, so is S ∪ T
 - $S \cup T$ is at most $\epsilon K/n$ worse than $S' \cup T$

Proof:

- Feasibility: Shared denominator + sub-optimality of $S \cup T$
- Suboptimality: $|\operatorname{profit}(S \cup T) \operatorname{profit}(S' \cup T)| \leq |\operatorname{profit}(S) \operatorname{profit}(S')| + |P_1(S) P_1(S')|$ and shared hash bin.

Proof Outline: Applying Key Lemma

- After *i*th iteration:
 - hash table contains S extendable to $S \cup T$ at most $\frac{\epsilon i K}{n}$ suboptimal.
- After *n* iterations, suboptimal by at most (1ϵ) factor.

Proof: By induction.

- Inductive step: apply the Key Lemma at step *i* to get:
 - If S is replaced this step: $\frac{\epsilon(i-1)K}{n} + \frac{\epsilon K}{n} = \frac{\epsilon i K}{n}$ suboptimal
 - Otherwise: even tighter bound, no degradation.

Proof Outline: Complexity

- Checking feasibility is $O(n \log n)$
- Three dimensions of hash table:
 - Denominator dimension is size n/δ
 - Profit dimensions are each size $\frac{nK}{\epsilon K/n} = \frac{n^2}{\epsilon}$ times a possible polynomial factor for costs
- Total size of hash table: $O(poly(n) \cdot n^5/_{\epsilon^2 \delta})$
- Thus: polynomial runtime.

Extensions

Multiple Agents

• Replace designer objective with summation over agents:

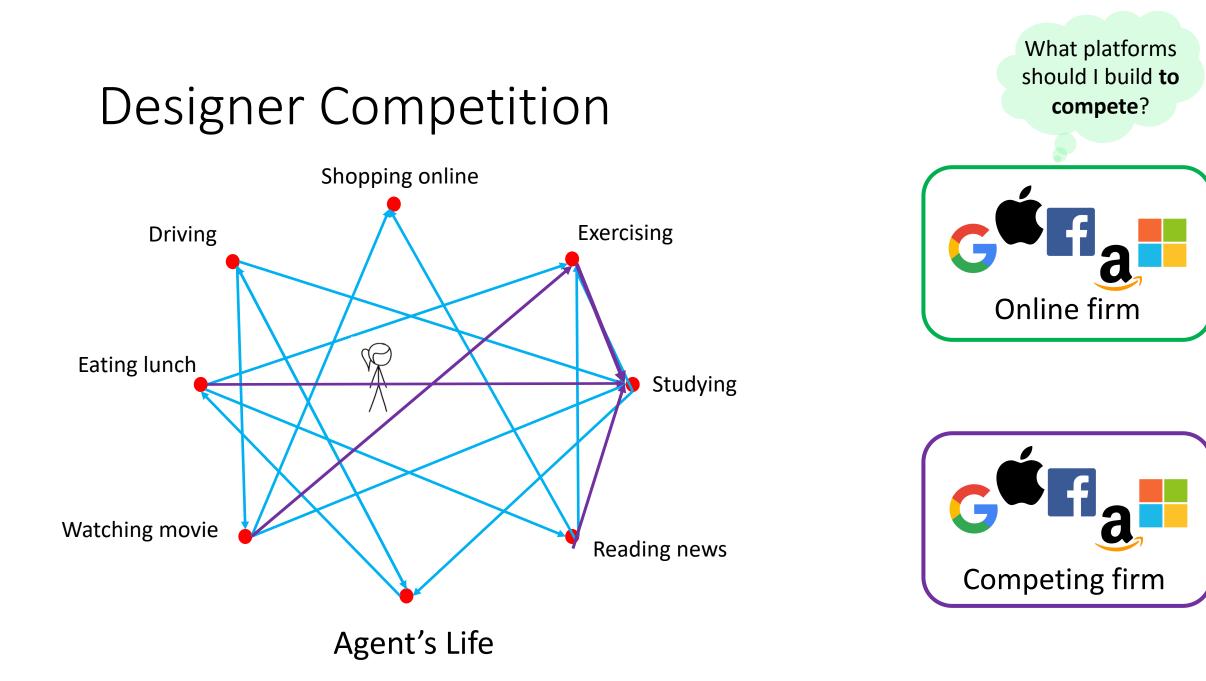
$$\operatorname{profit}(S) \coloneqq \sum_{i} \frac{\sum_{j \in \operatorname{Agent}_{i}(S)} d_{ij} \cdot \frac{p_{ij}}{1 - q_{ij} - y_{ij}}}{B_{i} + \sum_{l \in \operatorname{Agent}_{i}(S)} z_{il}} - \sum_{j \in S} \operatorname{cost}_{j}$$

- An exact polytime DP exists if #agents is constant.
 - Exponential in #agents
 - Also require potentials ϕ_i to be discretized by δ' with poly size.
- No FPTAS for 2 agents if ϕ_i not polynomial size.

Multiple Agents

- Key ideas:
 - Discretize over potentials and denominators.
 - For each potential-denominator pair (θ, D) , compute optimal subset s.t. potentials are at least θ with a DP hash table (size M^{3k}).
 - Enumerate over (θ, D) to get global optimum.

• **Proof sketch:** Key idea is that we can exactly compute values for each entry in the (θ, D) hash table.

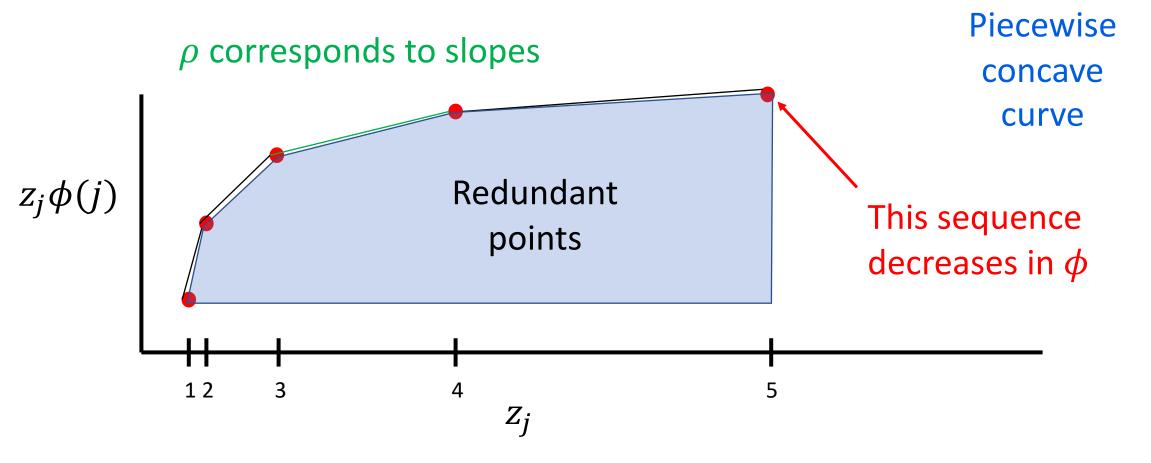


- What if other competing designers have already built platforms?
 - Each platform affects only one state
 - At most one for each designer per state
- How does an agent behave?
- How should a designer optimally place platforms?

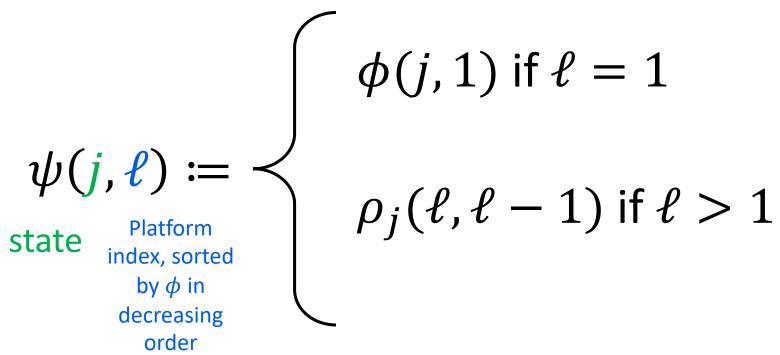
- Agent's algorithm is still greedy but different potential function
- For platforms *j*, *j*['] at the same state, define:

$$\rho(j,j') = \frac{z_{j'}\phi(j') - z_j\phi(j)}{z_{j'} - z_j}$$

• Each state's non-redundant platforms obey the following structure:



- Proof idea: Greedy swap argument with new potential, many details.
- The new potential function:



ALGORITHM 4: MULTI-PLATFORM AGENT'S ALGORITHM

```
Input: Parameters of the Agent's problem: transition probabilities and utility coefficients in and out for all
       platforms.
Output: An optimal feasible subset S of platforms.
Remove redundant platforms for each state
Compute the parameters \psi for the (nonredundant) platforms
Sort the platforms in decreasing order \psi(i)
                                                                             Runs in time
Initialize S := \{\}
for each platform j in decreasing order of \psi(j) do
                                                                          O(n + m \log m)
   if \psi(j) \leq u(S) then
                        Agent utility
       return S
   else
       if j is the first platform for its state then
                                                                           n = # states
           Update S := S \cup \{j\}
                                                                           m = # total platforms
       else
           Update(S := S \cup \{j\} \setminus \{prev(j)\})
       end
   end
            Replace the platform at state j
end
return S
```

- Is there an efficient designer algorithm?
- The multi-agent algorithm also (essentially) works in the multiplatform setting
 - Same discretization assumptions (potentials, denominator)
 - Exact algorithm
 - Polynomial time when #agents is constant
- Slight difference from old algorithm:
 - Modify the hash function: numerator and denominator of ψ instead

Summary

Recap

- Platform design: model economic activity of online firms
- General case of platform design is strongly NP complete.
- Tractable special case: the flower MDP
- Greedy agent algorithm
- Knapsack-style DP FPTAS for designer w/unbounded potentials
- Under polynomial, discretized potentials, exact DP for k agents $(poly(n) \cdot 2^k)$
- Similar for multiple platforms
- Many open directions!

Future Work

Future Work

- Designer vs. designer
 - Complexity of pure Nash
 - Repeated game settings
- Privacy/fairness questions for agent
- Other classes of tractable MDPs?
- Results for generic classes of agent behavior?
- Many questions are problems of formulation

- What if agent/designer have to learn?
- Optimizing over distribution of agent types w/finite support
 - Expected reward: smoothed version of the objective
 - ERM with quasi-linear function class
 - We can solve ERM efficiently if finite support is constant (with discretized, poly-bounded potentials)

- What if agent/designer have to learn?
- Optimizing over distribution of agent types w/finite support
 - **Open:** What if support isn't constant size, or is continuous?
 - ERM via our algorithm no longer computationally efficient
 - Other approaches? Under what conditions is computationally efficient learning possible?
 - Goal: beat $O(2^k poly(n))$ algorithms for k-type supports

- Combinatorial bandit setting
 - Suppose the designer is an online bandit
 - Plays combinatorial set *S* each round
 - Open: Complicated dependencies between arms + nonlinear rewards

- Repeated game variants of the problem where both agent and designer are learners
- Other equilibria: what is computationally tractable?
- Strategic agents and designer-designer competition

- Remove the abstraction of designer rewards:
 - Agents emit data distributions
 - Restricted sampling conditions
 - Goal: Solve some learning problem about agents
 - Connected with data valuation
 - How to design sampling environment?

Grand Vision

- **Design environments** which generate useful, sampleable data
- Model economics of companies dependent on information economy
- Model strategic behavior of online firms and their users
- **Reinforcement learning** aided by environment design
- Manipulation and resistance of learning agents