The Platform Design Problem

Christos Papadimitriou, Kiran Vodrahalli, Mihalis Yannakakis
Columbia University
Google Learning Theory Reading Group
October 11, 2021

The Data-Collection Problem

* Modern machine learning requires large amounts of high-quality data
* Collecting supervised labels is expensive

* Unsupervised learning is challenging to use

* s it possible to create environments which generate useful data?
* Ex: Reddit users provide sarcasm labels using the “/s” tag

The Data-Collection Problem
* Modern machine learning requires large amounts of high-quality data

* Collecting supervised labels is expensive

* Unsupervised learning is challenging to use

Qt possible to create environments which generate useful d@
* Ex: Reddit users provide sarcasm labels using the “/s” tag

Modern tech companies try to solve this problem.

Economics of the Online Firm

>0 >0

’ o F X
User data A %
3‘na= Pk

Services
Online firm Users
* User data feeds revenue * Online services bring value
 Better demand segmentation Convenience
 Ad/recommendation revenue Knowledge

e Better models => better services

Outline

* Problem Definition
 General Case

* Tractable “Flower” Case
* Agent Behavior
* Designer’s Algorithm

* Extensions
* Summary

e Future Work

Problem Definition

Platform Design

* Key ldea: Google builds various

Proble.m- . apps (Maps, Search, Social Network,
Model the revenue-maximization problem of etc.) and profits based on usage of
today’s online firms (e.g. Google, FB, etc.) these apps.

and understand computational tractability.

* The usage of apps modifies the
transitions of the Markov Chain of
the user’s life

Bi-Level MDP Optimization Model
Agent: participates in Life MDP

Designer: tweaks the Life MDP by

building platforms. . .
* Assume the Designer has linear
Goal: Designer wants to indirectly

optimize its reward via Agent’s re.wa.rds .OVEI“ the Steady .State
optimal behavior! (Find Stackelberg) distribution of the resulting Markov
chain (agent policy + Life MDP)

The Stackelberg Game

* Designer moves first:

* Adds platforms which, if adopted, modify transitions to an existing Markov
Chain

* Agent moves second:
* Receives IVIDP from Designer, plays optimal behavior

* Example of bi-level MDP optimization

* What is the computational complexity of solving for equilibrium?

Formal Problem Statement

* An agent lives in an irreducible Markov chain with A = [n] states.
* The designer chooses S € A states to add platforms to.

* The agent may adopt or not adopt the platform at each state:

* If adopt, the transitions change. Otherwise they do not.

e Assume the chain remains irreducible.

Formal Problem Statement
* Assign a utility rate for the agent (¢;) and the designer (d;) ati € [n].

* The agent solves the resulting Markov Decision Process.
* Resulting steady-state probabilities are given by .

* The designer optimizes over §:

pI‘Oﬁt(S) = Zdz y WZ(S) — ZCOStz’

€S €5

General Case

Picture of the General Case

Shopping online

Driving Exercising

Eating lunch
Studying

Watching movie
Reading news

Agent’s Life

What platforms
should I build?

9 Online firm Y

Picture of the General Case

Shopping online

Driving Exercising

Eating lunch
Studying

Watching movie ¢ .
Reading news

Agent’s Life

What platforms
should I build?

\

q°

\ Online firm Y

At a cost, the firm can add
an opt-in action to
platforms they create (ex:
Google Maps).

Picture of the General Case

Shopping online

Driving Exercising

Eating lunch
Studying

Watching movie
Reading news

Agent’s Life
changes

Maybe we
should create
Maps
technology....

9 Online firm Y

Builds platform
Maps at a cost.

v

[Opt in to Maps]

Computational Tractability |: General Case

* It is strongly NP-hard to decide whether the Designer can obtain
positive profit — and therefore hard to approximate.

e Reduction from SET COVER

e Designer builds platforms which each solve subset of Agent’s problems.
* Most cost-effective covering set is NP hard.

* In economic terms, the reduction exploits the complexity of
“complementary goods.”

e Ex: Brick-and-mortar retail ads help the Agent discover the store, Maps helps
the Agent get to the store.

Tractable “Flower” Case

A More Tractable Case: The Flower

Life MDP

1-q =y /. ~Pn

o Pr 1-gq,~- J’n f‘\}
Gn + Yn

q, + ¥

Tweaked MDP via y;

A More Tractable Case: The Flower

* Problem can be solved by an FPTAS

* Why tractable?

* Substitutes rather than complements
» Allocate time spent in each platform

e Simpler low-level behavior (greedy agent)

 Admits a DP upon discretization (knapsack DP)

Agent Behavior

The Agent’s Greedy Algorithm

* Solving for the steady state distribution yields a quasi-concave
combinatorial optimization problem:

Lemma 1. The agent’s objective for an optimal policy defined in Section[3 can be re-written as the following
optimization in the special case of the flower MDP (Deﬁmtion@'

A+Z]€S J ()

argmax (1)
SC[n] B + ZJES J
where .
A= Y cllfc B =1+ s A= P Doz = b S > 0;
Z Z 1 —gq l—gi-yi 1-gq

¢() cﬁ)latform + % (Cglatform . C’lL_ifc) if 2 > 0
1) 1= ¢ :

We therefore define ‘
A+ jes200)
B + Zjes Zj

utility A8 (S) :=

The Agent’s Greedy Algorithm

* Solving for the steady state distribution yields quasi-concave
combinatorial optimization problem:

Lemma 1. The agent’s objective for an optimal policy defined in Section[3 can be re-written as the following
optimization in the special case of the flower MDP (Deﬁm’tion@'

A+ZJ€S J ()

argmax 1
SC|n] B+ EJES Zj @)
where .
A=)\chfc B =1+ s A= pi Doz = b S > 0;
Z Z 1 —g l—gi—yi 1-g
¢() ci)latform + % (Czplatform . C,lb-ifc) if 2 > 0 POtentIa|
1) 1= ¢ ;
if z; =0 function
We therefore define .
A+ jes200)

tility*8°m(S) :=

The Agent’s Greedy Algorithm

ALGORITHM 1: GREEDY ALGORITHM

Input: Parameters of the Agent’s problem: transition probabilities and utility coefficients in and out of the
platform.
Output: An optimal subset S C [n] of states where the Agent accepts the platform.
Initialize S := {}
for k € [n]| sorted’| from largest to smallest ¢(k) do
if utility*8°"*(S) < ¢(k) then
| Update S := S U {k}
else
| return S
end

end
return S

Sort states by potential function and add until utility = potential

Proof Outline

* Application of the mediant inequality:

TI
< — where y,s > 0.
S

* Optimal policy must be “prefix”: must contain first m states, sorting by potential
function ¢.

* Proof and algorithm slightly more complex when z; < 0.
* ¢ is the platform reward + scaled gain over regular life.

* Agent accepts when
* Base platform reward is high
* Amount of time spent on platform is high and platform is better

Designer’s Algorithm

Recall: Designer’s Objective
profit(S):= Td)(m)s) - 3 feost)
i€S i€S

Set of states to
build platforms

Designer’s) Designer’s one-time
Agent’s steady .
steady-state e costs for building
state probabilities
reward rates each platform

Restrictions

* Expanding the profit function given agent behavior:

profit(.S) :=

Py (S) D(S)

* Define maxd; =: K
l

* Maximum profit is nK

* Assume z; are poly(n) and discretized with gap 6 and costs are K *
poly(n)

Target Algorithm

* Deciding whether it is possible to attain a certain profit is NP
complete

e Reduction from PARTITION

* Thus, our goal: A (1 — €) approximate algorithm in polynomial time.

The Desigher’s Dynamic Program
» Key Idea: Use a (poly-sized) hash table with rounded rewards

* Difficulty comes from profit scale and non-discretized z;

 Hash function:

hash(S) := (25521, [54521, D(S)/5)

 Similar to standard Knapsack FPTAS (lbarra & Kim, 1975)

The Designer’s Dynamic Program

ALGORITHM 2: DESIGNER’S FPTAS For THE PDP

Input: The parameters of the PDP: transition probabilities, utility and cost coefficients for the Agent and the
Designer, and small positive reals €,
Output: A (1 — €)-approximately optimal subset of states S* for which to deploy platforms.
N(S) and D(S) denote the numerator and the denominator of the Agent’s objective function, with the constant
terms omitted
P;(S) denotes the first term in the Designer’s profit function
SET is a hash table of subsets of [n] indexed by triples of integers

The hash function is hash(S) := ([p:;’f/tz(f)], [:}gi] , D(S)/5>

Initialize the hash table SET to contain only the empty set in the bin (0,0, 0)
for k € [n] do

for S € SET in lexicographic order do

S :=SuU{k}

if hash(S’) € SET then
S := SET[hash(S")]

if N(S) > N(S’) then
SET[hash(S")] := S’

else
| new hash
end

end

than current hash

end
return the set S in the hash table with largest first hash value

if |Agent will adopt all platforms in S’ and profit(S’) > Olthen EffiCie nt fea Si b i I ity C h ecC k

update if numerator of agent reward is smaller

Proof Outline: Key Lemma

* For S, S’ that hash to same bin; if N(S) < N(S"), for any postfix set T
e IfS"UT isfeasible,soisSUT

e SUT is at most €€/,, worse than S’ U T

Proof:
* Feasibility: Shared denominator + sub-optimalityof SU T

* Suboptimality: |profit(S U T) - profit(S' U T)| < |profit(S) - profit(S’)| +
|P;(S) — P;(S")| and shared hash bin.

Proof Outline: Applying Key Lemma

e After it" iteration:

e hash table contains S extendable to S U T at most €%/,
suboptimal.

* After n iterations, suboptimal by at most (1 — €) factor.

Proof: By induction.

* Inductive step: apply the Key Lemmma at step i to get:
e If S is replaced this step: €0 "VK/, 4 €K/ — €K/ suboptimal
* Otherwise: even tighter bound, no degradation.

Proof Outline: Complexity

* Checking feasibility is O(nlogn)
* Three dimensions of hash table:

* Denominator dimension is sizen/é

nk n2

* Profit dimensions are each size K= o times a possible
n

polynomial factor for costs

* Total size of hash table: O (poly(n) - "5/625)

* Thus: polynomial runtime.

Extensions

Multiple Agents

* Replace designer objective with summation over agents:

d;
j€Agent, (S) “J T 1— Qz —Yi
profit(.S) := 3 L E. cost;
() Z B +Zl€Agent (S) Zil Jze;g

* An exact polytime DP exists if #agents is constant.
* Exponential in #agents
* Also require potentials ¢; to be discretized by &' with poly size.

* No FPTAS for 2 agents if ¢; not polynomial size.

Multiple Agents

* Key ideas:
* Discretize over potentials and denominators.

* For each potential-denominator pair (8, D), compute optimal
subset s.t. potentials are at least & with a DP hash table (size M3%).

* Enumerate over (0, D) to get global optimum.

* Proof sketch: Key idea is that we can exactly compute values for each
entry in the (8, D) hash table.

Designer Competition

Driving

Eating lunch

Watching movie

Shopping online

AT

Exercising

A /\

Agent’s Life

¥ Studying

Reading news

What platforms
should | build to
compete?

_ Competing firm y

Multiple Platforms (Flower Setting)

* What if other competing designers have already built platforms?
* Each platform affects only one state

* At most one for each designer per state
* How does an agent behave?

* How should a designer optimally place platforms?

Multiple Platforms (Flower Setting)

* Agent’s algorithm is still greedy — but different potential function

* For platforms j, j' at the same state, define:

. zj/qb ! —qub '
P(],J,) _ (ZJ.,)_zj (7)

J

Multiple Platforms (Flower Setting)

e Each state’s non-redundant platforms obey the following structure:

Piecewise

corresponds to slopes
p P P concave

P]

\ curve
Zid(] Redundant ,
540 . This sequence
points ,

decreases in ¢

I | | | |

[| | | |

12 3 4 5

Multiple Platforms (Flower Setting)

* Proof idea: Greedy swap argument with new potential, many details.

* The new potential function:

g
b, 1)if£ =1

W(j,4) = <

Platform
index, sorted

by ¢ in

decreasing K

order

pi(&,£—1)if£>1

state

Multiple Platforms (Flower Setting)

ALGORITHM 4: MULTI-PLATFORM AGENT’S ALGORITHM

Input: Parameters of the Agent’s problem: transition probabilities and utility coefficients in and out for all
platforms.

Output: An optimal feasible subset S of platforms.

Remove redundant platforms for each state

Compute the parameters v for the (nonredundant) platforms

Sort the platforms in decreasing order () . .
Initialize S := {} Runs in time

for each platform j in decreasing order of 1(j) do
if $(j) s@Shthen poont tilit O(n+mlogm)
| return g Y
else
if 5 is the first platform for its state then n = # states

| Update S := S U {j}

else m = # total platforms
| Update
end

end Replace the platform at state j

end
return S

Multiple Platforms (Flower Setting)

* Is there an efficient designer algorithm?

* The multi-agent algorithm also (essentially) works in the multi-
platform setting
e Same discretization assumptions (potentials, denominator)
e Exact algorithm
* Polynomial time when #agents is constant

e Slight difference from old algorithm:

* Modify the hash function: numerator and denominator of Y
instead

Summary

Recap

* Platform design: model economic activity of online firms

* General case of platform design is strongly NP complete.

* Tractable special case: the flower MDP

* Greedy agent algorithm

* Knapsack-style DP FPTAS for designer w/unbounded potentials

* Under polynomial, discretized potentials, exact DP for k agents
(poly(n)- 2)

* Similar for multiple platforms

* Many open directions!

Future Work

Future Work

* Designer vs. designer
* Complexity of pure Nash
* Repeated game settings

* Privacy/fairness questions for agent
* Other classes of tractable MDPs?
* Results for generic classes of agent behavior?

* Many questions are problems of formulation

Learning Theoretic Questions

* What if agent/designer have to learn?

Learning Theoretic Questions

* What if agent/designer have to learn?

* Optimizing over distribution of agent types w/finite support
* Expected reward: smoothed version of the objective

 ERM with quasi-linear function class

* We can solve ERM efficiently if finite support is constant (with
discretized, poly-bounded potentials)

Learning Theoretic Questions

* What if agent/designer have to learn?

* Optimizing over distribution of agent types w/finite support
* Open: What if support isn’t constant size, or is continuous?
 ERM via our algorithm no longer computationally efficient

* Other approaches? Under what conditions is computationally
efficient learning possible?

e Goal: beat 0(2%poly(n)) algorithms for k-type supports

Learning Theoretic Questions

* What if agent/designer have to learn?

* Combinatorial bandit setting
e Suppose the designer is an online bandit
* Plays combinatorial set S each round

* Open: Complicated dependencies between arms + nonlinear
rewards

Learning Theoretic Questions

* What if agent/designer have to learn?

* Repeated game variants of the problem where both agent and
designer are learners

e Other equilibria: what is computationally tractable?

* Strategic agents and desigher-designer competition

Learning Theoretic Questions

* What if agent/designer have to learn?

 Remove the abstraction of designer rewards:
* Agents emit data distributions
* Restricted sampling conditions
* Goal: Solve some learning problem about agents
* Connected with data valuation
* How to design sampling environment?

Grand Vision

* Design environments which generate useful, sampleable data

* Model economics of companies dependent on information economy
* Model strategic behavior of online firms and their users

* Reinforcement learning aided by environment design

* Manipulation and resistance of learning agents

