
The Platform Design Problem
Christos Papadimitriou, Kiran Vodrahalli, Mihalis Yannakakis

Columbia University
Google Learning Theory Reading Group

October 11, 2021

The Data-Collection Problem

• Modern machine learning requires large amounts of high-quality data

• Collecting supervised labels is expensive

• Unsupervised learning is challenging to use

• Is it possible to create environments which generate useful data?
• Ex: Reddit users provide sarcasm labels using the “/s” tag

The Data-Collection Problem

• Modern machine learning requires large amounts of high-quality data

• Collecting supervised labels is expensive

• Unsupervised learning is challenging to use

• Is it possible to create environments which generate useful data?
• Ex: Reddit users provide sarcasm labels using the “/s” tag

Modern tech companies try to solve this problem.

Economics of the Online Firm

Online firm Users

• User data feeds revenue
• Better demand segmentation
• Ad/recommendation revenue
• Better models => better services

• Online services bring value
• Convenience
• Knowledge

User data

Services

Outline

• Problem Definition

• General Case

• Tractable “Flower” Case
• Agent Behavior
• Designer’s Algorithm

• Extensions

• Summary

• Future Work

Problem Definition

Platform Design
• Key Idea: Google builds various

apps (Maps, Search, Social Network,
etc.) and profits based on usage of
these apps.

• The usage of apps modifies the
transitions of the Markov Chain of
the user’s life

• Assume the Designer has linear
rewards over the steady state
distribution of the resulting Markov
chain (agent policy + Life MDP)

The Stackelberg Game

• Designer moves first:
• Adds platforms which, if adopted, modify transitions to an existing Markov

Chain

• Agent moves second:
• Receives MDP from Designer, plays optimal behavior

• Example of bi-level MDP optimization

• What is the computational complexity of solving for equilibrium?

Formal Problem Statement

• An agent lives in an irreducible Markov chain with ! = [$] states.

• The designer chooses & ⊆ ! states to add platforms to.

• The agent may adopt or not adopt the platform at each state:

• If adopt, the transitions change. Otherwise they do not.

• Assume the chain remains irreducible.

Formal Problem Statement

• Assign a utility rate for the agent (!") and the designer (#") at $ ∈ ['].

• The agent solves the resulting Markov Decision Process.
• Resulting steady-state probabilities are given by).

• The designer optimizes over *:

General Case

Picture of the General Case
Shopping online

Agent’s Life

Driving

Eating lunch

Watching movie

Exercising

Studying

Reading news

Online firm

What platforms
should I build?

Picture of the General Case
Shopping online

Agent’s Life

Driving

Eating lunch

Watching movie

Exercising

Studying

Reading news

Online firm

What platforms
should I build?

At a cost, the firm can add
an opt-in action to
platforms they create (ex:
Google Maps).

Picture of the General Case
Shopping online

Agent’s Life
changes

Driving

Eating lunch

Watching movie

Exercising

Studying

Reading news

Online firm

Maybe we
should create

Maps
technology….

Opt in to Maps

Builds platform
Maps at a cost.

Computational Tractability I: General Case

• It is strongly NP-hard to decide whether the Designer can obtain
positive profit – and therefore hard to approximate.

• Reduction from SET COVER
• Designer builds platforms which each solve subset of Agent’s problems.
• Most cost-effective covering set is NP hard.

• In economic terms, the reduction exploits the complexity of
“complementary goods.”
• Ex: Brick-and-mortar retail ads help the Agent discover the store, Maps helps

the Agent get to the store.

Tractable “Flower” Case

A More Tractable Case: The Flower

A More Tractable Case: The Flower

• Problem can be solved by an FPTAS

• Why tractable?
• Substitutes rather than complements

• Allocate time spent in each platform

• Simpler low-level behavior (greedy agent)

• Admits a DP upon discretization (knapsack DP)

Agent Behavior

The Agent’s Greedy Algorithm

• Solving for the steady state distribution yields a quasi-concave
combinatorial optimization problem:

The Agent’s Greedy Algorithm

• Solving for the steady state distribution yields quasi-concave
combinatorial optimization problem:

Potential
function

The Agent’s Greedy Algorithm

Sort states by potential function and add until utility = potential

Proof Outline

• Application of the mediant inequality:

• Optimal policy must be “prefix”: must contain first ! states, sorting by potential
function ".

• Proof and algorithm slightly more complex when #$ < 0.

• " is the platform reward + scaled gain over regular life.

• Agent accepts when
• Base platform reward is high
• Amount of time spent on platform is high and platform is better

Designer’s Algorithm

Recall: Designer’s Objective

Set of states to
build platforms

Designer’s
steady-state
reward rates

Agent’s steady
state probabilities

Designer’s one-time
costs for building

each platform

Restrictions

• Expanding the profit function given agent behavior:

• Define max
$
%$ =:(

• Maximum profit is)(
• Assume *$ are +,-.()) and discretized with gap 1 and costs are (∗
+,-.())

34(5) 6(5)

Target Algorithm

• Deciding whether it is possible to attain a certain profit is NP
complete

• Reduction from PARTITION

• Thus, our goal: A 1 − # approximate algorithm in polynomial time.

The Designer’s Dynamic Program

• Key Idea: Use a (poly-sized) hash table with rounded rewards

• Difficulty comes from profit scale and non-discretized !"

• Hash function:

• Similar to standard Knapsack FPTAS (Ibarra & Kim, 1975)

The Designer’s Dynamic Program

new hash

update if numerator of agent reward is smaller
than current hash

efficient feasibility check

Proof Outline: Key Lemma

• For !, !′ that hash to same bin; if $! ≤ $(!'), for any postfix set):
• If !' ∪) is feasible, so is ! ∪)

• ! ∪) is at most ⁄-. / worse than !' ∪)

Proof:
• Feasibility: Shared denominator + sub-optimality of ! ∪)

• Suboptimality: |profit(! ∪)) - profit(!′ ∪))| ≤ |profit(!) - profit(!′)| +
|23 ! − 23 !' | and shared hash bin.

Proof Outline: Applying Key Lemma

• After !"# iteration:
• hash table contains $ extendable to $ ∪ & at most ⁄()* +

suboptimal.
• After , iterations, suboptimal by at most (1 − 0) factor.

Proof: By induction.
• Inductive step: apply the Key Lemma at step ! to get:
• If $ is replaced this step: ⁄() 23 * + + ⁄(* + = ⁄()* + suboptimal
• Otherwise: even tighter bound, no degradation.

Proof Outline: Complexity
• Checking feasibility is !(# log #)
• Three dimensions of hash table:
• Denominator dimension is size #/)
• Profit dimensions are each size *+⁄-. /

= *1
2 times a possible

polynomial factor for costs

• Total size of hash table: !(3456 # ⋅ 8*9
21:)

• Thus: polynomial runtime.

Extensions

Multiple Agents
• Replace designer objective with summation over agents:

• An exact polytime DP exists if #agents is constant.
• Exponential in #agents
• Also require potentials !" to be discretized by #′ with poly size.

• No FPTAS for 2 agents if !" not polynomial size.

Multiple Agents
• Key ideas:
• Discretize over potentials and denominators.
• For each potential-denominator pair (", $), compute optimal

subset s.t. potentials are at least " with a DP hash table (size &'().
• Enumerate over ", $ to get global optimum.

• Proof sketch: Key idea is that we can exactly compute values for each
entry in the ", $ hash table.

Designer Competition
Shopping online

Agent’s Life

Driving

Eating lunch

Watching movie

Exercising

Studying

Reading news

Online firm

What platforms
should I build to

compete?

Competing firm

Multiple Platforms (Flower Setting)

• What if other competing designers have already built platforms?

• Each platform affects only one state

• At most one for each designer per state

• How does an agent behave?

• How should a designer optimally place platforms?

Multiple Platforms (Flower Setting)

• Agent’s algorithm is still greedy – but different potential function

• For platforms !, !# at the same state, define:

Multiple Platforms (Flower Setting)

• Each state’s non-redundant platforms obey the following structure:

!"

!"#(%)

1 2 3 4 5

Piecewise
concave

curve

' corresponds to slopes

Redundant
points This sequence

decreases in #

Multiple Platforms (Flower Setting)

• Proof idea: Greedy swap argument with new potential, many details.

• The new potential function:

! ", ℓ ≔
&(", 1) if ℓ = 1

+,(ℓ, ℓ − 1) if ℓ > 1
state Platform

index, sorted
by & in

decreasing
order

Multiple Platforms (Flower Setting)

Runs in time
!(#+% log%)

n = # states
m = # total platforms

Replace the platform at state *

Agent utility

Multiple Platforms (Flower Setting)

• Is there an efficient designer algorithm?
• The multi-agent algorithm also (essentially) works in the multi-

platform setting
• Same discretization assumptions (potentials, denominator)
• Exact algorithm
• Polynomial time when #agents is constant

• Slight difference from old algorithm:
• Modify the hash function: numerator and denominator of !

instead

Summary

Recap

• Platform design: model economic activity of online firms
• General case of platform design is strongly NP complete.
• Tractable special case: the flower MDP
• Greedy agent algorithm
• Knapsack-style DP FPTAS for designer w/unbounded potentials
• Under polynomial, discretized potentials, exact DP for ! agents

(poly(")⋅ 2%)
• Similar for multiple platforms
• Many open directions!

Future Work

Future Work
• Designer vs. designer
• Complexity of pure Nash
• Repeated game settings

• Privacy/fairness questions for agent

• Other classes of tractable MDPs?

• Results for generic classes of agent behavior?

• Many questions are problems of formulation

Learning Theoretic Questions
• What if agent/designer have to learn?

Learning Theoretic Questions

• What if agent/designer have to learn?

• Optimizing over distribution of agent types w/finite support
• Expected reward: smoothed version of the objective

• ERM with quasi-linear function class
• We can solve ERM efficiently if finite support is constant (with

discretized, poly-bounded potentials)

Learning Theoretic Questions
• What if agent/designer have to learn?

• Optimizing over distribution of agent types w/finite support
• Open: What if support isn’t constant size, or is continuous?
• ERM via our algorithm no longer computationally efficient

• Other approaches? Under what conditions is computationally
efficient learning possible?

• Goal: beat !(2$%&'(())) algorithms for +-type supports

Learning Theoretic Questions
• What if agent/designer have to learn?

• Combinatorial bandit setting
• Suppose the designer is an online bandit
• Plays combinatorial set ! each round
• Open: Complicated dependencies between arms + nonlinear

rewards

Learning Theoretic Questions
• What if agent/designer have to learn?

• Repeated game variants of the problem where both agent and
designer are learners

• Other equilibria: what is computationally tractable?

• Strategic agents and designer-designer competition

Learning Theoretic Questions
• What if agent/designer have to learn?

• Remove the abstraction of designer rewards:
• Agents emit data distributions
• Restricted sampling conditions
• Goal: Solve some learning problem about agents
• Connected with data valuation
• How to design sampling environment?

Grand Vision

• Design environments which generate useful, sampleable data

• Model economics of companies dependent on information economy

• Model strategic behavior of online firms and their users

• Reinforcement learning aided by environment design

• Manipulation and resistance of learning agents

