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A Simple 
Nonlinear 
Function Class

! "#, … , "& ≔ "( ⋅ "#* ⋅ "++ ⋅ "*,

3 dimensions

In - dimensions 

. = 4
and . sparse 

Learning Sparse Monomials

Ex:



The Learning Problem
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Given:                               , drawn i.i.d.

Goal: Recover & exactly

Assumption 1: & is a *-sparse monomial function

Assumption 2: !(#)~, 0, Σ



Attribute-Efficient Learning

•Sample efficiency: ! = poly(log ) , +)

•Runtime efficiency:  poly(), +,!) ops

•Goal: achieve both! 



Motivation
!" ∈ ±1

• Monomials ≡ Parity functions
• No attribute-efficient algs!

[Helmbold+ ‘92, Blum’98, Klivans&Servedio’06, 
Kalai+’09, Kocaoglu+’14…]

!" ∈ ℝ
• Sparse linear regression

[Candes+’04, Donoho+’04, Bickel+’09…]

• Sparse sums of monomials
[Andoni+’14] 

For uncorrelated features: 
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() ∈ ±1
• Monomials ≡ Parity functions
• No attribute-efficient algs!

[Helmbold+ ‘92, Blum’98, Klivans&Servedio’06, 
Kalai+’09, Kocaoglu+’14…]

() ∈ ℝ
• Sparse linear regression

[Candes+’04, Donoho+’04, Bickel+’09…]

• Sparse polynomials
[Andoni+’14] 

For uncorrelated features: 

/ ((0 =
0

0

Motivation

Question: What if 

/ ((0 = ?
≤ 4

≤ 4

1
1

1
1
1
1



Potential Degeneracy of 

Ex:
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Rest of the Talk
1. Algorithm

2. Intuition 

3. Analysis

4. Conclusion



1. Algorithm



The Algorithm
Ex: ! "#, … , "& ≔ "( ⋅ "#* ⋅ "++ ⋅ "*,

-(/), ! -(/)
/1#

2

Gaussian Data

log | ⋅ |
log |- / |, log |!(-(/))| /1#

2

Log-transformed Data

Step 1

Step 2
Sparse Regression:

1

0 3 17 44 79 feature(Ex: Basis Pursuit)



2. Intuition



Why is our Algorithm Attribute-Efficient?

•Runtime: basis pursuit is efficient

•Sample complexity? 
• Sparse linear regression? E.g., 

• But: sparse recovery properties may not hold…

log $ %&, … , %) ≔
log |%,| + log |%&.| + log |%//| + log |%.0|



Degenerate High Correlation

Recall the example:
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0-eigenvectors can be 0-sparse

Sparse recovery conditions false!



Summary of Challenges

• Highly correlated features 

• Nonlinearity of log | ⋅ |

• Need a recovery condition…



Log-Transform affects Data Covariance

log | ⋅ |

& ''( ≽ 0 & log ' log ' ( ≻ 0

Spectral View: “inflating the balloon” 

Destroys correlation structure



3. Analysis



Restricted Eigenvalue Condition [Bickel, Ritov, & Tsybakov ‘09]

! = {$: ||$'||( ≥ ||$'*||(}

Cone restriction

Sufficient to prove exact recovery 
for basis pursuit!

Restricted Eigenvalue ,-(/)

min4∈6
$7887$
||$||99

> ;

“restricted strong convexity”

< = /

< = 3, 17, 44, 79
/ = 4

Ex: 

Note: ,- / ≥ CDEF 887



Sample Complexity Analysis
Population Transformed Eigenvalue Concentration of Restricted Eigenvalue

|"#$(&) - "#$(&) | < )
with probability ≥ 1 − -

"./0 > ) > 0

Exact Recovery for Basis Pursuit
with high probability

"#$(&) > 0
with high probability

= 4 log 8 log 8 9



Sample Complexity Analysis
Population Transformed Eigenvalue Concentration of Restricted Eigenvalue

|"#$(&) - "#$(&) | < )
with probability ≥ 1 − -

"./0 > ) > 0

Exact Recovery for Basis Pursuit
with high probability

"#$(&) > 0
with high probability

Sample Complexity Bound:

3 = O 67 log 26
1 − < ⋅ log7 2>-

= ? log @ log @ A



Population Minimum Eigenvalue

• Hermite expansion of log | ⋅ |:

• ' ≥ 1: *+,+ ~
√/
0
⋅ 1
, ⁄3 4

• ⋅ (+,) off-diagonals decay fast!

• Apply 789: to Hermite formula:

• Apply Gershgorin Circle Theorem:

= *<+1=>= +@
,A1

B

*+,+ ⋅ (+,) 789: ≥@
,A1

B

*+,+ 789:
(+,)

789: ⋅ (+,) ≥ 1 − D − 1 E+,

(for large enough ')

= F GGH
= F log G log G H



Concentration of Restricted Eigenvalue

• |"#$(&) - "#$(&) | < ) ⋅ || − ||,

•Log-transformed variables are sub-exponential

•Elementwise ℓ, error concentrates [Kuchibhotla & Chakrabortty ‘18]

= / log 3 log 3 4



4. Conclusion



Recap

•Attribute-efficient algorithm for monomials
•Prior (nonlinear) work: uncorrelated features
•This work: allow highly correlated features
•Works beyond multilinear monomials

•Blessing of nonlinearity
log | ⋅ |



Future Work

•Rotations of product distributions

•Additive noise

•Sparse polynomials with correlated features

Thanks! Questions? 


