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Learning Sparse Monomials

3 dimensions

A Simple
Nonlinear
Function Class

In p dimensions
and / sparse  EX: f (s xp) = X3 0 X17 * Xag " X79

k = 4




The Learning Problem

ven: [(x® #(xOV o
Given: {(x f(x ))}izl,drawn i.i.d.
Assumption 1: [ is a k-sparse monomial function

Assumption 2: x(V~N (0, X)

Goal: Recover | exactly



Attribute-Efficient Learning
*Sample efficiency: m = poly(log(p), k)

*Runtime efficiency: poly(p, k, m) ops

eGoal: achieve both!



Motivation

Xi S {il} Xi e R

* Monomials = Parity functions * Sparse linear regression

. . . [Candes+’'04, Donoho+'04, Bickel+'09...]
* No attribute-efficient algs!

[Helmbold+ ‘92, Blum’98, Klivans&Servedio’06, ° Spa rse sums of monomials
Kalai+’'09, Kocaoglu+'14...] [Andoni+’14]

For uncorrelated features:
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Motivation

Question: What if
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Potential Degeneracy of E=
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1. Algorithm



The Algorithm

EX: (xl, ...,xp) = X3 " X17 * X34 ® X79

Step 1

)

Gaussian Data
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- {(log 1x®,log |F (x))} ",
Log-transformed Data

Step 2

Sparse Regression:
(Ex: Basis Pursuit)
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2. Intultion



Why is our Algorithm Attribute-Efficient?

* Runtime: basis pursuit is efficient

* Sample complexity?
e Sparse linear regression? E.g.,

log‘ (xl,...,xp)‘ =
log |x3| + log|xq7| + log

* But: sparse recovery properties may not

X44| + lOg|x79]

nold...
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Summary of Challenges
* Highly correlated features
* Nonlinearity of log | - |

* Need a recovery condition...



Log-Transform affects Data Covariance

B
log| - |

—

CxxT] =0 C[log|x| log|x|T] = 0

: “inflating the balloon”
Spectral View: S

Destroys correlation structure



3. Analysis



Restricted Eigenvalue Condition sickel, Ritov, & Tsybakov ‘09]

Restricted Eigenvalue RE (k) Ex: S =1{3,17,44,79}
k=4
v XXy

min ;— > € —
veC HUHZ Cone restriction

“restricted strong convexity” ‘g\
Note: RE (k) = Apin (XXT) -
Sufficient to prove exact recovery| € =1v: ||vs|l1 = [|vsell1}

for basis pursuit! S| =k




[*] = E[log|x| log|x|"]

Sample Complexity Analysis

Population Transformed Eigenvalue

Amin(["]) > € >0

Concentration of Restricted Ii{envalue

MRE(R)(E) - ARE(k)(E)‘ <E€

!

____with probability > 1 — o

Areco (") >0

with high probability

Exact Recovery for Basis Pursuit
with high probability




[*] = E[log|x| log|x|"]

Sample Complexity Analysis

i l Bl
Sample Complexity Bound:

k% log 2k 2p
= 0 log? 2L
" ( 1-p °° 5)




[] = Eflog|x| log|x|"]
Population Minimum Eigenvalue [&] = Elxx"]

* Hermite expansion of log | - |: || * Apply A, to Hermite formula:
— 21 n 2 E(ZZ) 1. = 2 9 E(Zl)
= (o pXD Ca1 min — &) min
Voo 1
o[ >1: szl ~ T3 * Apply Gershgorin Circle Theorem:
21 off. i || Amn B0 21 = —1)p%
[%]\") off-diagonals decay fast! (for large enough [)




[] = E[log|x| log|x|"]
Concentration of Restricted Eigenvalue

Vo (B - rso (D] < e - 11 - Pl

* Log-transformed variables are sub-exponential

* Elementwise foo error concentrates ixuchibhotia & chakrabortty 18]



4. Conclusion



Recap

e Attribute-efficient algorithm for monomials

*Prior (nonlinear) work: uncorrelated features

* This work: allow highly correlated features
* Works beyond multilinear monomials

*Blessing of nonlinearity




Future Work

*Rotations of product distributions

e Additive noise

*Sparse polynomials with correlated features

Thanks! Questions?



