
Describing Value Iteration Networks
Kiran Vodrahalli 
April 16, 2018



Main contributions

● The Value Iteration Network uses an approximation of Value Iteration Algorithm
○ IN CONTRAST: Other work in deep RL focuses on approximation of policy 

directly
● Introduces framework for learning policies which depend on value functions of 

approximate MDPs
● ``Learning to plan’’ and generalizing to many problem instances in an environment
● Clever model training setup: Can express Value Iteration as an end-to-end, 

differentiable process (convolutional neural network)



Problem setting

● 1) Imitation learning
○ We get to see expert actions for every state
○ Similar to supervised learning

● 2) Standard RL setup
○ Access to environment rewards

● Key point: Generalize on classes of environments!
○ Solve robot planning problems in a variety of locations



Concrete Examples (Goal: Shortest path)

● Gridworld 
● Mars Rover
● Wikipedia Search



Gridworld (example to keep in mind)



Recall Value Iteration

● Given MDP (S, A, R, P) (states, actions, R(s, a) = reward, P(s’ | s, a) = transitions) 
● Value Iteration Algorithm Recap:

○ Goal: Calculate the value function V(s, Ḗ*), the expected discounted reward 
under optimal policy Ḗ* from state s.

○ We will learn Vn(s) recursively so that Vn → V* = V(s, Ḗ*) as n → ∞ 
○ Define Qn(s, a) = R(s, a) + ṃ ∑s’ P(s’ | s, a) Vn(s).
○ Update Vn+1(s) = maxaQn(s, a)
○ Ḗ* = argmaxa Qinfinity(s, a)



Key Idea: Value Iteration Network

● We don’t know the true MDP of the environment we are in. 
● Observe state ɸ(s)
● Learn a fake MDP (perhaps same state and action space, but parametrized 

reward fR(ɸ(s)) and parametrized transition fP(ɸ(s)))
● Value Iteration Module (approximate value iteration) → value function of 

fake MDP
● Use value of fake MDP and a subset of ɸ(s) to parametrize final policy

○ Ѱ(s) = an attention mechanism applied to ɸ(s)



VIN Diagram



Value Iteration Module



Ex: GridWorld

● In GridWorld, fR(ɸ(s)) is a CNN from the image input with trainable 
parameters. 

● fP(ɸ(s)) are defined as 3x3 convolution kernels in the VI module. 
○ Note they don’t depend on s

● The attention mechanism selects the output of the VI module 
corresponding to the current state

● The final policy is a fully-connected NN mapping the output of the attention 
mechanism to a softmax distribution over actions



Remarks on VI Module

● Extremely convenient in the GridWorld setup (2D convolution)
○ Generalizes to other settings with small state spaces
○ Especially if #states s.t. P(s’ | s, a) > 0 is small (sparse == attention) 

● Max-pooling happens across actions
● Unroll K times: ensure that one can reach the goal in state space with K 

actions. 
● Linear convolution operation: 



What was learned?



Extensions

● Hierarchy
○ Different levels of resolution
○ Input is downsampled ⇒ grainy resolution input to Vin #1
○ output of Vin #2 is upsampled and given as addt’l input into VIN #2 

state
○ Repeat as many times as you like

● Continuous State/Action space
○ Discretize the view



Brief summary of experimental results

● Imitation learning experiments: See a bunch of expert actions at various 
states, directly backprop

● RL experiments: use policy from VIN in RL as per usual, use sampled 
reward to backprop

● VIN typically did better compared to ``reactive policies’’, which have no 
``learning to plan’’ component
○ No functions fR(ɸ(s)) and fP(ɸ(s)) to learn
○ In some experiments, barely did better; others, much better


