Describing Value Iteration Networks

Kiran Vodrahalli
April 16,2018

Main contributions

e The Value Iteration Network uses an approximation of Value Iteration Algorithm
o IN CONTRAST: Other work in deep RL focuses on approximation of policy
directly
e Introduces framework for learning policies which depend on value functions of
approximate MDPs
e Learning to plan” and generalizing to many problem instances in an environment
e Clever model training setup: Can express Value Iteration as an end-to-end,
differentiable process (convolutional neural network)

Problem setting

e 1) Imitation learning

o We get to see expert actions for every state
o Similar to supervised learning

e 2) Standard RL setup

o Access to environment rewards
e Key point: Generalize on classes of environments!

o Solve robot planning problems in a variety of locations

Concrete Examples (Goal: Shortest path)

e Gridworld
e Mars Rover
e Wikipedia Search

Gridworld (example to keep in mind)

%
x
x
X
x
x
b 4
x
X

R vEvIEvRVRv AVEVY

——— Shortest path ‘ ' ——— Shortest path
—*— Predicted path —— Predicted path

Recall Value lteration

e Given MDP (S, A, R, P) (states, actions, R(s, a) = reward, P(s’ | s, a) = transitions)
e Value Iteration Algorithm Recap:
o Goal: Calculate the value function V(s, n*), the expected discounted reward
under optimal policy m* from state s.
We will learn V _(s) recursively so that V_— V*=V(s,nn*) as n — 00
Define Q (s,a) =R(s,a) +y >, P(s'| s,a) V _(s).
Update V_,.(s) = max_Q (s, a)
= argrnaXa Qinfinity(s' a)

o O O O

Key ldea: Value Iteration Network

e We don't know the true MDP of the environment we are in.

e Observe state ¢(s)

e Learn a fake MDP (perhaps same state and action space, but parametrized
reward f_(¢(s)) and parametrized transition f,(¢(s)))

e Value lteration Module (approximate value iteration) — value function of
fake MDP

e Use value of fake MDP and a subset of ¢(s) to parametrize final policy

o Y(s) = an attention mechanism applied to ¢(s)

VIN Diagram

Value Iteration Network
VI Module

i > R _) Plan on _)V*

fp . P |MDP M| "l
Observation y
¢(3) >| Attention
................... H &

2p(s)_’l Reactive Policy
7rre(a'|¢(3)’¢(s))

Value lteration Module

Value iteration Convnet

VI Module
K iterations of: [rev. Vaiue | l

New Value

én(g,a) — §(§,5)+Z,YF_)(§/|§, é)\'/n(-s-/) = %‘:h 1. -

......................

Voir(5)=max3n(5,3) V3
d

K recurrence

Ex: GridWorld

e In GridWorld, f_(¢(s)) is a CNN from the image input with trainable
parameters.

o f (#(s)) are defined as 3x3 convolution kernels in the VI module.

o Note they don't depend on S

e The attention mechanism selects the output of the VI module
corresponding to the current state

e The final policy is a fully-connected NN mapping the output of the attention
mechanism to a softmax distribution over actions

Remarks on VI Module

e Extremely convenient in the GridWorld setup (2D convolution)
o Generalizes to other settings with small state spaces
o Especially if #states s.t. P(s’| s, a) > 0 is small (sparse == attention)

e Max-pooling happens across actions

e Unroll Ktimes: ensure that one can reach the goal in state space with K
actions.

e Linear convolution operation:

Qa,i',j' — Zl,z’,j lz,gRl v —3 —3

What was learned?

Learned Reward Learned Value

1 40
0% EH]
130
0
25
10
0.5 20
1 15 15
10
15 - n
20 ¥ 5
2
! 0
25 3 5
-
5 10 15 20 25

Figure 5: Visualization of learned reward and value function. Left: a sample domain. Center: learned
reward fg for this domain. Right: resulting value function (in VI block) for this domain.

Shortest path
—%— Predicted path

Extensions

e Hierarchy
o Different levels of resolution
o Inputis downsampled = grainy resolution input to Vin #1
o output of Vin #2 is upsampled and given as addt’l input into VIN #2
state
o Repeat as many times as you like

e Continuous State/Action space
o Discretize the view

Brief summary of experimental results

e Imitation learning experiments: See a bunch of expert actions at various

states, directly backprop
e RL experiments: use policy from VIN in RL as per usual, use sampled

reward to backprop
e VIN typically did better compared to " reactive policies”, which have no

“learning to plan” component

o No functions f_(§(s)) and f,(¢(s)) to learn
o In some experiments, barely did better; others, much better

