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Tensors: A brief definition

e Tensors are arrays indexed by multiple indices
e Each index represents a factor of interest

e EX: Consider Netflix data over time
o viewer
o movie
o time



Tensor Decomposition

e (Goal: Find decomposition
T=>, 1A% QY; ®Z2;
e Optimization as iterative procedure
o Find each component one-by-one

e Methods like gradient ascent and tensor
power method work empirically well



Applications of Tensor Decomposition

e | atent variable models
o HMMs

Gaussian mixture models

Topic modeling

ICA

and more...

e Symmetric Orthogonal Tensor Decomposition
suffices for these models
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Learning decompositions in the general case

e Sometimes, a true decomposition does not even
exist

e Tensor problems tend to be NP-hard

e Motivates considering “average case” situations

o N = d and orthogonal components possible
o What about N >> d and non-orthogonal?



Provably learning overcomplete decompositions

n

max f(ﬂj) = Z ﬂ,j,kjlmimjmkml — Z<ai? 3:)4
‘i,j,k,:’.E[d]4 1—=1
s.t. ||3:|| — 1 (multi-linear form)

under constraints:
o a; € R?® drawn i.i.d. from N(O, I)
o n>d



Theorem 1.1. Let £,{ € (0,1/3) be two arbitrary constants and d be sufficiently large. Suppose

d'e < n < d®°°. Then, with high probability over the randomness of a;’s, we have that in the
superlevel set

L= {g; € S 1: f(z) > 3(1+ C)n} , (1.2)

there are ezactly 2n local mazxima with function values (1 & o(1))d?, each of which is close to one
of +tay, ..., +1a,.
Vd vd

e Initialization must be slightly better than
random (function value 3n)

e Gradient ascent / power method then works
o “Peel off eigenvectors” (c.f. SVD)



Proof Strategy

e Kac-Rice formula:

o Assign probability to points on unit sphere of being
local optima

o Integrate to get expected # of optima

o Need to analyze joint distribution of gradient and
Hessian for local optimality

e Intractable closed form

e Estimate # local optima for:

o “Local set”: points near approximate optima
o “Global set”. everything else



Local-Global Set Decomposition

R — {:I‘: = Sd_l : Z(ﬂ-ﬁ?m)“i = 3ﬂ+’}"\/‘?ﬁ}

j=1

Ly = (LN Ly)U LS,
where Ly := {z € S% ! : Vi, || Pea;]|* > (1 — 6)d, and |{a;,z)|? < 6d}

P is (I - xx'), the orthogonal projection operator.



Local Analysis (L2°) uses RIP

e | ocal setis where both restricted isometry and

approximate optimality hold

o Intuitively, Gaussian components are “almost
orthogonal” due to rotational invariance = RIP
o Thus x has high correlation with only few components

e 2n local optima (+/- components)

e [n high-correlation regions, objective is strongly
convex with unique optimum



Global Analysis (L1 N L2)

e Number of local optima is an integer r.v.

e |f expected #optima << 1, Markov’s inequality
= # optima is exactly O in this region w.h.p.

e Use random matrix theory on Kac-Rice integral
to show required expectation result
o ahalyze gradient and Hessian
o Crux is determinant of Hessian analysis



e On the Optimization Landscape of Tensor Decompositions
(Ge and Ma 2016)

e Tensor Decompositions for Learning Latent Variable
Models (Anandkumar, Ge, Hsu, Kakade, Telgarsky)

e Tensor Methods in Machine Learning (Rong Ge,
http.//www.offconvex.org/2015/12/17/tensor-decomposition
s/)



http://www.offconvex.org/2015/12/17/tensor-decompositions/
http://www.offconvex.org/2015/12/17/tensor-decompositions/
http://www.offconvex.org/2015/12/17/tensor-decompositions/

