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Prior Work on Connecting a Semantic Space to fMRI Data

[Mitchell et al ‘08] predicts fMRI responses induced by pictures of concrete nouns.

[Naselaris et al ‘09] predicts fMRI responses induced by images of scenes.

[Pereira et al ‘11] uses the same dataset as Mitchell ‘08, but focuses on generating words related 
to the concrete nouns.

[Naselaris et al ‘11] tries to reconstruct movie images from fMRI signals measured while 
subjects watched movies.

[Wehbe et al ‘14] has subjects read a chapter of Harry Potter and predicts fMRI responses for 
held-out time points.

[Huth et al ‘16] reconstructs fMRI responses to auditory stories.

[Pereira et al ‘16] decodes fMRI responses to word clouds and short sentences.



Main Goal: Decode fMRI Response Semantics

fMRI responses

105

voxels

Movie scenes

fMRI Machine



Matching fMRI responses to annotations (Views: fMRI signal, text annotations)

fMRI responses

105

voxels

Sherlock 
and John 
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Movie scenes
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Representing Annotations: Word Embeddings

● To map between fMRI vectors and words, we 
would like to represent words in vector space

● Goals of embeddings: Preserve some notions 
of similarity and distance that apply to the 
words

● Idea: Assign to every word a 100-dim vector

● How? 



Training Word Embeddings

● Idea: Train a predictive model on some task which “captures 
the meaning of natural language”.
○ Can be an unsupervised task, i.e. “language modeling”.   

● Parameters of the model include a subset which are 
assigned uniquely to each word
○ Initialized randomly

● Training the model on external training set → word vectors
 
● How to combine word vectors to get “annotation vectors”? 



Interesting and Useful Discoveries

● The Shared Response Model (SRM, Chen et al. 2015) helps 
for decoding text!

● Weighted average word vectors  → better semantic context 
vectors (ICLR 2017 paper, Arora et al)



Brain Regions (ROIs) Studied

● Default Mode Network (DMN) 
standard area in literature 
○ known to relate to 

narrative processing
○ DMN-A, -B (2000 voxels)

● Ventral/Dorsal Language 
(2000 voxels)

● Whole Brain (26000 voxels)
○ voxels with high 

inter-subject correlation

● Occipital Lobe (6000 voxels)



Leveraging Multiple Subject Views to Extract Better Semantics

Shared Movie 
Stimulus

Multiple 
Subject
Responses

Shared 
fMRI 
Response

Does aggregating data 
from multiple individuals 
help pick up a stronger 
fMRI signal?



Shared Response Model (SRM, [Chen, Chen, Yeshurun, Hasson, Haxby, Ramadge ‘15])
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Probabilistic Model:



Embedding Annotations with Weighted Sums of Word Vectors



Linear Maps Between fMRI and Text

X represents the fMRI data matrix (n x T)
Y represents the semantic annotation data matrix (m x T)

Basic Model: ,

Learning the Map: ● Procrustes (WTW = I)
○ Restrict map to “rotations” of the 

data.
○ Imposes strong constraint on map

● Ridge Regression (penalize l2 norm ||w||2)
○ Classic linear regularization method
○ Restricts map weights to be 

uniformly small (not sparse)



Shared fMRI 
Space 20 dim

Evaluation: Scene Classification/Ranking Experiments

Semantic 
Space

100 dim

25 test chunks from 1976 TRs



Results: Multiplicative Improvements with our Methods



Results: Top-4% Classification and Average Rank 



Results: Comparisons for fMRI → Text (4% Chance)



Results: Comparisons for Text → fMRI (4% Chance)



Generalizing our Methods to other Datasets 

Performance on the Green Eyes Dataset (Yeshurun et al, 2017)

(Results from Viola Mocz)



Ongoing and Future Work

● Applying event segmentation to define scenes in classification 
and ranking tasks

● Using previous timesteps to get better classification accuracy

● Understanding gap between fMRI → Text and Text → fMRI

● Finer-grained annotation embeddings

● More datasets

● Genuine scene description decoding


