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Problem Statement



Prior work: Attribute-efficient learning of polynomials

Boolean domain 

- Learning sparse parities is a hard problem!

- Parity ⇔ monomial over {-1, +1}p

- Many papers: [Helmbold et. al. ‘92, Blum ‘98, Klivans 
& Servedio ‘06, Kalai et. al. ‘09, Kocaoglu et. al ‘14, ... ]

- Most results:
- Assume product distribution (often 

uniform)
- Runtime ~ dimensionc * sparsity, c < 1
- NOT attribute-efficient

Real domain

- Sparse linear regression: attribute-efficient
- RIP, REC, NSP assumptions on data 

[Candes ‘04, Donoho ‘04, Bickel ‘09, …]

- General polynomials (NOT attribute-efficient)
- Sparse polynomials [Andoni et. al. ‘14]

- product distribution
- Gaussian or uniform data
- Runtime & sample complexity: 

poly(dimension, 2degree, sparsity)
- Compare to naive dimensiondegree

Takeaway: Most work linear, rest 
assumes product distribution.

Takeaway: Boolean setting 
well-studied and difficult!



This work: Non-product distributions for monomials

● One weird trick: Take the log of features and responses, run Lasso!
○ ⇒ Attribute-efficient algorithm! 

● Learns k-sparse monomials 
● Gaussian data
● Variance 1, covariance at most 1 - ε 

○ Arbitrarily high correlation between features!
● Runtime: poly(samples, dimension, sparsity) 

● Sample complexity: ~



Binary Data Setting (reference for details)

● Boolean features (Valiant ‘84, Littlestone ‘88, Helmbold et. al. ‘92,  Klivans et. al. ‘06, Valiant ‘15): 
○ Conjunctions over {0, 1}p are learnable efficiently
○ Monomials over {+1, -1}p are parity functions and are PAC learnable
○ k-sparse parities: Sample efficient (                          ), computationally inefficient (         )

■ Runtime improvement over naive case:                
■ Improper learner:                  samples,           runtime

○ Attribute-inefficient noisy parity:                                                time for data under uniform dist.
■  is noise parameter 

● Average case analysis for learning parity (Kalai et. al. ‘09, Kocauglu et. al. ‘14):
○ Learn DNF/ functions defined on {+1, -1}p

○ Can learn over adversarial + perturbed product distribution
○ Can learn in smoothed analysis settings (adversarial + perturbed function)


