Attribute-Efficient Learning of Monomials over Highly-Correlated Variables

Alexandr Andoni, Rishabh Dudeja, Daniel Hsu, **Kiran Vodrahalli**

Columbia University

Problem Statement

Model: Observe *n* features-response pairs $\{(x_i, y_i)\}_{i=1}^n \subset \mathbb{R}^p \times \mathbb{R}$ drawn i.i.d. from the following model:

$$x_i \sim \mathcal{N}(0, \Phi), \quad y_i = f(x_i), \quad f(x) = \prod_{j \in S} x_j^{\beta_j}.$$

Feature selection problem: Assume f depends on k out of the p features

Efficiency requirement: *attribute-efficient* algorithms require n = poly(log(p), k) samples and poly(n, p, k) run-time.

Prior work: Attribute-efficient learning of polynomials

Boolean domain

- Learning sparse parities is a hard problem!
- Parity \Leftrightarrow monomial over {-1, +1}^p
- Many papers: [Helmbold et. al. '92, Blum '98, Klivans & Servedio '06, Kalai et. al. '09, Kocaoglu et. al '14, ...]
- Most results:
 - Assume product distribution (often uniform)
 - Runtime ~ dimension^{c * sparsity}, c < 1
 - NOT attribute-efficient

Real domain

- Sparse linear regression: attribute-efficient
 - RIP, REC, NSP assumptions on data [Candes '04, Donoho '04, Bickel '09, ...]
- General polynomials (NOT attribute-efficient)
- Sparse polynomials [Andoni et. al. '14]
 - product distribution
 - Gaussian or uniform data
 - Runtime & sample complexity: poly(dimension, 2^{degree}, sparsity)
 - Compare to naive dimension^{degree}

Takeaway: Boolean setting well-studied and difficult!

Takeaway: Most work linear, rest assumes product distribution.

This work: Non-product distributions for monomials

- One weird trick: Take the log of features and responses, run Lasso!
 - $\circ \Rightarrow$ Attribute-efficient algorithm!
- Learns k-sparse monomials
- Gaussian data
- Variance 1, covariance at most 1 ε
 - Arbitrarily high correlation between features!
- Runtime: poly(samples, dimension, sparsity)

Sample complexity: ~
$$\frac{k^2 \log(2k)}{\epsilon} \cdot \log^2\left(\frac{2p}{\delta}\right)$$

Binary Data Setting (reference for details)

- Boolean features (Valiant '84, Littlestone '88, Helmbold et. al. '92, Klivans et. al. '06, Valiant '15):
 - Conjunctions over $\{0, 1\}^p$ are learnable efficiently
 - Monomials over {+1, -1}^p are parity functions and are PAC learnable
 - \circ k-sparse parities: Sample efficient ($\mathrm{poly}(\log(p),k)),$ computationally inefficient ($O(p^k))$
 - Runtime improvement over naive case: $O(p^{k/2})$
 - Improper learner $O(p^{1-1/k})$ samples, $O(p^4)$ runtime
 - Attribute-inefficient noisy parity: $O(p^{0.8k} \operatorname{poly}(1/(1-2\eta)))$ time for data under uniform dist.
 - η is noise parameter

- Average case analysis for learning parity (Kalai et. al. '09, Kocauglu et. al. '14):
 - \circ $\;$ Learn DNF/ functions defined on {+1, -1}^p
 - Can learn over adversarial + perturbed product distribution
 - Can learn in smoothed analysis settings (adversarial + perturbed function)