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Problem Statement

Model: Observe n features-response pairs {(z;, ¥;)}"; C RP x R drawn i.i.d. from
the following model:

Ly ~ N(07 (I))a Yi = f(x’L)a f(x) - HjEij@j-
Feature selection problem: Assume f depends on k out of the p features

Efficiency requirement: attribute-efficient algorithms require n = poly(log(p), k)
samples and poly(n, p, k) run-time.



Prior work: Attribute-efficient learning of polynomials

Boolean domain

- Learning sparse parities is a hard problem!

- Parity < monomial over {-1, +1}?

- Many papers: [Helmbold et. al. ‘92, Blum ‘98, Klivans
& Servedio ‘06, Kalai et. al. ‘09, Kocaoglu et. al ‘14, ... ]
- Most results:

- Assume product distribution (often
uniform)

- Runtime ~ dimension®” sV, ¢ < 1

- NOT attribute-efficient

Real domain

- Sparse linear regression: attribute-efficient
- RIP, REC, NSP assumptions on data
[Candes ‘04, Donoho ‘04, Bickel ‘09, ...]
- General polynomials (NOT attribute-efficient)
- Sparse polynomials [Andoni et. al. ‘14]
- product distribution
- Gaussian or uniform data
- Runtime & sample complexity:
poly(dimension, 29%°¢, sparsity)
- Compare to naive dimension?¢re

Takeaway: Boolean setting
well-studied and difficult!

Takeaway: Most work linear, rest
assumes product distribution.




This work: Non-product distributions for monomials

e One weird trick: Take the log of features and responses, run !
o = Attribute-efficient algorithm!
e Learns k-sparse monomials
Gaussian data
e Variance 1, covariance at most1-¢
o Arbitrarily high correlation between features!
e Runtime: poly( , dimension, sparsity)

k?*log(2k 2
e Sample complexity: ~ f( ) log ( ; )




Binary Data Setting (reference for details)

e Boolean features (valiant ‘84, Littlestone ‘88, Helmbold et. al. ‘92, Klivans et. al. ‘06, Valiant 15 )

o Conjunctions over {0, 1}P are learnable efficiently

o Monomials over {+1, -1}P are parity functions and are PAC learnable

o  k-sparse parities: Sample efficient (poly(log(p), k)), computationally inefficient ( O(p*))
m  Runtime improvement over naive case: 0(1;’9/2)
m  Improper learner O(p'~1/¥) samples, O(p?) runtime

o  Attribute-inefficient noisy parity: O(p%8* poly (1/(1 — 2n)) time for data under uniform dist.
m 7 is noise parameter

e Average case analysis for learning parity (Xalai et. al. ‘09, Kocauglu et. al. ‘14):
o Learn DNF/ functions defined on {+1, -1}
o Can learn over adversarial + perturbed product distribution
o Can learn in smoothed analysis settings (adversarial + perturbed function)



