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Imagine you are an alien visiting earth and you need to learn how to drive. Not only
do you have to learn how to drive a car, but you also have to learn the rules of the
road.




iy
ity "

£ gy 11
“" ll""ﬂlll""
4 g

iy
il
T

o,

How would you learn these things? One way to do it would be to watch other people
driving. You would observe that people stop at red lights, drive on the right side of
the road, and try to not run into each other or off of the road.

You would be learning the rules of the road. Once you have learned these rules, you
would hopefully be able to get into a car and drive on the streets safely.

A crucial element of your learning is that you would conceptualize the rules
separately from the minute, low-level actions of the cars. You would have a compact,
discrete representation of the rules in your head that is easily interpretable. One of
our goals in this work is to learn interpretable policies.




Interpretable

* The structure of the learned policy is grounded directly in meaningful
interpretations
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Let’s say that you observe a bad driver, perhaps an AWOL self-driving car, run a red
light.

As an alien, you might think to yourself, “Oh, since cars decide to run a red light 1% of
the time, | should too.” A police officer should be able to tell you, “NEVER run a red
light!”

This should be possible because the representation of the rules in your head is
manipulable, and can therefore be made safe if you learn from faulty experts.




Manipulable

* A human operator can easily modify the learned policy to perform
similar but different policies.

* Manipulable # Composable

Manipulability is different than compositionality. Compositionality involves combining
policies to form new policies, whereas manipulability means that we can directly and
easily modify the learned policy, which changes the behavior of the agent.




The Goal

Learn from demonstrations not just a low-level
policy but also a high-level policy that is
interpretable and manipulable.

Interpretability and manipulability allow us to not
just learn from demonstrations but also modify
our learned policy to be safe.

To restate: our goal is to learn from demonstrations both low-level action-based
policies as well as a high-level control policy that is interpretable and manipulable.

Learning in an interpretable and manipulable manner, with the aim of learning a safe
controller, is desirable for more than just aliens. Rules govern many parts of human
life and also exist hidden in data.

They are in video games, sports, financial markets, household chores, cooking,

disease diagnosis, and human interactions, just to name a few areas where rules are
important.




Case Study: Driving




Case Study: Driving
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Here is our simplified driving environment. The agent follows rules such as “avoid
n u

work zones and obstacles”, “prefer the right lane”, and “stop at red lights”.
How can we learn these rules from demonstrations such as the one on this slide?




Case Study: Driving

* Assume rules can be encoded as a Finite State Automaton (FSA)

* Assume relevant features of the environment can be detected

* Assume number of FSA states is known

* Assume environment outputs current FSA state as well as low-level state

* Learn the transitions between FSA states as well as low-level transitions
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Case Study: Driving

* Propositions: logical True/False variables
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‘Features’ correspond to propositions in a logic formula
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Case Study: Driving

* Ground-truth FSA has 9 states (represented here as two separate FSAs)
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Transitions between states are controlled by the truth statements of propositions




How Does It Work?
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Value Iteration Networks (VINS)
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Tamar, Aviv, et al. "Value iteration networks." Advances in Neural Information
Processing Systems. 2016

Our model is based off of the Value Iteration Network architecture. VINs put value
iteration into a fully differentiable architecture, where the Q function is calculated
using a convolution and the value function is extracted using a max pool operation.
This makes it possible to learn the reward and transition functions of the
environment.

However, it also imposes a few limits on the system - for example, the environment
has to be able to be interpreted as a grid-like structure so that it can be encoded as a
matrix and then have convolutions applied to it.




Logic-based Value Iteration Network (LVIN)
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Here is a representation of our system, which we call LVIN, for Logic-based Value
Iteration Network.

There are two main differences between LVIN and VIN. One is that we essentially
have a separate VIN module for every FSA state in the environment.
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Logic-based Value Iteration Network (LVIN)
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You can see here, I've tiled the VIN architecture on top of LVIN.

Doing this allows us to learn the reward and transition functions of each FSA state. In
addition, we apply a second convolution on the value function. Learning this
convolution allows us to learn the FSA structure.
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What Makes LVIN Different?

* Interpret the high level of a hierarchical model as a FSA / logical
specification
* Interpretable
* Incorporate the FSA into value iteration so that changes to the FSA
result in changes to the policy
* Manipulable
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Experiments
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Case Study: Kitchen

“Pour milk into bowl, then pour cereal”
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Case Study: Kitchen

“Pour cereal into bowl, then pour milk”

0 = °
99.7% performance on

1000 rollouts
milk (No additional training)

| should note that one limitation of these manipulations is that you can only use the
existing states and propositions to manipulate the policy. The way it is now you
cannot add new states or propositions.
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Case Study: Driving
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Case Study: Driving
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Case Study: Driving

* Safe runs on 1000 rollouts:
Unsafe FSA
90.12%
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Next Steps

* Assume rules can be encoded as a Finite State Automaton (FSA)
* Assume relevant features of the environment can be detected
+ Assume-numberof FSAstatesis known

B R I

* Infer the number of FSA states and the transitions between them
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