Learning to Plan with Logical
Automata

Brandon Araki'*, Kiran Vodrahalli?*, Cristian-loan Vasile!, Daniela Rus?
IMassachusetts Institute of Technology
2Columbia University
*Equal contributors

CSe
miplin] T
M = T é AE IL C U

Imagine you are an alien visiting earth and you need to learn how to drive. Not only
do you have to learn how to drive a car, but you also have to learn the rules of the
road.

iy
ity "

£ gy 11
“" ll""ﬂlll""
4 g

iy
il
T

o,

How would you learn these things? One way to do it would be to watch other people
driving. You would observe that people stop at red lights, drive on the right side of
the road, and try to not run into each other or off of the road.

You would be learning the rules of the road. Once you have learned these rules, you
would hopefully be able to get into a car and drive on the streets safely.

A crucial element of your learning is that you would conceptualize the rules
separately from the minute, low-level actions of the cars. You would have a compact,
discrete representation of the rules in your head that is easily interpretable. One of
our goals in this work is to learn interpretable policies.

Interpretable

* The structure of the learned policy is grounded directly in meaningful
interpretations

Al é{"?lll{:n;mn mhs sl 20061294 10870887
v d J —

e AT
)

Let’s say that you observe a bad driver, perhaps an AWOL self-driving car, run a red
light.

As an alien, you might think to yourself, “Oh, since cars decide to run a red light 1% of
the time, | should too.” A police officer should be able to tell you, “NEVER run a red
light!”

This should be possible because the representation of the rules in your head is
manipulable, and can therefore be made safe if you learn from faulty experts.

Manipulable

* A human operator can easily modify the learned policy to perform
similar but different policies.

* Manipulable # Composable

Manipulability is different than compositionality. Compositionality involves combining
policies to form new policies, whereas manipulability means that we can directly and
easily modify the learned policy, which changes the behavior of the agent.

The Goal

Learn from demonstrations not just a low-level
policy but also a high-level policy that is
interpretable and manipulable.

Interpretability and manipulability allow us to not
just learn from demonstrations but also modify
our learned policy to be safe.

To restate: our goal is to learn from demonstrations both low-level action-based
policies as well as a high-level control policy that is interpretable and manipulable.

Learning in an interpretable and manipulable manner, with the aim of learning a safe
controller, is desirable for more than just aliens. Rules govern many parts of human
life and also exist hidden in data.

They are in video games, sports, financial markets, household chores, cooking,

disease diagnosis, and human interactions, just to name a few areas where rules are
important.

Case Study: Driving

Case Study: Driving

. Learned
Ru/les"d bstacies and = agen
- Avoid obstacles an V/Work
work zones % Zone
- Avoid left lane when Sgﬁn
possible Red
- Do not run red lights Light
- Reach the goal Left
Lane
Goal

Here is our simplified driving environment. The agent follows rules such as “avoid
n u

work zones and obstacles”, “prefer the right lane”, and “stop at red lights”.
How can we learn these rules from demonstrations such as the one on this slide?

Case Study: Driving

* Assume rules can be encoded as a Finite State Automaton (FSA)

* Assume relevant features of the environment can be detected

* Assume number of FSA states is known

* Assume environment outputs current FSA state as well as low-level state

* Learn the transitions between FSA states as well as low-level transitions

10

Case Study: Driving

* Propositions: logical True/False variables

Learned
o Agent

w, Work
% Zone
Green
Light
Red
Light
Left
Lane

(]

/ Propositions

‘Features’ correspond to propositions in a logic formula

11

Case Study: Driving

* Ground-truth FSA has 9 states (represented here as two separate FSAs)

L At red light

g A =0 A =r)
\~a ! —eA-g A oA
V(eA=gA-o

R

1,3

At red light Reached goal

and goal
(never happens
in practice)

Transitions between states are controlled by the truth statements of propositions

How Does It Work?

13

Value Iteration Networks (VINS)

convolution maxpool

VI Module
Learnreward | _______ | s | R (B |
)\ Prev. Value |
\ ‘. P — — New Value
‘ \ a

N.’"\ Reward

Learn 1
transitions Cocessmiay e S e e L GO e i i
K recurrence

Tamar, Aviv, et al. "Value iteration networks." Advances in Neural Information
Processing Systems. 2016

Our model is based off of the Value Iteration Network architecture. VINs put value
iteration into a fully differentiable architecture, where the Q function is calculated
using a convolution and the value function is extracted using a max pool operation.
This makes it possible to learn the reward and transition functions of the
environment.

However, it also imposes a few limits on the system - for example, the environment
has to be able to be interpreted as a grid-like structure so that it can be encoded as a
matrix and then have convolutions applied to it.

Logic-based Value Iteration Network (LVIN)

:k
= 2 V.
= Qo 9
P u}
—__<th " [maxpoot
m:|™
= = |
o= Vv, v =
= () ! Vi
P I % ju}
- B |T™
% # 1 ~
g 2 v 7
= i
A~ P U Q%h 3 O
. X see Fig. 1
k iterations

Here is a representation of our system, which we call LVIN, for Logic-based Value
Iteration Network.

There are two main differences between LVIN and VIN. One is that we essentially
have a separate VIN module for every FSA state in the environment.

15

Logic-based Value Iteration Network (LVIN)

Learn reward Learn transitions of FSA

\ ;Aﬁ"é‘rﬁ“m“; =
: New Value
\ i | & v
LN G " Q%‘b 0
Learn [— 1 . =
transitions e FI—Th T} < ™
3 Prev. Value | —“ ~
New Vai
H Rev:alu a v V'
H R t
H {1 = o
One VIN L R
—~ H T |y
for each o [Provvave | [——
: FSA 3" Reward a m;‘"‘
FSA state i S %)
D P =
i
k iterations -

You can see here, I've tiled the VIN architecture on top of LVIN.

Doing this allows us to learn the reward and transition functions of each FSA state. In
addition, we apply a second convolution on the value function. Learning this
convolution allows us to learn the FSA structure.

16

What Makes LVIN Different?

* Interpret the high level of a hierarchical model as a FSA / logical
specification
* Interpretable
* Incorporate the FSA into value iteration so that changes to the FSA
result in changes to the policy
* Manipulable

17

Experiments

[Predicted Path
.. True Path

Learned
- Agent

D) zove

—= Predicted Path) . Obstacle
=« True Path ik ik,
-®- Start

18

Case Study: Kitchen

“Pour milk into bowl, then pour cereal”

@ = g

cereal

o
wxfedd
A

19

Case Study: Kitchen

“Pour cereal into bowl, then pour milk”

0 = °
99.7% performance on

1000 rollouts
milk (No additional training)

| should note that one limitation of these manipulations is that you can only use the
existing states and propositions to manipulate the policy. The way it is now you
cannot add new states or propositions.

20

Case Study: Driving

“Ignore red light”
(r,0.1)

“Stop at red light”
(r,0.9)

Learned
o Agent

W zone

Green
Light
Red
Light
Left
Lane

Goal

. Obstacle

21

Case Study: Driving

(r, 0.0)

Learned
o Agent

W zone

Green
Light
Red
Light
Left
Lane

Goal

. Obstacle

22

Case Study: Driving

* Safe runs on 1000 rollouts:
Unsafe FSA
90.12%

(r,0.9)

(r, 0.1)

Safe FSA
100%

(r, 1.0)

(r, 0.0)

23

Next Steps

* Assume rules can be encoded as a Finite State Automaton (FSA)
* Assume relevant features of the environment can be detected
+ Assume-numberof FSAstatesis known

B R I

* Infer the number of FSA states and the transitions between them

24

Learning to Plan with Logical
Automata

Brandon Araki, Kiran Vodrahalli, Cristian-loan Vasile, Daniela Rus

araki@mit.edu

CSe
miplin] T
M = T é AE IL C U

25

