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Overview

 What is NLP?

- Natural Language Processing

- We try to extract meaning from text: sentiment,
word sense, semantic similarity, etc.

 How does Deep Learning relate?
- NLP typically has sequential learning tasks
* What tasks are popular?

- Predict next word given context
- Word similarity, word disambiguation
- Analogy / Question answering



Papers Timeline

* Bengio (2003)
e Hinton (2009)
* Mikolov (2010, 2013, 2013, 2014)

- RNN — word vector — phrase vector —
paragraph vector

* Quoc Le (2014, 2014, 2014)

* |Interesting to see the transition of ideas and
approaches (note: Socher 2010 — 2014 papers)

* We will go through the main ideas first and

assess specific methods and results in more
datail |latar



Standard NLP Techniques

» Bag-of-Words
 Word-Context Matrices

- LSA

- Others... (construct matrix, smooth, dimension
reduction)

* Topic modeling

- Latent Dirichlet Allocation
e Statistics-based

 N-grams



Some common metrics in NLP

Perplexity (PPL): Exponential of average negative log likelihood

- geometric average of the inverse of probability of seeing a word
given the previous n words

- 2 to the power of cross entropy of your language model with the
test data
1
P(wlw™)
BLEU score: measures how many words overlap in a given translation
compared to a reference, with higher scores given to sequential words

- Values closer to 1 are more similar (would like human and machine
translation to be very close)

Word Error Rate (WER): derived from Levenstein distance
- WER=(S+D+1)/(S+D+C)
- S = substitutions, D = deletions, | = insertions, C = corrections



Statistical Model of Language

» Conditional probability of one word given all the
previous ones

P (w’f) = HIE’ (wt\wi_l)

t=1



Issues for Current Methods

e Too slow

» Stopped improving when fed increasingly larger
amounts of data

* Very simple and naive; works surprisingly well
but not well enough

* Various methods don't take into account
semantics, word-order, long-range context

* Alot of parsing required and/or hand-built
models

* Need to generalize!



N-grams

e Consider combinations of successive words of
smaller size and predict see what comes next
for all of those.

« Smoothing can be done for new combinations
(which do not occur in training set)

 Bengio: we can improve upon this!
- They don't typically look at contexts > 3 words

- Words can be similar: n-grams don't use this to
generalize when we should be!



Word Vectors

e Concept will show up in a lot of the papers

 The idea is we represent a word by a dense
vector in semantic space

» Other vectors close by should be semantically
similar

« Several ways of generating them; the papers
we will look at generate them with Neural Net
procedures



Neural Probabilistic Language
Model (Bengio 2003)

* Fight the curse of dimensionality with
continuous word vectors and probability
distributions

* Feedforward net that both learns word vector
representation and a statistical language model
simultaneously

* Generalization: “similar” words have similar feature
vectors; probability function is smooth function of these
values — small change in features induces small change
in probability, and we distribute the probability mass
evenly to a combinatorial number of similar neighboring

sentences every time we see a sentence.



Bengio's Neural Net Architecture
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Bengio Network Performance

* Has lower perplexity than smoothed tri-gram
models (weighted sum of probabilities of
unigram, bigram, up to trigram) on Brown
corpus

* Perplexity of best neural net approach: 252

- (100 hidden units; look back 4 words; 30 word
features, no connections between word layer
and output layer; output probability averaged
with trigram output probability)

» Perplexity of best tri-gram only approach: 312



RNN-based Language Model
(Mikolov 2010)

 RNN-LM: 50% reduction on perplexity possible
over n-gram techniques

* Feeding off of Bengio's work, which used
feedforward net — Now we try RNN! More
general, not as dependent on parsing,
morphology, etc. Learn from the data directly.

* Why use RNN?

- Language data is sequential; RNN is good
approach for sequential data (no required
fixed input size) — can unrestrict context



Simple RNN Model

IMEPUT (L) DUTEUT (L)

—_— CONTEXT ()

CONTEXT (t-1)

Figure 1: Simple recurrent neural network.




RNN Model Description

Input: x(t): formed by concatenating vector w (current
word) with the context s(t — 1)

Hidden context layer activation: sigmoid

Output y(t): softmax layer to output probability
distribution (we are predicting probability of each word
being the next word)

error(t) = desired(t) — y(t); where desired(t) is 1-of-V
encoding for the correct next word

Word input uses 1-of-V encoding
Context layer can be initialized with small weights

Use trunctated backprop through time (BPTT) and
SGHD to train



More details on RNN model

 Rare word tokens: merge words that occur less
often than some threshold into a rare-word

token

- prob(rare word) =y (t)/ (number of rare words)

rare

- y_(t) is the rare-word token

rare

 The dynamic model: network should continue
training even during testing phase, since the
point of the model is to update the context



Performance of RNN vs. KN5 on
WSJ dataset

Table 2: Comparison of various configurations of RNN LMy
and combinations with backoff models while using 6.4M words
in training data (WSJ DEV).

PPL WER
Model ENN | RNN+KN || RNN | RNN+KN
KN35 - baseline - 221 - 13.5
RNN 60/20 229 | B6 13.2 12.6
RENN 90/10 202 173 12.8 12.2
RNN 250/5 173 155 12.3 11.7
RNN 25052 176 1 56 2.0 11.9
RNN 400/10 171 152 12.5 12.1
3XRNN static 151 43 1.6 1.3
3xRNN dynamic 128 121 11.3 11.1




More data = larger improvement

Table 1: Performance of models em WSJ DEV ser when increas-
ing size of training data.

Model || #words | PPL | WER
KN5 LM (| 200K 336 6.4
KNS5 LM + RNN 9()/2 200K 271 15.4
KNS5 LM | I M 287 15.1
KNSLM+RNN902 || 1M 225 | 14.0
KNS5 LM | 6.4M 221 13.5
KNS LM + RNN 250/5 || 6.4M 156 11.7




More RNN comparisons

* Previous approaches were not state-of-the-
art,we display improvement on state-of-the-art
AMI system for speech transcription in

meetings on NIST
* Training data: 115

RTO05 dataset

nours of meeting speech

from many training corpora

Table 4: Comparison of very large back-off LMs and RNN LMs

b trained only on limited in-domain data (5.4M words).
[ Model || WER static | WER dynamic |

RTOS LM 24.5

RTO9 LM - baseline 241

KNS5 in-domain 257 -
RNN 500/10 in-domain 24.2 241
RNN 500/10 + RT09 LM 233 23.2
RNM 800/1() in-domain 243 238
RNN 800/10 + RTO9 LM 23.4 23.1
RNN 1000¢/5 in-domain 24.2 23.7
RNN 1000/5 + RTO9 LM 234 229
JxRNN + RT09 LM 23.3 22.8




Mikolov 2013 Summary

* In 2013, word2vec (Google) made big news
with word vector representations that were able
to represent vector compositionality

» vec(Paris) — vec(France) + vec(ltaly) = vec(Rome)

* Trained relatively quickly, NOT using neural net
nonlinear complexity

* “less than a day to learn high quality word vectors
from 1.6 billion word Google News corpus dataset”

 (note: this corpus internal to Google)



Efficient Estimation of Word Representations
in Vector Space (Mikolov 2013)

* Trying to maximize accuracy of vector
operations by developing new model
architectures that preserve linear regularities
among words; minimize complexity

* Approach: continuous word vectors learned
using simple model; n-gram NNLM (Bengio)
trained on top of these distributed
representations

e Extension of previous two papers (Bengio;
Mikolov(2010) )



Training Complexity

We are concerned with making the complexity as simple
as possible to allow training on larger datasets in smaller
amounts of time.

Definition: O = E*T*Q, where E = # of training epochs, T =
# of words in training set, Q = model-specific factor (i.e. in
a neural net, counting number of size of connection
matrices)

N: # previous words, D: # dims in representation, H:
hidden layer size; V: vocab size

Feedforward NNLM: Q = N*D + N*D*H + H%log_V
Recurrent NNLM (RNNLM): Q = H*H + H*log V

- Log V comes from using hierarchical softmax



Hierarchical Softmax

e’
K
. o

. Want to learn probability distribution on words

» Speed up calculations by building a
conditioning tree

* Tree is Huffman code: high-frequency words
are assigned small codes (near the top of the
tree)

- Improves updates from V to log V



New Log-linear models

CBOW (Continuous Bag of Words)

- Context predicts word

- All words get projected to same position (averaged) — lose
order of words info

- Q=N*D + D*log V

Skip-gram (we will go into more detail later)
- Word predicts context, a range before and after the current word
- Less weight given to more distant words
- Log-linear classifier with continuous projection layer
- C: maximum distance between words
- Q=C*(D + D*log,V)

avoid the complexity of neural nets to train good word vectors; use log-linear
optimization (achieve global maximum on max log probability objective)

Can take advantage of more data due to speed up



CBOW Diagram
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Skip-gram diagram
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Results

* Vector algebra result: possible to find answers
to analogy questions like “What is the word that
Is similar to small in the same sense as biggest
Is to big?” (vec("biggest”) - vec("big”) +
vec("'small”) = ?)

* The task: test set containing 5 types of
semantic questions; 9 types of syntactic
guestions

e Summarized in the following table:



Table 1: Examples of five types of semantic and nine types of syntactic questions in the Semantic-

Mikolov test auestions

Svntactic Word Relationship test set.

Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago [llinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective || Switzerland Swiss Cambodia | Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks




Performance on Syntactic-
Semantic Questions

Table 2:  Accuracy on subset of the Semantic-Syntactic Word Relationship test set, using word
vectors from the CBOW architecture with limited vocabulary. Only guestions containing words from
the most frequent 30k words are used.

Dimensionality / Training words || 24M | 49M | 98M | 196M | 391M | 783M
50 134 | 157 | 186 | 19.1 22.5 23.2
100 19.4 | 23.1 | 27.8 | 28.7 334 32.2
300 232 |1 292 | 353 | 386 43.7 45.9
600 240 | 30.1 | 365 | 408 46.6 50.4

Table 3: Comparison of architectures using models trained on the same data, with 640-dimensional
word vectors. The accuracies are reported on our Semantic-Syntactic Word Relationship test set,
and on the syntactic relationship test set of [20]

Model Semantic-Syntactic Word Relationship test set MSR Word Relatedness
Architecture || Semantic Accuracy [%] | Syntactic Accuracy [%] Test Set [20]
RNNLM 9 36 35
NNLM 23 53 47
CBOW 24 64 61
Skip-gram 35 59 56




Summary comparison of architectures

* Word vectors from RNN perform well on
syntactic questions; NNLM vectors perform
better than RNN (RNNLM has a non-linear
layer directly connected to word vectors; NNLM
has interfering projection layer)

« CBOW > NNLM on synactic, bit better on semantic
» Skip-gram ~ CBOW (a bit worse) on syntactic
« Skip-gram >>> everything else on semantic

* This is all for training done with parallel training



(1 CPU only)

Comparison to other approaches

Table 4: Comparison of publicly available word vectors on the Semantic-Syntactic Word Relation-
ship test set, and word vectors from our models. Full vocabularies are used.

Model Vector Training Accuracy [%]
Dimensionality |  words

Semantic | Syntactic | Total
Collobert-Weston NNLM 50 660M 9.3 12.3 11.0
Turian NNLM 50 3™ 1.4 2.6 2.1
Turian NNLM 200 37M 1.4 2.2 1.8
Mnih NNLM 50 3™ 1.8 9.1 3.8
Mnih NNLM 100 3TM 3.3 13.2 5.8
Mikolov RNNLM 80 320M 4.9 18.4 127
Mikolov RNNLM GELY) 320M 8.6 36.5 24.6
Huang NNLM 50 990M 13.3 11.6 12.3
Our NNLM 20 6B 12.9 26.4 20.3
Our NNLM 50 6B 219 35.8 43.2
Our NNLM 100 6B 34.2 64.5 50.8
CBOW 300 783M 15.5 33.1 36.1
Skip-gram 300 T83M 50.0 55.9 53.3




.....
..........

Varying epochs, training set size

Table 5: Comparison of models trained for three epochs on the same data and models trained for
one epoch. Accuracy is reported on the full Semantic-Syntactic daia set.

Model Vector Training Accuracy | %] Training time
Dimensionality | words [days]
Semantic | Syntactic | Total
3 epoch CBOW 300 T83M 1D 53] 36.1
3 epoch Skip-gram 300 7183M 50.0 559 533 3
I epoch CBOW 300 783M 13.8 499 33.6 0.3
I epoch CBOW 300 1.6B 16.1 52.6 36.1 0.6
| epoch CBOW 600 783M 15.4 53.3 36.2 0.7
I epoch Skip-gram 300 783M 45.6 523 49.2 1
| I epoch Skip-gram 300 1.6B 522 53.1 53.8 2
I epoch Skip-gram 600 783M 56.7 54.5 55.5 25




Microsoft Sentence Completion

* 1040 sentences; one word missing / sentence,
goal is to select the word that is most coherent
with the rest of the sentence

Table 7. Comparison and combination of models on the Microsoft Sentence Completion Challenge.

Architecture Accuracy [%]
d4-gram [32] 39
Average LSA similarity [32] 49
Log-bilinear model [24] 54.8
RNNLMs [19] 3554
Skip-gram 48.0
Skip-gram + RNNLMs 58.9




Skip-gram Learned Relationships

Table 8: Examples of the word pair relationships, using the best word vectors from Table | (Skip-
gram model trained on 783M words with 300 dimensionality),

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small; larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: 1Phone
Microsoft - Ballmer Google: Yahoo [BM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza




Versatility of vectors

* Word vector representation also allows solving
tasks like finding the word that doesn't belong in

the list (i.e. ("apple”, “orange”, “banana’,
“airplane”) )

 Compute average vector of words, find the
most distant one — this is out of the list.

» Good word vectors could be useful in many
NLP applications: sentiment analysis,
paraphrase detection



DistBelief Training

* They claim should be possible to train CBOW
and Skip-gram models on corpora with ~ 10712
words, orders of magnitude larger than previous
results (log complexity of vocabulary size)

Table 6: Comparison of models trained using the DistBelief distributed framework. Note that
training of NNLM with 1000-dimensional vectors would take too long to complete.

Model Vector Training Accuracy [%] Training time
Dimensionality | words [days x CPU cores]
Semantic | Syntactic | Total
NNLM 100 6B 34.2 64.5 50.8 14 x 180
CBOW 1000 6B 35 68.9 63.7 2x 140
Skip-gram 1000 6B 66.1 65.1 65.6 25% 125




Focusing on Skip-gram

« Skip-gram did much better than everything else
on the semantic questions; this is interesting.

* We investigate further improvements (Mikolov
2013, part 2)

e Subsampling gives more speedup

* S0 does negative sampling (used over
hierarchical softmax)



Recall: Skip-gram Objective
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Basic Skip-gram Formulation

* (Again, we're maximizing average log
probability over the set of context words we
predict with the current word)

» C is the size of the training context
- Larger ¢ — more accuracy, more time

« v_wWand v_w'are input and output
representations of w, W is # of words

» Use softmax function to define probability; this
formulation is not efficient — hierarchical
softmax



OR: Negative Sampling

* Another approach to learning good vector
representations to hierarchical softmax

» Based off of Noise Constrastive Estimation
(NCE): a good model should differentiate data
from noise via logistic regression

« Simplify NCE — Negative sampling
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Explanation of NEG objective

For each (word, context) example in the corpus we
take k additional samples of (word, context) pairs NOT
in the corpus (by generating random pairs according to
some distribution Pn(w))

We want the probability that these are valid to be very
low

These are the “negative samples”™, k ~ 5 — 20 for larger
data sets, ~ 2 — 5 for small

=argmax [ p(D=1lew;0) [[ (1-pD =1lc,w;0)
(w,c)eD (w,c)ED’



Subsampling frequent words

» Extremely frequent words provide less
information value than rarer words

 Each word w_i in training set is discarded with
probabillity; t (threshold) ~ 10”*-5: aggressively
subsamples while preserving frequency ranking

* Accelerates learning; does well in practice
fis frequency of word; P(w_i): prob to discard




Results on analogical reasoning
(previous paper's task)

1,

» Recall the task: “Germany”: “Berlin” :: "France™.?

* Approach to solve: find x s.t. vec(x) is closest to
vec(“Berlin”) - vec("Germany”) + vec("France”)

* V=692K

« Standard sigmoidal RNNs (highly non-linear)
improve upon this task; skip-gram is highly
linear

« Sigmoidal RNNs — preference for linear
structure? Skip-gram may be a shortcut



Performance on task

Method Time [min] | Syntactic [%] Semantic [%] | Total accuracy [%o]

NEG-5 38 63 54 59

NEG-15 97 63 58 61
HS-Huffman 41 53 40 47

NCE-5 38 60 45 53

The following results use 107" subsampling

NEG-5 14 61 58 60

NEG-15 36 61 61 61
HS-Huffman 21 52 39 55

Table 1: Accuracy of various Skip-gram 300-dimensional models on the analogical reasoning task
as defined in [8]. NEG-£ stands for Negative Sampling with & negative samples for each positive
sample; NCE stands for Noise Contrastive Estimation and HS-Huffman stands for the Hierarchical
Softmax with the frequency-based Huffman codes.




What do the vectors look like?

jected by PCA
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Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically orgamize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
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Applying Approach to Phrase
vectors

“phrase” — meaning can't be found by composition; words
that appear frequently together; infrequently elsewhere

Ex: New York Times becomes a single token

Generate many “reasonable phrases” using
unigram/bigram frequencies with a discount term; (don't
just use all n-grams)

Use Skip-gram for analogical reasoning task for phrases (3128
examples)

Method Dimensionality | No subsampling [%] | 107" subsampling [%]

NEG-5 300 24 27

NEG-15 300 27 42
HS-Huffman 300 19 47

Table 3: Accuracies of the Skip-gram models on the phrase analogy dataset. The models were
trained on approximately one billion words from the news dataset.



B

: Examples of analogical reasoning
task for phrases

Newspapers
New York New York Times Baltimore Baltimore Sun
San Jose San Jose Mercury News Cincinnati Cincinnati Enquirer
NHL Teams
Boston Boston Bruins Montreal Montreal Canadiens
Phoenix Phoenix Covotes Nashville Nashville Predators
NBA Teams
Detroit Detroit Pistons loronto loronto Raptors
Oakland Golden State Warriors Memphis Memphis Grizzlies
Airlines
Austria Austrian Airlines Spain Spainair
Belgium Brussels Airlines Greece Aegean Airlines
Company executives
Steve Ballmer Microsoft Larry Page Google
Samuel J. Palmisano IBM Werner Vogels Amazon

Table 2: Examples of the analogical reasoning task for phrases (the full test set has 3218 examples).
The goal is to compute the fourth phrase using the first three. Our best model achieved an accuracy
of 72% on this dataset.
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Additive Compositionality

 Can meaningfully combine vectors with term-
wise addition

 Examples:

Czech +currency | Vietnam +capital | German +airlines | Russian +river | French + actress
koruna Hano airling Lufthansa Moscow Juliette Binoche
Check crown | Ho Chi Minh City | carrier Lufthansa Volga River Vanessa Paradis
Polish zolty Viet Nam flag carrier Lufthansa upriver Charlotte Gainsbourg
CTK Vietnamese Lufthansa Russia Cecile De

Table 5: Vector compositionality using element-wise addition. Four closest tokens to the sum of two
vectors are shown, using the best Skip-gram model.




Additive Compositionality

« Explanation: word vectors in linear relationship
with softmax nonlinearity

* Vectors represent distribution of context in
which word appears

* These values are logarithmically related to
probabilities, so sums correspond to products;

l.e. we are ANDIng together the two words in
the sum.

« Sum of word vecs ~ product of context
distributions



Nearest Neighbors of Infrequent
Words

Model Redmond Havel ninjutsu graflit capitulate
(tramning time)
Collobert (50d) CONYers plauen reiki cheesecake abdicate
(2 months) lubbock dzerzhinsky kohona ZOSSIP accede
keene osterreich karate dioramas rearm
Turian (200d) McCarthy Jewell - gunfire -
[ few weeks) Alston Arzu emaotion -
Cousins Ovitz - impunity -
Mnih { 100d) Podhurst Pontiff - anaesthetics Mavericks
(7 days) Harlang Pinochet - monkeys planning
Agarwal Rodionov - Jews hesitated
Skip-Phrase Redmond Wash. Vaclav Havel ninja spray paint | capitulation
(1000d, 1 day) Redmond Washington | president Vaclav Havel martial arts grafitti capitulated
Microsoft Velvet Revolution swordsmanship taggers capitulating

Table 6: Examples of the closest tokens given various well known models and the Skip-gram model
trained on phrases using over 30 billion training words. An empty cell means that the word was not

in the vocabulary.




Paragraph Vector!

Quoc Le and Mikolov (2014)
Input is often required to be fixed-length for NNs
Bag-of-words lose ordering of words and ignore semantics

Paragraph Vector is unsupervised algorithm that learns
fixed length representation of from variable-length texts:
each doc is a dense vector trained to predict words in the
doc

More general than Socher approach (RNTNSs)

New state-of-art: on sentiment analysis task, beat the best
by 16% in terms of error rate.

Text classification: beat bag-of-words models by 30%



The model

* Concatenate paragraph vector with several
word vectors (from paragraph) — predict
following word in the context

 Paragraph vectors and word vectors trained by
SGD and backprop

 Paragraph vector unigue to each paragraph
* Word vectors shared over all paragraphs

« Can construct representations of variable-
length input sequences (beyond sentence)



| Paragraph Vector Framework
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Figure 2. A framework for learning paragraph vector. This frame-
work is similar to the framework presented in Figure 1; the only
change is the additional paragraph token that is mapped to a vec-
tor via matrix 2. In this model, the concatenation or average of
this vector with a context of three words is used to predict the
fourth word. The paragraph vector represents the missing infor-
mation from the current context and can act as a memory of the
topic of the paragraph.




PV-DM: Distributed Memory
Model of Paragraph Vectors

N paragraphs, M words in vocab
Each paragraph — p dims; words — q dims
N*p + M*q; updates during training are sparse

Contexts are fixed length, sliding window over
paragraph; paragraph shared across all
contexts which are derived from that paragraph

Paragraph matrix D; tokens act as memory
“what is missing” from current context

Paragraph vector averaged/concatenated with
word vectors to predict next word in context



Model parameters recap

* Word vectors W, softmax weights U, b

 Paragraph vectors D on previously seen
paragraphs

* Note: at prediction time, need to calculate
paragraph vector for new paragraph. — do
gradient descent leaving all other parameters
(W, U, b) fixed.

e Resulting vectors can be fed to other ML
models




Why are paragraph vectors good

e Learned from unlabeled data

» Take word order into consideration (better than
n-gram)

* Not too high-dimensional; generalizes well



Distributed bag of words

» Paragraph vector w/out word order

« Store only softmax weights aside from
paragraph vectors

* Force model to predict words randomly
sampled from paragraph

* (sample text window, sample word from window
and form classification task with vector)

* Analagous to skip-gram model



PV-DBOW picture
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Figure 3. Distributed Bag of Words version of paragraph vectors,
[n this version, the paragraph vector is trained to predict the words

in a small window.



Experiments

* Test with standard PV-DM

e Use combination of PV-DM with PV-DBOW
» |atter typically does better

e Tasks:

- Sentiment Analysis (Stanford Treebank)
- Sentiment Analysis (IMDB)

- Information Retrieval: for search queries, create
triple of paragraphs. Two are from query
results, one is sampled from rest of collection

 Which is different?



Experimental Protocols

e | earned vectors have 400 dimensions

* For Stanford Treebank, optimal window size =
8: paragraph vec + 7 word vecs — predict 8"
word

* For IMDB, optimal window size = 10
e Cross validate window size between 5 and 12
e Special characters treated as normal words



Stanford Treebank Results

Table 1. The performance of our method compared to other ap-
proaches on the Stanford Sentiment Treebank dataset. The error
rates of other methods are reported in (Socher et al., 2013b).

Model Error rate | Error rate
(Positive/ {Fine-
Negative) grained)
Naive Bayes 18.2 % 59.0%
(Socher et al., 2013b)

[ SVMs (Socher et al., 2013b) 20.6% 59.3%
Bigram Naive Bayes 16.9% 58.1%
(Socher et al., 2013b)

Word Vector Averaging 19.9% 67.3%
(Socher et al., 2013b)
Recursive Neural Network 17.6% 50.8%
(Socher et al., 2013b)
Matrix Vector-RNN 17.1% 55.6%
(Socher et al., 2013b)
Eecursive Neural Tensor Network 14.6% 534.3%
(Socher et al., 20013b)
Paragraph Vector 12.2% 51.3%




IMDB Results

Table 2. The performance of Paragraph Vector compared to other
approaches on the IMDB dataset. The error rates of other methods
are reported in (Wang & Manning, 2012).

Model Error rate
BoW (bnc) (Maas et al., 2011) 12.20 %
BoW (bAt'c) (Maas et al., 2011) 11.77%
LDA (Maas et al., 2011) 32.58%
Full+BoW (Maas et al., 2011) 11.67%
Full+Unlabeled+BoW (Maas et al., 2011) 11.11%
WRRBM (Dahl et al., 2012) 12.58%
WRRERBM + BoW (bnc) (Dahl et al., 2012) 10.77%
MNB-um (Wang & Manning, 2012) 16.45%
MNB-bi (Wang & Manning, 2012) 13.41%
SVM-uni (Wang & Manning, 2012) 13.05%
SVM-bi (Wang & Manning, 2012) 10.84%
NBSVM-uni (Wang & Manning, 2012) 11.71%
NBSVM-bi (Wang & Manning, 2012) 8.78%
Paragraph Vector 7.42%




FIEFLYLCHY S F LA FLO 4
B 1A AU AL L AL LR ALY

i i Pl I O A
e T | |

Information Retrieval Results

Table 3. The performance of Paragraph Vector and bag-of-words
models on the information retrieval task. “Weighted Bag-of-
bigrams” 1s the method where we learn a linear matrix W on TF-
[DF bigram features that maximizes the distance between the first
and the third paragraph and mimimizes the distance between the
first and the second paragraph.

Model Error rate
Vector Averaging 10.25%
Bag-of-words 8.10 %
Bag-of-bigrams 7.28 %
Weighted Bag-of-bigrams 3.67%
Paragraph Vector 3.82%




Takeaways of Paragraph Vector

 PV-DM > PV-DBOW: combination is best
 Concatenation > sum in PV-DM

 Paragraph vector computation can be
expensive, but is do-able. For testing, the IMDB
dataset (25,000 docs, 230 words/doc)

* For IMDB testing, paragraph vectors were
computed in parallel 30 min using 16 core
machine

* This method can be applied to other sequential
data too



Neural Nets for Machine
Translation

* Machine translation problem: you have a
source sentence in language A and a target
language B to derive

* Translate A — B: hard, large # of possible
translations

 Typically there is a pipeline of techniques

e Neural nets have been considered as
component of pipeline

 Lately, go for broke: why not do it all with NN?
* Potential weakness: fixed, small vocab



Sequence-to-Sequence Learning
(Sutskever, Vinyals, Le 2014)

* Main problem with deep neural nets: can only
be applied to problems with inputs and targets
of fixed dimensionality

* RNINs do not have that constraint, but have
fuzzy memory

 LSTM is a model that is able to keep long-term
context

 LSTMs are applied to English to French
translation (sequence of english words —
sequence of french words)



How are LSTMs Built?

(references to Graves (2014))



Basic RNN: “Deep learning in
time and space”

Qutputs

Hidden Layers

Imputs

Figure 1: Deep recurrent neural network prediction architecture. The
circles represent network layers, the solid lines represent weighted connections
and the dashed lines represent predictions.



LSTM Memory Cells

 Instead of hidden layer being element-wise
application of sigmoid function, we custom
design "memory cells” to store information

* These end up being better at finding / exploiting
long-range dependencies in data
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LSTM block

Figure 2: Long Short-term Memory Cell

> 1



LSTM equations

it = a (Wyxe + Whihi—1 + Weie—q1 + b;) (7)
Jt =0 (Werz + Wheheq + Weper—q + by) (8)
¢t = fiop—1 + ip tanh (Wiery + Whehie—1 + be) (9)
0 = 0 (Weotts + Wirohi—1 + Waoty + by) (10)
hy = o, tanh(ey) (11)

|_t: input gate, f_t: forget gate, c t: cell, o _t: output gat,
h_t: hidden vector



Model in more detail

 Deep LSTM1 maps input sequence to large
fixed-dimension vector; reads input 1 time step

at a time

 Deep LSTMZ2: decodes target sequence from
fixed-dimension vector (essentially RNN-LM
conditioned on input sequence)

» Goal of LSTM: estimate conditional probability
p(yT' | xT), where xT is the sequence of english
words (length T) and yT' is a translation to
french (length T'). Note T != T' necessarily.



--------

LSTM translation overview

W X Y Z <EQ5>

R IR S A A
T

b B C <E05= W X f £

Figure 1: Our model reads an input sentence “ABC™ and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token, Note that the LSTM reads the
nput sentence m reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.



Model continued (2)

* Probability distributions represented with
softmax

. v is fixed dimensional representation of input
XT



Model continued (3)

» Different LSTMs were used for input and output
(trained with different resulting weights) — can
train multiple language pairs as a result

 LSTMs had 4 layers

* |n training, reversed the order of the input
phrase (the english phrase).

 |f <a, b, ¢c> corresponds to <x, y, z>, then the
input was fed to LSTM as: <c, b, a> — <x, y, z>

* This greatly improves performance



Experiment Details

« WMT 14 English-French dataset: 348M French
Words, 304M English words

* Fixed vocabulary for both languages:

- 160000 english words, 80000 french words
- Out of vocab: replaced with <unk>

* Objective: maximize log probability of correct
translation T given source sentence S

* Produce translations by finding the most likely
one according to LSTM using beam-search
decoder (B partial hypotheses at any given
time)



Training Detalils

 Deep LSTMs with 4 layers; 1000 cells/layer;
1000-dim word embeddings

e Use 8000 real #s to represent sentence
- (4*1000) *2
e Use nalve softmax for output

 384M parameters; 64M are pure recurrent
connections (32M for encoder and 32M for
decoder)



Experiment 2

e Second task: Took an SMT system's 1000-best
outputs and re-ranked them with the LSTM

 Compute log probability of each hypothesis and
average previous score with LSTM score; re-
order.



More training details

 Parameter init uniform between -0.08 and 0.08

» Stochastic gradient descent w/out momentum
(fixed learning rate of 0.7)

* Halved learning rate each half-epoch after 5
training epochs; 7.5 total epochs for training

» 128-sized batches for gradient descent

* Hard constraint on norm of gradient to prevent
explosion

e Ensemble: random initializations + random
mini-batch order differentiate the nets



BLEU score: reminder

 Between 0 and 1 (or 0 and 100 — muiltiply by
100)

e Closer to 1 means better translation

» Basic idea: given candidate translation, get the
counts for each of the 4-grams in the translation

* Find max # of times each 4-gram appears in
any of the reference translations, and calculate
the fraction for 4-gram x: (#x in candidate
translation)/(max#x in any reference translation)

* Take geometric mean to obtain total score



Results (BLEU score)

Method test BLEU score (ntstl4)
Bahdanau et al. [2] 28.45
Baseline System [29] 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59
Ensemble of 5 reversed LSTMs, beam size | 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT"14 English to French test set (ntstl14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12,

Method test BLEU score (ntstl14)

Baseline System [29] 33.30
Cho et al. [5] 34.54
Best WMT 14 result [9] 37.0
Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

| Oracle Rescoring of the Baseline 1000-best lists | ~45 |

Table 2: Methods that use neural networks together with an SMT system on the WMT’ 14 English
to French test set (ntst14).



Results (PCA projection)
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ib | was given a card by her in the garden
i OMary admires John inp L In the garden , she gave me a card
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i OMary is in love with John
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Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures, The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.
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Figure 3: The left plot shows the performance of our system as a function of sentence length, where the
x-axis corresponds to the test sentences sorted by their length and is marked by the actual sequence lengths.
There is no degradation on sentences with less than 35 words, there is only a minor degradation on the longest
sentences. The right plot shows the LSTM’s performance on sentences with progressively more rare words,
L where the x-axis corresponds to the test sentences sorted by their “average word frequency rank™.




Results Summary
 LSTM did well on long sentences

* Did not beat the very best WMT'14 system, first
time that pure neural translation outperforms an
SMT baseline on a large-scale task by a wide
margin, even though the LSTM model does not
handle out-of-vocab terms

* Improvement by reversing the word order

- Couldn't train RNN model on non-reversed
problem

- Perhaps is possible with reversed model
e Short-term dependencies important for learning



Rare Word Problem

n the Neural Machine Translation system we
just saw, we had a small vocabulary (only 80k)

How to handle out-of-vocab (OOV) words?

Same authors + a few others from previous
paper decided to upgrade their previous paper
with a simple word alignment technique

Matches OOV words in target to corresponding
word in source, and does a lookup using
dictionary




Rare Word Problem (2)

* Previous paper observes sentences with many
rare words are translated much more poorly
than sentences containing mainly frequent
words

 (contrast with Paragraph vector, where less
frequent vectors added more information —
recall paragraph vector was unsupervised)

e Potential reason prev paper didn't beat
standard MT systems: did not take advantage
of larger vocabulary and explicit alignments/
phrase counts — fail on rare words



e
=

How to solve rare word for NMT?

* Previous paper: use <unk> symbol to represent
all OOV words

en: The ecotax portico in Pont-de-Buis , ... [truncated] . .., was taken down on Thursday morming

> % N . o e

fr: Le portigue écotaxe de Pont-de-Buis , ... [truncated] ..., a etc démonté jeudi matin

nn: Le <unk> de <unk> a <unk>,...[truncated] ..., a été pris le jeudi matin

Figure 1: Example of the rare word problem — An Enghish source sentence (en), a human trans-
lation to French (fr), and a translation produced by one of our neural network systems (nn) before
handling OOV words. We highlight words that are unknown to our model. The token <unk>
indicates an OOV word. We also show a few important alignments between the pair of sentences.




How to solve — intelligently!

 Main idea: match the <unk> outputs with the
word that caused them In the source sentence

« Now we can do a dictionary lookup and
translate the source word

* |f that fails, we can use identity map — just stick
the word in from source language (might be the
same in both languages — typically for
something like a proper noun)



Construct Dictionary

* First we need to align the parallel texts

- Do this with an unsupervised aligner (Berkeley
aligner, GIZA++ tools exist..)

- General idea: can use expectation maximization
on parallel corpora

- Learn statistical models of the language, find
similar features in the corpora and align them

- A field unto itself

« We DO NOT use the neural net to do any
aligning!



Constructing Dictionary (2)

* Three strategies for annotating the texts

* we're modifying the text based on alignment
understanding

* They are:

- Copyable Model
- PosAll Model (Positional All)
- PosUnk Model (Positional Unknown)



Copyable Model

e Order unknown words unk1,... in source
 For unknown — unknown matches, use unk1, 2, etc.

e For unknown — known matches, use unk_null (cannot
translate unk_null)

* Also use null when no alignment

en: The unk; porticoin unks ...

fr: Le unk, unk; de unks ...

Figure 2: Copyable Model — an annotated example under the copyable model with two types of
unknown tokens: (a) “copyable” tokens, e.g., unki, unks, etc., and (b) null token unk,.



PosAll Model

* Only use <unk> token

 |n target sentence, place a pos d token before
every <unk>

* pos_d denotes relative position that the target
word is aligned to in source (|d| <=7)

en: The <unk> portico in <unk> ...

fr: Le posy <unk> pos_; <unk> pos; de pos,, <unk> pos_; ...

Figure 3: Positional All Model - the annotation of the PosAll model, where each word is followed
by the relative positional tokens posy or the null token pos.,.



PosUnk Model

* Previous model doubles length of target
sentence..

 Let's only annotate alignments of unknown
words in target

* Use unkpos d (|d| <= 7). denote unknown and
relative distance to aligned source word (d set
to null when no alignment)

e Use <unk> for all other source unknowns



PosUnk Model

en: The <unk> portico in <unk> ...

fr: Le unkpos; unkpos_i de unkposi ...

Figure 4: Positional Unknown Model - the annotations under the PosUnk model, where we anno-
tate only the aligned unknown words with the unkpos, tokens.



Training

Train on same dataset as previous paper for comparison
with same NN model (LSTM)

They have difficult with softmax slowness on vocabulary,
so they limit to 40K most used french words (reduced from
80k) (only on the output end)

(they could have used hierarchical softmax or Negative
sampling)

On source side, they use 200K most frequent words
ALL OTHER WORDS ARE UNKNOWN

They used the previously-mentioned Berkeley aligner in
default



Results

System Vocab | Corpus BLEU
Existing state of the art [7] All 36M 37.0
Standard MT + neural components
LIUM [19] — neural language model All 12M 333
Cho et al. [5] — phrase table neural features All 12M 34.5
Sutskever et al. [22] — ensemble 5 LSTMSs, reranking All 12M 36.5
Existing end-to-end NMT systems
Bahdanau et al. [2] — bi-directional gated single RNN 30K 12M 28.5
Sutskever et al. [22] — single LSTM 80K 12M 30.6
Sutskever et al. [22] — ensemble of 5 LSTMs 80K 12M 34.8
Our end-to-end NMT systems

Single LSTM with 4 layers 40K 12M 29.5
Single LSTM with 4 layers + PosUnk 40K 12M 31.8 (+2.3)
Single LSTM with 6 layers 40K 12M 304
Single LSTM with 6 layers + PosUnk 40K 12M 32.7 (+2.3)
Ensemble of 8 LSTMs 40K 12M 34.1
Ensemble of 8 LSTMs + PosUnk 40K 12M 36.9 (+2.8)
Single LSTM with 6 layers 80K 36M 31.5
Single LSTM with 6 layers + PosUnk 80K 36M 33.1 (+1.6)
Ensemble of 8 LSTMs 80K 36M 35.6
Ensemble of 8 LSTMs + PosUnk 80K 36M 37.5 (+1.9)

Table 1: Translation results on newstest2014 — BLEU scores of various systems which differ in
terms of: (a) the architecture, (b) the size of the vocabulary used, and (c) the training corpus, either
using the full WMT’14 corpus of 36M sentence pairs or a subset of it with 12M pairs. We highlight
the performance of our best system in bolded text and state the improvements obtained by our
technique of handling rare words (namely, with the PosUnk model). Notice that the more accurate
systems achieve a greater improvement from the post-processing step. This is the case because the
larger, more accurate models are also more accurate in their output of the alignment information of
- the unknown word, which makes the post-processing more useful.




Results (2)

 |Interesting to note that ensemble models get
more gain from the post-processing step

* More larger models identify source word
position more accurately — PosUnk more
useful

» Best result outperforms currently existing state-
of-the-art

* Way outperforms previous NMT systems



And now for something
completely different..

e Semantic Hashing — Salakhutdinov & Hinton
(2007)

* Finding binary codes for fast document retrieval
* Learn a deep generative model:

- Lowest layer is word-count vector
- Highest is a learned binary code for document

e Use autoencoders



TF-IDF

Term frequency-inverse document frequency

Measures similarity between documents by
comparing word-count vectors

~ freq(word in query)
~ log(1/freq(word in docs))

Used to retrieve documents similar to a query
document



Drawbacks of TF-IDF

» Can be slow for large vocabularies

 Assumes counts of different words are
independent evidence of similarity

* Does not use semantic similarity between
words

* Other things tried: LSA, pLSA, — LDA

* \WWe can view as follows: hidden topic variables
have directed connections to word-count
variables




Semantic hashing

 Produces shortlist of documents in time
independent of the size of the document
collection: linear in size of shortlist

 The main idea is that learned binary projections
are a powerful way to index large collections
according to content

 Formulate projections to ~ preserve a similarity
function of interest

 Then can explore Hamming ball volume around
a query, or use hash tables to search data

e (radius d: differs in at most d positions)



Semantic Hashing (cont.)

 Why binary? By carefully choosing information
for each bit, can do better than real-values

e Outline of approach:

- Generative model for word-count vectors

- Train RBMs recursively based on generative
model

- Fine-tune representation with multi-layer
autoencoder

- Binarize output of autoencoder with
deterministic Gaussian noise



The Approach
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Figure 2: Left panel: The deep generative model. Middle panel: Pretraining consists of learning a stack of RBM’s in which the feature activations
of one RBM are treated as data by the next RBM. Right panel: After pretraining, the RBM’s are “unrolled” to create a multi-layer autoencoder that
is fine-tuned by backpropagation.



Modeling word-count vectors

» Constrained Poisson for modeling word count
vectors v

- Ensure mean Poisson rates across all words
sum to length of document

- Learning is stable; deals appropriately w/diff
length documents

» Conditional Bernoulli for modeling hidden topic
features



First Layer: Poisson — Binary

Y O Q Q Constrained
Poisson



Model equations

exp (X + 3, hjw;;) r-.,;) !
, ; iy (
2onexp (Ak + 22, bty )

plh; =1|v) = afb; 4 Z Wil ) (2)
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Marginal distribution p(v) w/
energy

exp (— E(v h))
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Gradient Ascent
Updates/approximation

0logp(v)
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Pre-training: Extend beyond one
layer

Now we have the first layer, from Poisson word-
count vector to first binary layer.

Note that this defines an undirected model p(v,
h)

The next layers will all be binary — binary
p(v) (higher level RBM) starts out as p(h) from

lower level, train using data generated from p(h|
v) applied to the training data..

By some variational bound math, this
consistently increases lower bound on log
probability (which is good)



Summary so far

* Pre-training: We're using higher-level RBMs to
Improve our deep hierarchical model

* Higher level RBMs are binary — binary
* First level is Poisson — binary

* The point of all this is to initialize weights in the
autoencoder to learn a 32-dim representation

* The idea is that this pretraining finds a good
area of parameter space (based on the idea
that we have a nice generative model)



The Autoencoder

» Autoencoder teaches an algorithm to learn an
identity function with reduced dimensionality

* Think of it as forcing the neural net to
encapsulate as much information as possible in
the smaller # of dimensions so that it can
reconstruct it as best as it can

* \We use backpropagation here to train word-
count vectors with previous architecture (error
data comes from itself); divide by N to get
probability distribution

o Use cross-entropy error with softmax output



Binarizing the code

* \WWe want the codes found by the autoencoder to
be as close to binary as possible

* Add noise: best way to communicate info in
presence of noise is to boost your signals so
that they are distinguishable — i.e. one strong
positive, one strong negative signal — binary

 Don't want noise to mess up training, so we
keep it fixed — “deterministic noise”

« Use N(O, 16)



Testing

* The task: given a query document, retrieve
relevant documents

 Recall = # retrieved relevant docs/ total relevant
docs

 Precision = # relevant retrieved docs / total
retrieved docs

e Relevance = check if the documents have the
same class label

e LSA and TF-IDF are used as benchmarks



Corpora

» 20-Newsgroups
- 18845 postings from Usenet

- 20 different topics

- Only considered 2000 most frequent words in
training

* Reuters Corpus Vol Il
- 804414 newswire stories, 103 topics

- Corporate/industrial, econ, gov/soc, markets

- Only considered 2000 most frequent words in
training



......

Results (128-bit)
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Precision-Recall Curves
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Figure 6: Precision-Recall curves for the 20 Newsgroups dataset, when a query document from the test set is used to retrieve other test set documents,
averaged over all 7,531 possible queries.
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Results (20-bit)

* Restricting the bit size down to only 20 bits,
does it still work well? (0.4 docs / address)

» Given: query — compute 20bit address

- > retrieve all documents in Hamming Ball of
radius 4 (~ 2500 documents)

- > No search performed
- > short list made with TF-IDF

- > no precision or recall lost when TF-IDF
restricted to this pre-selected set!

- > considerable speed up



Results (20bit)
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Figure 8: Left panel: Precision-Recall curves for the Reuters RCV2 dataset, when a query document from the test set is used to retrieve other

test set documents, averaged over all 402,207 possible queries. Right panel: 2-dimensional embedding of the 20-bit codes using stochastic neighbor
embedding for the Reuters RCV2 corpus. See in color for better visualization.




Some Numbers

« 30-bit for 1 billion docs: 1 doc/address; requires
a few Gbs of memory

 Hamming Ball radius 5 — 175000 shortlist w/no
search (can simply enumerate when required)

» Scaling learning is not difficult

- Training on 10”9 docs takes < few weeks with
100 cores

- “large organization” could train on many billions

* No need to generalize to new data if learning is
ongoing (should improve upon results)



Potential problem

Documents with similar addresses have similar
content, but converse is not necessarily true

Could have multiple spread out regions which
are the same internally and also same
externally, but far apart.

Potential fix: add an extra penalty term during
optimization — can use information about
relevance of documents to construct this term

— can backpropagate this through the net



How to View Semantic Hashing

» Each of the binary values in the code
represents a set containing about half the
document collection

* WWe want to intersect these sets for particular
features

« Semantic hashing is a way of mapping set
intersections required directly onto address bus

* Address bus can intersect sets with a single
machine instruction!



Overview of Deep Learning NLP

Colorful variety of approaches

Started a while ago, revival of old ideas today applied to more
data and better systems

— Neural Net Language Model (Bengio)

— RNNLM (use recurrent instead of feedforward)
Skip-gram (2013) (simplification good)

Paragraph Vector (2014) (beats Socher)

LSTMs for MT (2014) (Sequence — Sequence W/LSTM)
Semantic Hashing (Autoencoders)

We did not cover: — Socher and RNTN for instance



Thank you for listening!
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