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The task

● We want to automatically describe images 
with words 

● Why? 
– 1) It's cool

– 2) Useful for tech companies (i.e. image 
search; tell stories from album uploads, 
help visually impared people understand 
the web)

– 3) supposedly requires a detailed 
understanding of an image and an ability 
to communicate that information via 
natural language. 



  

Another Interpretation

● Think of Image Captioning as a Machine 
Translation problem 

● Source: pixels; Target: English 
● Many MT methods are adapted to this 

problem, including scoring approaches 
(i.e. BLEU) 



  

Recent Work

● Oriol Vinyals' classification of image 
captioning systems:

● End-to-end vs. pipeline
● Generative vs. retrieval 
● Main players: 

– Google, Stanford, Microsoft, Berkeley, 
CMU, UToronto, Baidu, UCLA

● We'll restrict this talk to summarizing/categorizing 
techniques and then speaking a bit to more comparable 
evaluation metrics



  

End-to-end vs. Pipeline

● Pipeline: separate learning the language 
model from the visual detectors (Microsoft 
paper, UToronto)

● End-to-end (Show and Tell Google paper):
– Solution encapsulated in one neural net

– Fully trainable using SGD

– Subnetworks combine language and 
vision models

– Typically, neural net used is combination 
of recurrent and convolutional 



  

Generative vs. Retrieval

● Generative: generate the captions 
● Retrieval: pick the best among a certain 

restricted set
● Modern papers typically apply generative 

approach
– Advantages: caption does not have to be 

previously seen

– More intelligent

– Requires better language model



  

Representative Papers

● Microsoft paper: generative pipeline, CNN + fully-
connected feedforward

● Show and Tell: generative end-to-end

● DRNNs: Show and Tell, CMU, videos → natural 
language

– LSTM (most people), RNN, RNNLM (Mikolov); 
BRNN (Stanford – Karpathy and Fei-Fei)

– Tend to be end-to-end
● Sometimes called other things (LRCN -Berkeley), but 

typically combination of RNN for language and CNN for 

vision 



  

From Captions to Visual 
Concepts (Microsoft)



  

From Captions to Visual 
Concepts (Microsoft) (2)

● 1) Detect words: edge-based detection of potential 
objects in the image (Edge Boxes 70), apply fc6 layer 
from convolutional net trained on ImageNet to generate 
high-level feature for each potential object

– Noisy-OR version of Multiple Instance 
Learning to figure out which region best 
matches each word

●  



  

Multiple Instance Learning

● Common technique

● Set of bags, each containing many instances of a 
word (bags here are images)

● Labeled negative if none of the objects correspond 
to a word

● Labeled positive if at least one object corresponds to 
a word

● Noisy-Or: box j, image i, word w, box feature (fc6) Φ, 
probability



  

From Captions to Visual 
Concepts (Microsoft) (3)

● 2) Language Generation: Defines 
probability distribution over captions

● Basic Maximum Entropy Language Model
– Condition on previous words seen AND

– {words associated w/image not yet used}

– Objective function: standard log likelihood

– Simplification: use Noise Contrastive 
Elimination to accelerate training

● To generate: Beam-Search



  

Max Entropy LM

s is index of sentence, #(s) is length of sentence



  

Re-rank Sentences

● Language model produces list of M-best sentences

● Uses MERT to re-rank (log-linear stat MT)

– Uses linear combination of features over whole 
sentence

–

–

–

–

– Not redundant: can't use sentence length as prior 
in the generation step

– Trained with BLEU scores

– DMSM: Deep Multimodal Similarity



  

Deep Multi-modal Similarity

● 2 neural networks that map images and 
text fragments to common vector 
representation; trained jointly

● Measure similarity between images and 
text with cosine distance

● Image: Deep convolutional net
– Initialize first 7 layers with pre-trained 

weights, and learn 5 fully-connected 
layers on top of those

– 5 was chosen through cross-validation



  

DMSM (2)

● Text Model: Deep fully connected network 
(5 layers) 

● Text fragments → semantic vectors

instead of fixed size word count vector, 
input is fixed size letter-trigram count 
vector → reduces size of input layer

● Generalizes to unseen/infrequent and 
mispelled words

● Bag-of-words esque



  

DMSM (3)

● Trained jointly; mini-batch grad descent
● Q = image, D = document, R = relevance
● Loss function = negative log posterior 

probability of seeing caption given image
●  Negative sampling approach (1 positive 

document D+, N negative documents D-)



  

Results summary

● Used COCO (82000 training, 40000 validation), 
5 human-annotated captions/ image; validation 
split into validation and test

● Metrics for measuring image captioning:

– Perplexity: ~ how many bits on average 
required to encode each word in LM

– BLEU: fraction of n-grams (n = 1 → 4) in 
common btwn hypothesis and set of 
references

– METEOR: unigram precision and recall
● Word matches include similar words 

(use WordNet)



  

Results (2)
● Their BLEU score 
●

●

●

●

● Piotr Dollár: “Well BLEU still sucks”
● METEOR is better, new evaluation metric: 

CIDEr
● Note: comparison problem w/results from 

various papers due to BLEU



  

Show and Tell

● Deep Recurrent Architecture (LSTM)
● Maximize likelihood of target description 

given image
● Generative model
● Flickr30k dataset: BLEU: 55 → 66
● End-to-end system



  

Show and Tell (cont.)

● Idea from MT: encoder RNN and decoder RNN 
(Sequential MT paper)

● Replace encoder RNN with deep CNN

● Fully trainable network with SGD

● Sub-networks for language and vision

● Others use feedforward net to predict next word 
given image and prev. words; some use simple RNN

● Difference: direct visual input + LSTM

● Others separate the inputs and define joint-
embeddings for images and words, unlike this model 
 



  

Show and Tell (cont.)
● Standard objective: maximize probability 

of correct description given the image
● Optimize sum of log probabilities over 

whole training set using SGD
●

●

● The CNN follows winning entry of ILSVRC 
2014

● On next page: W_e: word embedding function (takes in 
1-of-V encoded word S_i); outputs probability distribution 
p_i; S_0 is start word, S_N is stop word

● Image input only once



  

The Model



  

Model (cont).

● LSTM model trained to predict word of 
sentence after it has seen image as well 
as previous words

● Use BPTT (Backprop through time) to train 
● Recall we unroll the LSTM connections 

over time to view as feedforward net.. 
● Loss function: negative log likelihood as 

usual



  

Generating the sentence

● Two approaches: 
– Sampling: sample word from p1, then from 

p2 (w/ corresponding embedding of the 
previous output as input) until reach a 
certain length or until we sample the 
EOS token

– Beam search: keep k best sentences up 
to time t as candidates to generate t+1 
size sentence. 

● Typically better, what they use
● Beam size 20
● Beam size 1 degrades results by 2 BLEU pts



  

Training Details

● Key: dealing with overfitting

● Purely supervised requires larger datasets (only 
100000 images of high quality in given datasets)

● Can initialize weights of CNN (on ImageNet) → 
helped generalization

● Could init the W_e (word embeddings) → use 
Mikolov's word vectors, for instance → did not help

● Trained with SGD and no momentum; random inits 
except for CNN weights

● 512-size dims for embeddings



  

Evaluating Show and Tell

● Mech Turk experiment: human raters give a 
subjective score on the usefulness of 
descriptions

● each image rated by 2 workers on scale of 1-4; 
agreement between workers is 65% on average; 
take average when disagree

● BLEU score – baseline uses unigram, n = 1 to N 
gram uses geometric average of individual gram 
scores

● Also use perplexity (geometric mean of inverse 
probability for each predicted word), but do not 
report (BLEU preferred) – only used for 
hyperparameter tuning



  

Results

NIC is this paper's result.



  

Datasets Discussion

● Typically use MSCOCO or Flickr (8k, 30k)
– Older test set used: Pascal dataset

–  20 classes. The train/val data has 11,530 
images containing 27,450 ROI 
annotated objects and 6,929 
segmentations.

● Most use COCO
● SBU dataset also (Stonybrook) → 

descriptions by Flickr image owners, not 
guaranteed to be visual or unbiased



  

Evaluation Metrics: Issues 
w/Comparison

Furthermore, BLEU isn't even that good – has 
lots of issues

Motivation for a new, unambiguous and good 
metric



  

Evaluation Metrics Continued

● BLEU sucks (can get computer 
performance beating human performance)

● METEOR typically better (more intelligent, 
uses WordNet and doesn't penalize similar 
words)

● New metric: CIDEr by Devi Parikh 
● Specific to Image Captioning 

– Triplet method to measure consensus 

– New datasets: 50 sentences describing 
each image



  

CIDEr (2)

● Goal: measure “human-likeness” - does 
sentence sound like it was written by a 
human?

● CIDEr: Consensus-based Image 
Description Evaluation

● Use Mech Turk to get human consensus
● Do not provide an explicit concept of 

similarity; the goal is to get humans to 
dictate what similarity means



  

CIDEr (3)



  

CIDEr Metric

● Measure of consensus should encode how often n-grams in 
candidate sentence are present in references

● More frequent n-grams in references are less informative if n-
gram is in candidate

● → use TF-IDF weighting for each n-gram

– (term frequency - inverse doc frequency)

– s_ij sentence, h_k(s_ij) count for w_k in s_ij 



  

CIDEr Metric (2)
For a fixed size of n-gram: 

Over all n-grams considered (up to N):  

Empirically: w_i = 1 is best, N = 4



  

CIDEr Metric (3)



  

Next Tasks for Image Captioning

● Recall: why is Image Captioning an 
interesting task? 

–  Supposedly requires a detailed 
understanding an image and an ability to 
communicate that information via natural 
language.

● This is not necessarily true though – the 
problem can be solved with only partial 
image understanding and rudimentary 
langauge modeling (recall Microsoft paper 
only used basic language model)



  

The Giraffe-Tree Problem
“ A giraffe standing next to a tree”



  

Alternative Tasks

● We want more challenging tasks!
● Some suggestions: Question-answer (ask 

question about an image, get an answer in 
natural language)

● Issue: large-scale QA datasets are difficult 
to define and build

● Video Captioning Dataset
– Linguistic descriptions of movies

– 54000 sentences, snippets from 72 HD movies 

● Defining challenges is an open problem



  

Thank you for listening!
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