
Learning to Plan with Logical Automata

Brandon Araki ∗
MIT

araki@mit.edu

Kiran Vodrahalli ∗
Columbia University
knv@columbia.edu

Cristian-Ioan Vasile
MIT

cvasile@mit.edu

Daniela Rus
MIT

rus@csail.mit.edu

Abstract
We present a framework for combining imitation learning and logical automata and
introduce the Logic-based Value Iteration Network (LVIN) model. By appending
a ‘logical’ dimension to the state space of the environment, LVIN can recover
and incorporate the transition matrix of a finite state automaton derived from a
Linear Temporal Logic formula into the policy learned through imitation. This
approach improves upon the original VIN in several ways: LVIN (1) is capable of
learning logic corresponding to long sequences of steps, (2) adapts easily to new
specifications, and (3) is amenable to correction after faulty expert demonstrations.

1 Introduction
In the imitation learning (IL) problem, learning agents receive access to experts who take good actions
and can be queried in order to learn a policy for solving an unknown Markov Decision Process (MDP)
(Abbeel and Ng, 2004; Daumé III et al., 2009; Ross et al., 2011). IL has been very successful in
solving tasks as diverse as camera control, speech imitation, and self-driving cars (Yue and Le, 2018).
However, the expert formalism requires new sets of expert demonstrations in order to perform new
tasks. Additionally, these methods rely on the quality of the experts, and most IL methods require an
assumption that the experts make no errors. Therefore, we ask

1. How can expert demonstrations for a single task generalize to much larger groups of tasks?
2. What if the experts are unreliable and err?

We provide an answer to these questions by applying methods from formal verification in a learning
setting. We first learn interpretable high-level expert strategies and incorporate them in a learned
policy. Then, we manipulate the expert strategies to produce new desired behaviors with the modified
policy. As one application, we fix expert mistakes without re-training on any new data. Our approach
also solves tasks requiring long sequences of accurate actions, where we demonstrate that standard
learning approaches often fail.
In the robotics and control community, temporal logic languages such as Linear Temporal Logic
(LTL) are used to unambiguously specify complex tasks, and a large class of these specifications can
be directly translated into finite state automata (FSAs). Such FSAs can be thought of as high-level
directives on accomplishing a task. Since an FSA is also an MDP, taking the product of the FSA and
the MDP creates a product automaton (PA). When the MDP and LTL specification are known, one
can find the optimal policy over the PA with standard planning methods (Vasile et al., 2016, 2017).
In this paper, we extend this approach to the IL setting, where the MDP is unknown. We assume
the agent has access to sensors and for-purpose perception tools that are used to identify objects
in the environment that correspond to propositions of the (unknown) logic specification (e.g., the
variables of the formal language). Additionally, exclusively during training we assume a logic oracle
that the agent can query to learn the high-level FSA state it is currently in. This assumption is more
plausible and efficient to simulate compared to related works, which require knowledge of the full
FSA (Paxton et al., 2017; Xie et al., 2018). Our model, the Logic-based Value Iteration Network
(LVIN), learns the relevant part of the transition matrix (TM) describing the high-level FSA and
directly integrates it into a differentiable recursive planning algorithm generalizing the Value Iteration

∗equal contribution

Infer to Control: NIPS 2018 Workshop on Probabilistic Reinforcement Learning and Structured Control.

Network (VIN) proposed in (Tamar et al., 2016). To study the ability of LVIN to accurately recover
the FSA transition matrix in the realizable setting, we define our tasks with LTL formulae and use
shortest path algorithms to generate experts which optimally solve the tasks. We then use an imitation
learning loss derived from these experts to train.

2 The Logic-based Value Iteration Network Model
Linear Temporal Logic We use linear temporal logic (LTL) to formally specify the tasks we learn
to solve (Clarke et al., 2001). Formulae φ constructed in LTL use the grammar

φ := p | ¬φ | φ1 ∨ φ2 | © φ | φ1 U φ2 (1)
where p is a proposition from a set of objects in the world (e.g., red light, car, and so on), ¬ is
negation, ∨ is disjunction, © is “next”, and U is “until”. The derived rules are conjunction (∧),
implication (=⇒), equivalence (↔), “eventually” (♦φ = TrueU φ) and “always” (�φ = ¬♦¬φ).
Intuitively,©φ states that φ evalutes to true in the next world state, φ1 U φ2 means that φ1 is true
until φ2 is true, ♦φ means that there is a state where φ is true and �φ means that φ is always true.
LTL formulae express logic-based constraints in an environment. LTL formulae can be converted
into afinite-state automata (FSA); we use the software package SPOT (Duret-Lutz et al., 2016).

Inputs to the Model LVIN receives the current state of the environment. Exclusively during
training, LVIN receives the expert action and the logic oracle gives access to the current FSA state.

Training Loss There are two training losses: (1) a cross-entropy loss for predicting the next FSA
state, governing the learning of the FSA TM, and (2) a standard IL loss for predicting the next action.

The Model Our model is based off of the VIN model (Tamar et al., 2016). The main differences
between the original approach and ours is that we integrate the logic specification into the end-to-end
differentiable setup by (1) adding an extra channel for logic propositions and FSA states in the input
and (2) adding parameters in the form of a TM which depends on the propositions and FSA states.
We use this approximate TM, denoted as TM, as a part of the learning procedure and learn it in an
end-to-end manner while the planning network and policy are being learned. This model can be
described as learning a 3D convolution tensor with a highly specific sparse structure consisting of
TM and (row, col)-action kernels P̄a over a product of VINs (one for each FSA state). The action
kernels are shared across the VINs as well. For the ith VIN, R̄i corresponds to the estimated input
reward map, defined as in the VIN algorithm, and V̄i corresponds to the estimated value map, which
is updated by V̄ ′i after each pass through the network. Q̄i is the estimated Q-function for the ith VIN.
Max-pooling over actions yields Ṽi. The Ṽi are “wired together”, as stated in lines 13− 14 of Alg. 1,
so that there are connections between the parallel VINs. P̄ and TM are the estimated action-kernels
and TM. We update the network by backpropagating the imitation loss through all layers. To run
LVIN after training, we only require the initial FSA state. We use the Q-function for the current FSA
state to select the best action to take. Having selected this action, we can predict the next FSA state
using TM, and use that as input in the next step. For an intuitive picture of LVIN, see Appendix A.

3 Experiments
3.1 Baselines

LVIN Hard-coded
LVIN CNN VIN

Kitchen
Domain 99.84% 99.76% 99.20% 38.92%

Longterm
Domain 100.00% N/A 82.80% 0.00%

Driving
Domain 99.60% 98.40% 8.60% 99.90%

(a)

LVIN CNN Mod.
LVIN

Mod.
CNN

φk1 99.84% 99.76% N/A N/A

φk2 99.70% 99.30% 99.80% 6.30%

φk3 100.00% 92.90% 97.80% 1.10%

(b)

Table 1

VIN: We compare the performance of LVIN to VIN. We do not attempt to predict the next FSA state,
nor do we incorporate a TM into the learning process.

2

Algorithm 1 LVIN Training

1: procedure LVIN-TRAINING
2: Inputs: fsa, row, col, proposition map
3: Inputs (training): expert action, next fsa
4: To learn:
5: Transition matrix TM ∈ Rfsa×fsa×props

6: Low-level action kernels P̄a

7: Build the model:
8: Create a VIN for each FSA state.
9: Share Pa across each VIN.

10: Learn TM by predicting next fsa given fsa, given expert action.
11: Normalize TM so that it is row-stochastic.
12: Wire together the outputs of VINs with the learned TM:
13: for all FSA states s, s′ s.t. P

[
(s, row, col)→prop at (row,col) (s′, row, col)

]
> 0 do

14: Vs(row, col) := Es′∼TM [Vs′(row, col)]
15: end for
16: Backpropagate the imitation loss through the model.
17: end procedure

(a) The 8× 8 kitchen domain. (b) The 12× 9 longterm domain.

Learned

Agent

Work

Zone

Green

Light

Red

Light

Left

Lane

Goal

Obstacle

(c) The 14× 14 driving domain.

Figure 1

Hard-coded LVIN: It is not necessary to learn the TM from data – if the FSA is known, then a
valid TM can be constructed from the FSA. We compare the performance of LVIN to LVIN with a
hard-coded TM to see if learning the TM degrades performance.
CNN: We formulate a less constrained version of LVIN that uses a 3D CNN instead of a TM to
transfer values between FSA states. The CNN operation acts on a concatenation of the proposition
matrix and the value function, returning the next iteration of the value function.

3.2 Example Environments

Kitchen Domain The kitchen domain is an 8 × 8 grid with deterministic actions which enable
movement to adjacent cells. The domain is a kitchen with three propositions: o for obstacle, m for
milk, and c for cereal. The agent, a robot with a bowl, should first fill the bowl with milk (visit m) and
then put in the cereal (visit c) while avoiding randomly placed obstacles (chairs, tables, and plants).

Longterm Domain The longterm domain is a 12×9 grid environment with the goal of showcasing
LVIN’s ability to learn relatively complex sequential specifications. In this environment, shown in
Fig. 1b, there are five rooms, four doors, four keys, and a goal. In order to progress to the goal, the
agent must learn to make a “longterm” plan – it must first pick up Key A, then go get Key D, then
Key B, then Key C, before it can finally access the room in which the goal is located.

Driving Domain The driving domain (Fig. 1c is a 14 × 14 grid environment with the goal of
showcasing LVIN’s ability to learn and encode rules, in this case three “rules of the road.” The model
must learn three rules of the road: avoid obstacles, prefer the right lane over the left lane, and stop at
red lights.

The results are shown in Table 1a.

3

I da db dc dd g ka kb kc kd o e
I 1 1
G
S1 1
S2
S3
S4 1
T 1 1 1 1 1 1 1

(a) Initial state TM

S1 dd kd
I
G
S1
S2
S3
S4 1
T 1

(b) S1

S2 g
I
G 1
S1
S2
S3
S4
T

(c) S2

S3 dc kc
I
G
S1
S2 1
S3
S4
T 1

(d) S3

S4 db kb
I 1
G
S1
S2
S3 1
S4
T

(e) S4

Table 2: The learned TM of the longterm domain. Cells of interest are highlighted in yellow.
da, db, . . . correspond to Door A, Door B, etc. ka, kb, . . . correspond to Key A, Key B, etc. g
corresponds to goal, o to obstacle, and e to empty space (i.e. no proposition).

3.3 Demonstrating Interpretability and Manipulability
Interpretability One benefit of learning the TM is that the values of the TM have meaningful
interpretations. Table 2 contains parts of the TM of the longterm domain learned by LVIN. If the
agent is in the initial state (Table 2a) and enters proposition ka (it picks up Key A), then the predicted
next FSA state is S1. In the TM of the initial state, Table 2a, we see that all doors and keys map to
the trap state, except for Key A, which maps to state S1 – the model has learned that when in the
initial state, the agent cannot travel through doors and that it must pick up Key A before any other key.
Partial TMs for the other states show that the model has learned a sequence of keys to pick up, and
that it cannot pass through the door associated with its key until it has picked up the key. Unexpected
transitions are highlighted in red. In every case, unexpected transitions occur where the model has
not actually observed a transition (columns highlighted in grey) but rather had to infer the value.

Manipulability Since we can interpret the TM, we can also modify it to change the behavior of
the agent. To demonstrate, we will manipulate the TM that was learned in the kitchen domain. The
learned TM defines spec φk1: first add milk, then cereal. However, the owner of a cereal-preparing
robot may want to tell the robot to do φk2: add first cereal, then milk.
The modifications to the TM to achieve φk2 are shown in Table 3a. To make the agent go first to c,
we modify the initial state’s TM so that m maps to the initial state and c maps to S1. To the agent,
this means that going to m does nothing, whereas going to c will bring it to the next state. We then
modify the TM for S1 so that m maps to the goal state and c maps back to S1. The results are shown
in Table 1b, along with the performance of the LVIN and CNN models trained on data generated
from φk2. The tests highlight a shortcoming of the CNN model: Since the TM is not incorporated
into the planning step, modifying the TM does not change the behavior of the agent.

I m c o e S1 m c o e
I 1 - 1 I 1
S1 - 1 S1 - 1 1
G G 1 -
T 1 T

(a) φk1 → φk2

Unsafe Safe
Initial
State

red
light

red
light

Initial 0.1 0.0
Left Lane 0.0 0.0

Goal 0.0 0.0
Red Light 0.9 1.0

Trap 0.0 0.0

Rollout Performance
Unsafe TM 9.88%
Safe TM 0.00%

Table 3

Fixing Expert Errors Our model can also be used to fix the mistakes of faulty experts. Suppose
the real-world driving data contains behavior from drivers running red lights. We model this scenario
in Table 3, where the Unsafe TM shows a scenario in which the model has learned to run a red light
10% of the time. We correct the TM by setting the initial state entry to 0 and the red light state entry
to 1. We perform 1000 rollouts using each of these TMs. The Unsafe TM results in the agent running
9.88% of red lights while the Safe TM prevents the agent from running any red lights.

4 Conclusion and Future Work
Developing interpretable and manipulable models that learn to plan is an ongoing goal in deep policy
learning. This work demonstrated this goal can be achieved using logic automata. By learning an
FSA transition matrix in conjunction with a planning module, we were able to build a model that a
human can control intuitively.

4

References
P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learning,” ICML ’04 Proceedings of

the twenty-first international conference on Machine learning, p. 1, 2004.

H. Daumé III, J. Langford, and D. Marcu, “Search-based structured prediction,” Journal of Machine Learning,
vol. 75, pp. 297–325, 2009.

S. Ross, G. Gordon, and J. Bagnell, “A reduction of imitation learning and structured prediction to no-regret
online learning,” Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, vol. 15, pp. 627–635, 2011.

Y. Yue and H. Le, “Imitation learning tutorial,” Tutorial at ICML 2018, 2018. [Online]. Available:
https://sites.google.com/view/icml2018-imitation-learning/home

C.-I. Vasile, K. Leahy, E. Cristofalo, A. Jones, M. Schwager, and C. Belta, “Control in belief space with temporal
logic specifications,” in Decision and Control (CDC), 2016 IEEE 55th Conference on. IEEE, 2016, pp.
7419–7424.

C.-I. Vasile, J. Tumova, S. Karaman, C. Belta, and D. Rus, “Minimum-violation scltl motion planning for
mobility-on-demand,” in Robotics and Automation (ICRA), 2017 IEEE International Conference on. IEEE,
2017, pp. 1481–1488.

C. Paxton, V. Raman, G. D. Hager, and M. Kobilarov, “Combining neural networks and tree search for task and
motion planning in challenging environments,” ArXiv e-prints, 2017.

S. Xie, A. Galashov, S. Liu, S. Hou, R. Pascanu, N. Heess, and Y. W. Teh, “Transferring task goals via hierarchical
reinforcement learning,” 2018.

A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value iteration networks,” in Advances in Neural
Information Processing Systems 29, 2016, pp. 2154–2162.

E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press, 2001.

A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu, “Spot 2.0 — a framework
for LTL and ω-automata manipulation,” in Proceedings of the 14th International Symposium on Automated
Technology for Verification and Analysis (ATVA’16), ser. Lecture Notes in Computer Science, vol. 9938.
Springer, Oct. 2016, pp. 122–129.

5

https://sites.google.com/view/icml2018-imitation-learning/home

A Diagrams of the LVIN Model

S0 S1 G

Trap

S0 S0 S1 G T

A 0 1 0 0

B

O

φ

S1 S0 S1 G T

A

B 0 0 1 0

O

φ

Figure 2: The FSA transition matrix (learned by predicting the next FSA state) “wires” together the
value maps of each FSA state (S0, S1, G, T). Each proposition (A: first goal, O: obstacle, B: second
goal) is associated with a row of the learned TM for each FSA state, which induces the wires between
FSA states. The value of a “wired” cell is the expected value (w.r.t. TM) of cells the outgoing wires
point to.

6

෦

෦
see Fig. 2

ത𝑉𝑖′

.

.

.

#
FSA

෨𝑉0

ത𝑅0

ത𝑉0
maxpool

ത𝑄0

෨𝑉1

ത𝑅1

ത𝑉1
ത𝑄1

෨𝑉𝑖

ത𝑅𝑖

ത𝑉𝑖
ത𝑄𝑖

𝑘 iterations

ത𝑃

ത𝑃

ത𝑃

𝑇𝑀

𝑇𝑀

Figure 3: LVIN forward pass: For each FSA state, we have a value map. (row, col)-action kernels
P̄a((row’, col’)|(row, col)) are shared across FSA states, and applied to produce Q-maps.
Max-pooling yields updated value maps for each FSA state. The “wired” output is depicted in detail
in Fig. 2. The process is looped k times.

7

	Introduction
	The Logic-based Value Iteration Network Model
	Experiments
	Baselines
	Example Environments
	Demonstrating Interpretability and Manipulability

	Conclusion and Future Work
	Diagrams of the LVIN Model

