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Abstract

We study the problem of finding low-dimensional shared representations of meaning for nat-

ural language and brain response modalities for multiple-subject narrative story datasets

(a portion of an episode of the Sherlock television program and a chapter of a Harry Potter

book). These datasets have paired fMRI responses and textual descriptions. Our first goal

is to determine if any fMRI space can be learned across subjects that correlates well with

semantic context vectors derived from recent, unsupervised methods in natural language

understanding for embedding word meaning in Rn. Can distributed, low-dimensional rep-

resentations of narrative context predict voxels? Our second goal is to determine if a shared

space between the fMRI voxels and the semantic word embeddings exists which can be

purposed to decode brain states into coherent textual representations of thought.

First, we were able to construct a fine-grained 300-dimensional embedding of the se-

mantic context induced by a scene annotation dataset for Sherlock. Our primary positive

result in this thesis is that the multi-view Shared Response Model produces a semantically

relevant 20-dimensional space using views of multiple subjects watching Sherlock. This low-

dimensional shared fMRI space is able to match fMRI responses to scenes with performance

considerably above chance. Using the fMRI shared space over individual fMRI responses

brings a large improvement in reconstructing voxels from semantic vectors, and suggests

that other recent work in this area may benefit from applying the Shared Response Model.
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Chapter 1

Introduction

Several researchers have attempted to find relationships between word featurizations and

fMRI activations in the brain. One popular method due to Mitchell et al. (2008) [34] gath-

ers fMRI data across several subjects corresponding to text stimuli: individual nouns [34],

a set of words [38], and even a story [46]. In this thesis, we quantitatively investigate the

interface between mind and language, with the central goal of giving explicit maps between

measurements of neural activity and the words describing the thoughts the brain expe-

riences. Particularly, we investigate two functional Magnetic Resonance Imaging (fMRI)

datasets, both of which record multiple subjects perceiving a story and which are paired

with textual annotations describing the stimulus.

The Sherlock Dataset

The Sherlock dataset (due to Chen et al. (2016) [8]) consists of fMRI recordings Xi of

i = 1, . . . , 17 people watching the British television program Sherlock for 48 minutes. This

data is split into two fMRI collection periods of 25 and 23 minutes respectively. fMRI

images are measured at a rate of one image every 1.5 seconds (TR = 1.5). All 70, 000

voxels are available for analysis, and several region-of-interest (ROI) masks are presented

with number of voxels on the order of 100 or 1000. An important attribute of this dataset

is that it combines both audio and visual stimuli with a narrative, and thus the resulting
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fMRI responses are similar to a more natural brain states, allowing us to study the brain’s

representation of meaning in a real world setting [8].

In addition to the fMRI information, we use externally annotated, sub-second-resolution,

English text scene annotations of the program. These annotations give descriptions of the

story setting, characters’ emotions, dialogue, plot points, and dialogue occurring in the

scene. An example annotation of a scene where detective characters Donovan and Lestrade

report on a string of “serial suicides” to reporters from various British news outlets is as

follows: “Donovan looks up at the reporters and continues: ‘Preliminary investigations...’

Lestrade looks distressed. Donovan continues: ‘... suggest that this was suicide. We can

confirm that this...”.

The Harry Potter Dataset

The Harry Potter dataset records the fMRI BOLD response of 9 subjects as they read

chapter 9 of Harry Potter and the Philosopher’s Stone by J.K. Rowling [40], presented as a

visual reading experience akin to some speed-reading apps. All subjects were familiar with

the Harry Potter series and its characters before data collection. Before being presented

with the Harry Potter stimulus, subjects were given an unrelated story to practice reading to

become accustomed to the mode of information presentation. The collection of this dataset

is due to Wehbe et al. (2014) and is divided into 4 collection periods of 11 minutes each.

fMRI images are measured at a rate of one image every 2 seconds (TR = 2), and a word is

presented every 0.5 seconds, leaving us with 4 words per TR. Different numbers of voxels

are presented for the 9 subjects, ranging between roughly 24000− 34000 voxels. AAL Atlas

labels are maintained for ROI recovery, but the voxels in each ROI are not anatomically

aligned [46].

In addition to the text made available by Wehbe et al. (2014), we preprocess the entire

set of Harry Potter books 1 − 7 for the purposes of creating a reasonably-sized corpus on

the order of 106 words long. We use this corpus to construct semantic word embeddings

with which the fMRI data are matched.
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Goals

We have multiple goals and questions we pursue throughout this thesis:

• How might we best featurize the raw fMRI data to reflect semantic meaning across

time, given multiple subjects and the assumption that they are experiencing the same

story stimulus?

• Given a textual description of a story, what is an accurate way to represent the story

context as it changes over time? How can we adapt word vectors to the problem

of encoding stories? Do these word embeddings identify semantically similar time

points?

• How redundant are the voxel patterns in our brain? That is, how low-dimensional is

the semantic information encoded in our brains?

• Is it possible to find a shared low-dimensional space which encodes both brain and

story features that also induces a map between mind and semantic context which

generalizes across multiple people?

• To what extent are mental representations of story scenes common across people, and

can these representations (essentially, voxel activations) be explained with semantic

vectors derived from unsupervised methods based on the distributional hypothesis of

meaning?

• To which regions of the brain is it possible to fit a map from semantic context em-

beddings which attains good voxel reconstruction capability?

• Can the mental representations of stories presented via natural visual-audio stimuli

(i.e. movies) also be explained by distributional word and context embeddings?

• Can we decode fMRI images into text? In other words, can we automate the tran-

scription of thoughts?
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However, among these varied questions, we have two principal goals: Our first objective

is to determine if any fMRI space can be learned across subjects that correlates well with

semantic context embeddings. Can distributed, low-dimensional representations of narrative

context predict voxels? Our second objective is to determine if a shared space between the

fMRI voxels and the semantic word embeddings exists which can be purposed to decode

brain states into coherent textual representations of thought.

Methodology for Creating Semantic Context Embeddings

In order to featurize the descriptions of these datasets (the Sherlock annotations and the

text of Harry Potter Book One Chapter 9), we use distributed word embeddings. We apply

unsupervised learning methods to a large corpus like Wikipedia (and perhaps an additional

corpus like the seven Harry Potter books) to construct semantic context vectors Y using

global co-occurrence matrix factorization and sparse coding [37, 4, 5]. The matrix factoriza-

tion step gives us low-rank semantic vectors whose geometry clusters similar words together

and creates linear algebraic analogy relationships (“king” - “man”+ “woman” = “queen”)

as in Arora et al. (2015) [4]. Then by applying sparse coding to these distributed word

embeddings, we get fine-grained 300-dimensional representations of specific word senses [5].

We also employ an empirical transfer-learning procedure from the atoms learned in the

Wikipedia corpus to select atoms for use in the featurization of the Sherlock descriptions.

We use a quality-thresholding method to identify which atoms to use in a given context,

and calculate a weighted average to create a context vector for each time step.

Methodology for Analyzing the fMRI Datasets

We focus most of our attention on the Sherlock fMRI dataset [8], since the data has

considerably more signal than the Harry Potter dataset, as we demonstrate in this thesis.

Our main algorithm is the unsupervised Shared Response Model (SRM) [9], which can

construct a shared embedding space SfMRI across the fMRI responses Xi for eight distinct

brain region-of-interest (ROI) masks corresponding to various areas of the Default Mode
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Network (DMN), Visual Cortex, and Auditory Cortex. We can apply SRM again between

SfMRI and Y to create a joint shared space Sjoint between fMRI voxels and word embeddings

(see Figure 1.1).

Figure 1.1: Two-Layer Semantic Shared Response Model

We can also apply `2-regularized linear regression (ridge regression) to fit linear maps

between the original fMRI responses for individual subjects Xi and the semantic context

vectors Y , or between the shared fMRI space SfMRI and Y .

These models are validated with three procedures: context vector quality assessment,

fMRI scene classification (also known as mystery segment classification), and fMRI recon-

struction. We manually inspect properties of the context vectors after creation to determine

whether they have any quality. Other than that, the context vectors are implicitly tested

in all the models in which they take part. The scene classification task maps a scene from a

held-out view of the stimulus into some shared space, and evaluates the top−1 correlation

rank over all other scenes. Notably, this task is a harder generalization of the binary classi-

fication task of Mitchell et al. (2008) [34, 38, 46]. The reconstruction experiment evaluates

how well our model predicts the actual fMRI response on a heldout set of time points. Of

these tasks, the reconstruction task is most difficult because it is measured directly in terms

of reconstruction instead of via a proxy where enough correlation will allow a model to do

reasonably well.

The present work is similar in some ways to that of the recently published work of

Huth et al. (2016) [24], which also seeks to map text embeddings from narrative stimuli

to fMRI data. Our approaches to fMRI analysis primarily differ due to our use of the

Shared Response Model to construct a shared fMRI space. Our semantic context vector

construction creates embeddings into Rn which are both lower-dimensional and semantically
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finer-grained than their 985-dimensional word vectors since we have a dictionary of atoms

∈ R300 which correspond to specific word senses. Moreover, our methods for semantic vector

construction are theoretically justifiable. An additional difference is at the dataset level:

We use Sherlock, our primary dataset, to analyze fMRI responses to an audio-visual movie

with annotations describing unvoiced aspects of the scenes. In contrast, Huth et al. (2016)

[24] analyze fMRI responses to auditory narratives for which the spoken text corresponds

identically with the word embedding representations.

We construct similar spaces and maps using the Harry Potter dataset of Wehbe et al.

(2014) [46], but as the experiments mostly failed on that dataset, the analysis of the dataset

tends to focus on what properties of the Harry Potter dataset caused our methods to fail.

Results

Ultimately, our central positive result is the finding that it is possible to identify a semantically-

relevant shared representation of fMRI response in an unsupervised fashion using views of

multiple subjects watching the same natural movie stimulus. Using the shared response

SfMRI instead of individual subject responses Xi, we are able to significantly improve the

prediction of voxel values from semantic word vectors Y which represent descriptions of

the audio-visual movie Sherlock, as well as perform a mystery segment matching task with

reasonable above-chance accuracy.

We also provide concrete evidence towards the hypothesis made in [24] regarding the

existence of a shared fMRI representation across multiple subjects which correlates signifi-

cantly with fine-grained semantic context vectors derived via statistical word co-occurrence

approaches. Our use of multiple subject views of the movie data plays a great role in boost-

ing the performance of our model and suggests that if the model in Huth et al. (2016) [24]

was applied using multiple-subject SRM, their results would also improve. Since we use

only semantic vectors to featurize a movie stimulus dataset, our work provides additional

support for the notion that the distributional hypothesis of word meaning may extend to

real life multi-sensory stimuli.



Chapter 2

Background Work

2.1 A History of Context

Many psychologists and neuroscientists have studied context, which is generally defined as

slowly drifting information which persists over large time scales in the human brain. We can

think of experiencing information at two levels: The stimulus, which is the new information

presented at a given point in time, and the context, which represents an aggregation of pre-

vious experiences (perhaps within a certain time window). Previous models have attempted

to explicitly model context as a running average of various features, which may be turned

on or off with some probability at a given moment in time. Furthermore, the strengths of

these associations between feature space and context space may be adjusted up or down

depending on the coocurrence of features with similar context states. We can describe this

view of information processing in the human brain in terms of time scales. The time scale

is the duration of time over which a given set of information is “active.” With this idea in

mind, we see that the stimulus is presented under a short time scale (perhaps every second,

we receive a new set of stimuli), while the overarching context persists at a long time scale

[31]. This interaction may be described with a recurrent neural network applying a vari-

ant of Hebbian learning [23]. Various other approaches to explicitly modeling contextual

drift are similar. Validation of these models often occurs via free-recall experiments, which

7
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present subjects with lists of words which the subjects then attempt to recall [31].

A more data-rich environment in which to study context involves using immersive stories

(in video, audio, and textual formats) as stimuli. Previous work by Hasson et. al. defined

the temporal receptive window, which measures the dependence on the past of the

neural activity in a given region of the brain [18]. Suppose we have a movie, which subjects

watch in order. We observe the brain responses for each scene in a movie. Let us say we

are investigating a particular scene St which occurs at time t. Now, we present the scenes

of the movie in a different order. Suppose we keep the previous k scenes St−k, · · · , St−1

fixed except for some scene St−i with i < k which we swap with a different scene in the

movie, R. Then, if the brain reponse at time t changes as a result, we know that St−i

does contain contextual information about St, whereas if this is not the case, then we can

conclude that St−i was not relevant in St’s context. The largest i for which St−i is relevant

is the temporal receptive window, or TRW [31]. The size of the TRW naturally provides a

measure for the time-scale of various brain regions. Large TRWs correspond with long time

scales, and short TRWs are essentially discrete stimuli. Given that stories have overarching

narratives with recurring characters, one might hypothesize that regions of the brain with

large TRW are important for processing the semantic context of a story. Various previous

work suggests this hypothesis is true [18, 21, 39, 2, 47, 8, 41], and we further study the

question in this thesis.

2.2 Identifying Regions of Interest and Pattern Analysis with

fMRI Data

How can scientists study the living brain? Circa 2016, it is scarcely possible to measure

every neuronal impulse in a living human being. For starters, in order to study human

thought in natural settings (as natural as is possible inside a laboratory), it is necessary to

avoid invasive measurements. Therefore, the methods by which we can attempt to study

the living brain are limited to measurements of internal processes which allow for detection
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outside the skull. Thankfully, these exist.

In fact, there are several such approaches. Electroencephalography (EEG) and magne-

toencephalography (MEG) focus on deciphering the electrical and magnetic signals emitted

by the brain, and have the desirable property of high temporal resolution (measurements

are on the order of milliseconds). Unfortunately, the methods of measurement (placing var-

ious nodes on the human scalp a couple of centimeters apart) limits the spatial resolution

of the data. Functional magnetic resonance imaging (fMRI), on the other hand, has high

spatial resolution (down to the 1× 1× 1mm3 level is possible, though 3× 3× 3mm3 is more

typical), but low temporal resolution (typically on the order of 2 seconds per brain image,

or 2 seconds per repetition time (TR)). Thus we see a tradeoff between temporal and spatial

resolution. The modality of measurement is often chosen to suit the question of interest,

where usually either time resolution or spatial resolution is more important. Extremely

high frequency response stimuli experiments will typically use EEG or MEG, while fMRI

is suited for slow-moving stimuli and responses [30]. Of particular interest to this thesis

is fMRI experiments where the stimulus is a natural movie. By analyzing inter-subject

correlations for a temporally synchronized natural story view, it becomes possible to study

brain behaviors which are typically not accessible in a lab setting [19]. Natural stimuli like

audio-visual movies thereby enable neuroscientists and psychologists to study for the bridge

between mental representations of semantic meaning and the way information is presented

in the real world.

2.2.1 The Basics of fMRI

fMRI data is nontrivial to collect: The data consists of “a sequence of magnetic resonance

images (MRI), each consisting of a number of uniformly spaces volume elements, or voxels,

that partition the brain into equally sized boxes” [30]. Typical brain scans have on the

order of around 105 voxels. A lot of noise is present due to the machinery used to collect

fMRI data (hardware reasons), head motion artifacts, and other background noise due to

scanner instabilities. Furthermore, it is necessary to consider the lag between stimulus and
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response. Functional magnetic resonance imaging most often uses blood oxygenation level-

dependent (BOLD) contrast to examine changes in the concentration of deoxyhemoglobin

in the brain [30]. Essentially, changes in the flow of oxygen in the brain’s blood induce

different magnetic properties, and the different states also produce different local magnetic

fields.

One prominent way of analyzing fMRI data is multi-voxel pattern analysis (MVPA) [36],

which is essentially the idea that we can think of fMRI brain states as patterns to match

to stimuli. It is therefore reasonable to apply traditional pattern-classification techniques.

Benefits of the approach include a boost in sensitivity by looking at the contributions of

multiple voxels. Of course, it is necessary that the voxels with signal be identified, or that

voxel space be transformed into a space which has high signal. Therefore, identifying rele-

vant subspaces of voxel space is important. In order to study the mental context with which

humans view stories, it is essential to apply learning methods to determine the relationship

between stimulus and fMRI space: Otherwise, there is nothing linking the information. In

this thesis, we take the view that predictive power on held-out testing sets is indicative of

signal.

2.2.2 The Default Mode Network

Another approach to identifying where to look for patterns in fMRI data is via regions of

interest (ROI). ROIs are typically anatomically demarcated regions of the brain, identified

by some brain atlas (a voxel map where each voxel is identified with a number corresponding

to a certain ROI). In this thesis, we are particularly interested in regions of the brain which

may be related to semantic context, and which are activated while participating in story

comprehension. The default mode network (DMN) was identified in the 2000s as several

small regions of the brain which correlated with each other. Fox et al. (2005) [12] were one

of the first to identify the DMN as a brain network routinely exhibiting task deactivations.

Fox et al. identify the posterior cingulate, medial and lateral parietal, and medial prefrontal

cortex as being part of this network. The default mode network (refered to as the “task-
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negative network” in [12]) was so named because it was observed that activation in this

state occurred when nothing was happening: It is a resting state activation state not due

to any low-level task like eye movements, or presence or absence of visual input [12].

Several experiments by the Hasson Lab revealed that the DMN and its subcomponents

have the longest temporal receptive windows, and therefore have the longest temporal dy-

namics, at around the 1-2 minute level [18]. Successive works by Honey et al. (2012) and

Regev et al. (2013) demonstrate that the DMN response is not due to low-level stimulus

features (for instance, in the task of viewing a single word, a portion of the stimulus re-

sponse may be dedicated to observing the curvy shape of the letter “o”, which has nothing

to do with the semantic meaning of “tool”) [21, 39]. Ames et al. (2014) studies when the

DMN response is reliable, and finds that when fMRI subjects have appropriate context for

observing a stimulus, two substructures in the DMN network, the posterior cingular cortex

(PCC) and medial prefrontal cortex (pFC) become more aligned [2]. They also conclude

that when the stimulus is not understood in context, the DMN response is unreliable [2].

Simony et al. (2016) provides further support for the notion that the network config-

urations of the DMN are locked to particular narrative stories [41]. fMRI BOLD signal

is recorded as subjects listen to a story read aloud. The strength of a particular network

configuration is assessed via inter-subject functional correlation (ISFC), which looks at the

correlation between different brain regions across different brains. The results indicate that

scrambling the order of the narrative significantly decreases the reliability of finding the

same network configurations across groups of people, and furthermore that the strength

of DMN configuration during a given story scene predicts the memorability of that scene,

as assessed by a memory test subjects took after the fMRI scan [41]. In this thesis, we

use several DMN voxel-masks developed by Simony et al. (2016) for analyzing whether

semantic embeddings of words can accurately predict the activity of the DMN and other

related areas.

Yeshurun et al. (2016) demonstrates that if there are multiple interpretations of a

narrative, it is possible to use the regions of the DMN to distinguish people following one
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variant of the narrative from people following a different narrative of the story [47]. As we

have seen, work prior to Yeshurun et al (2016) suggests that the higher-order DMN responses

across individuals are similiar when people are exposed to the same natural narrative stimuli.

However, the sensory parts of the brain also react similarly to these stimuli (since the raw

images and sounds are processed by all subjects as well). If the DMN truly is related to

the meaning of narrative, it should be possible to create different responses in the DMN if

the implied meaning of the narrative stimulus is changed, while keeping the raw images and

sounds constant. They hypothesize that introducing a context which could change a person’s

interpretation of a story should produce this effect [47]. To do that, they use as stimulus an

auditory rendition of a 12-minute short story by J.D. Salinger, “Pretty mouth and green my

eyes”, which was designed by Salinger to be ambiguous with two completely plausible and

yet drastically different interpretations. Yeshurun et al. (2016) separate the test subjects

into two groups, where different background information (context) is provided to each group,

intentionally conditioning each group for a different perception of the narrative. The results

indicate that the magnitude of the difference in neural response in the regions of the DMN

significantly correlates with the extent to which a subject interpreted a story as assessed by

a post-experiment questionnaire assessing the subject’s understanding of the story [47].

Chen et al. (2016) study the correlation between the fMRI representation of the expe-

rience and spoken recall of scenes from Sherlock, the BBC television show. The 48-minute

story was divided into 50 distinct scenes. Many of these scenes in several of the DMN

brain regions had particularly strong within-subject correlation between the original pat-

tern formed by the experience of the scene and the pattern re-formed at the scene’s later

reinstatement, when the subject recalled the scene. Furthermore, activation patterns across

subjects also had high correlation, suggesting that the DMN representations of the events

of the Sherlock video were to some extent subject-independent [8]. The quantitative experi-

ment was a two-group matching experiment: The test subjects were divided into two groups

A,B of sizes 8 and 9 respectively, and the average PMC region of interest (a subset of the

DMN) was calculated for all 50 scenes. Then, pairwise correlations between the group aver-
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ages were calculated for all 50 scenes. For each scene s, if the correlation between the group

A view s was most highly correlated with the group B view of s, the matching task was

counted as a success. The overall accuracy was calculated as the proportion of scenes out

of 50 marked correct. Then, this accuracy was cross-validated over all possible partitions of

the subjects (A,B). Overall classification accuracy was 38.4% with p < 0.001 with chance

at 1/50 = 2% [8]. These results suggest that the DMN encodes semantic information about

stories, and can be used for the purpose of decoding story narratives into text.

Given this history of results connecting the DMN to contextual and semantic meaning,

this thesis primarily focuses on this region in its analysis.

2.3 The Representation of Language in the Brain

Several researchers have already attempted to find a relationship between word featuriza-

tions and fMRI activation in the brain. One popular method, started by Mitchell et al.

(2008) [34], is to gather fMRI data across several subjects corresponding to stimuli related

to some text: a noun, or perhaps a set of words, or even a story. Then, a linear map is

learned from the word vectors to the fMRI activations on a training portion of the data. To

test whether or not there is a significant relationship between the word embeddings and the

fMRI voxels, a binary classification task is designed where two fMRI responses and their

associated word embeddings from the testing data are held out: The classification task is

to correctly match the word embeddings to the fMRI responses, which has 50% guess rate.

Typically, the researchers also supply an accuracy rate at which the p-value is significant

by which to compare the attained result [34, 45]. Notably, this task does not require a high

degree of correlation in terms of actually reconstructing voxels: Only a little correlation

is needed in several voxels for the binary classification to succeed. From there, it is possible

to also identify voxels which fit particularly well, and analyze the produced brain maps to

see which voxels encode what information about language. Another interesting application

of the framework is to reverse the direction of the linear map to produce a brain decoding

algorithm which outputs text given an fMRI input [38].
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In a more recent line of work by the Gallant Lab at U.C. Berkeley, the goal is re-

construction rather than simple binary classification. The goal is to use semantic word

embeddings to predict voxel activation, a considerably harder task [25, 24].

For an overview of distributed word and context embeddings, see Appendix A.

2.3.1 Binary Classification Experiments for fMRI-Language Maps

In the seminal Mitchell paper [34], the main contribution is the presentation of a compu-

tational model which predicts fMRI responses for concrete nouns (words like “dog”, “cat”,

“chair”). The theory underlying the model is that the neural semantic representation of

concrete nouns is related to the distributional hypothesis of meaning: Basically, brain vec-

tors for concrete nouns should behave similarly to word vectors for those same concrete

nouns in a huge corpus. This assumption is basically positing that we learn word meaning

based on reading. The model is trained on a trillion-word text corpus (the Google 5-gram

corpus from English web pages) and fMRI data observed after viewing a 58 concrete nouns

from 12 semantic categories. For testing, the model predicts fMRI activation for words on a

held-out set of size 2 and achieves highly significant accuracies. They also train competing

computational models with different features for encoding meaning of concrete objects in

the brain. The best model predicts fMRI activity to the degree that it can match words to

their previously unseen fMRI images with accuracy far above chance. Thus there exists a

direct predictive relationship between word co-occurence statistics and fMRI patterns as-

sociated with thinking about the word. The three central assumptions made by Mitchel et

al. (2008) are as follows:

1. The semantic features that distinguish meanings of concrete nouns are reflected by

their statistics of their use in a very large text corpus (specifically, for the n = 25

co-occurences the authors chose to record).

2. Different spatial patterns of neural activity are associated with different semantic

categories of pictures and words.
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3. The brain activity observed when thinking about a concrete noun is a linear combi-

nation of semantic feature values.

The first assumption is generally known as the distributional hypothesis of meaning,

though its use here is more restricted since the authors only use the co-occurences of each

concrete noun w with 25 verbs. The authors justify the second assumption by arguing

that many linear models are used in the fMRI literature with the assumption that fMRI

activation reflects a linear superposition of many sources. Furthermore this model allows

the training data to determine the locations in the brain whose activity is affected by word

meaning aspects, rather than making assumptions from neuroscience about which regions

of the brain encode which aspects of meaning.

Training

Some notation first: Let n be the number of semantic features used to represent a word.

Let m be the number of voxels in the brain. There are two steps to training. First, semantic

features based on co-occurrence properties are computed from the very large text corpus.

The second step learns weights for a linear combination of the semantic features to predict

the activation at each voxel. Let y(w) be the m× 1 matrix of voxel activations for a given

word w, C be an m×n matrix of coefficients to be learned, and f(w) be the n×1 semantic

feature encoding of word w. Then

y(w) = Cf(w) =
n∑
i=1

C∗,ifi(w) (2.1)

Here C is not dependent on a word w. We can interpret this equation in terms of the columns

C∗,i of C. By re-writing, we get that {C∗,i}ni=1 is a semantic image feature basis, with each

image associated to a different semantic feature. In this paper, the semantic features are the

co-occurence statistics of the input word w with 25 different verbs (accounting for different

forms of the verb). The verbs correspond to basic sensory and motor activities, actions

performed on objects, and actions involving changes to spatial relationships. For each voxel

v, we learn the 1×n row vector Cv,∗ of C with linear regression. Let the number of different
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words be T . Let X be a T × n matrix where each row is f(wt) for t ∈ [T ]. Let yv be a

T × 1 vector where each entry yv(t) is the response for voxel v for word wt. Then, for each

v ∈ [m] we find

argminCv,∗‖yv −XC
T
v,∗‖22 + λ‖CTv,∗‖22 (2.2)

which is solved by ridge regression. If the number of training examples is < n = 25, then

there is no unique solution. In this case, adding l2 regularization (i.e. ridge regression) gives

a unique solution of least norm where λ = 1. After each Cv,∗ is trained, we have the full

predictor matrix C which given a word w and its featurization f(w), we can use to predict

the full fMRI response y(w) = Cf(w).

Results

There were 60 randomly ordered stimuli (a picture of the object in white over black back-

ground) which came from 12 semantic categories (animals, body parts, buildings, etc.).

There were only 9 human subjects, of college age. Each word-picture pair was presented

6 times. The representative fMRI response for each word was computed by averaging over

the 6 presentations of word-picture pairs. The mean over all 60 presentations (one for

each word-picture pair) was then subtracted from each presentation. A separate model was

learned for each of the 9 participants.

Evaluation was performed with leave-two-out cross validation. That is, the model was

repeatedly trained with 58 out of 60 word-fMRI image pairs, and tested on the remaining

two. For testing, first a prediction of the fMRI image was generated for each of the two

words, then these predicted fMRI images had to be matched to the correct fMRI image.

This task was executed by comparing cosine similarity of the fMRI image vectors (where

only a subset of the voxels were used). The subset of voxels was decided by calculating

stability scores for each voxel: For each of the 6× 58 presentations shown, there is a given

fMRI voxel matrix. Then they calculated pairwise correlation across the 6 rows in the 6×58

matrix for each voxel, which assigns higher scores to voxels which exhibit consistent variation

across the 58 images presented. Cross validated accuracies for each of the 9 models had a
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mean of 77% accuracy, which is above chance (they claim an accuracy of 62% is statistically

significant based on empirical accuracy distributions for null models). Another evaluation

was performed to test whether the model could distinguish among a more diverse range

of words. Here, the model was tested using a leave-one-out test where the model for each

individual was trained on 59 words. Then, for 1000 additional words and the held-out word,

an fMRI image was predicted. The 1001 words were then ranked by cosine similarity of

their predicted fMRI to the true fMRI data for the held-out word. The average percentile

rank was 0.72 across participants.

Mitchell et al. (2008) also manually examined the semantic feature signatures (think

of C∗,i for semantic feature fi(w)): i.e., whether the predicted activations for various verbs

matches the associations. They saw that activity in the gustatory cortex co-occurs with the

verb ‘eat’, activity in motor areas co-occurs with ‘push’, strong activation in somatosen-

sory cortex co-occurs with ‘touch’, and ‘listen’ co-occurs with activation in the language

processing regions of the brain.

The authors also checked how accuracy varied over different feature sets. They tested

115 feature sets of 25 randomly drawn words from the 5000 most frequent words in the text

corpus excluding the 60 stimulus words and the 500 most frequent words (i.e. containing

‘the’ and ‘have’). The minimum and maximum accuracies of these random feature sets was

0.46 and 0.68, with the average of 0.60 and a standard deviation of 0.04. These results

suggest that the hand-picked features do rather better than random. The success of the 25

sensory-motor specific verbs as a feature set suggests that neural representations of concrete

nouns are in part related to sensory-motor features.

In 2014, Wehbe et al. [45] use a similar approach to decode arbitrary text passages

in a chapter of a Harry Potter book [40]. This newer paper removes some of the early

assumptions of [34] and attempts to generalize from concrete nouns to sentences with story

structure. Their model is able to distinguish between which of two story segments (as

opposed to which of two concrete nouns) is being read with 74% accuracy over 50% chance

accuracy.
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The Model and its Features

This model follows the same broad strokes as the model from the 2008 paper [34]. The

setup is as follows: For nine individuals, fMRI activity was collected while each individual

read the 9th chapter of the first Harry Potter book. Reading was performed by having

a single word appear at the center of the screen every 0.5 seconds (this format is known

as rapid serial visual format (RSVF)). Note that each of the subjects was familiar with

the Harry Potter story, had been recently updated on the contents of chapter nine, and

had practiced RSVF on an unrelated story to the point where reading in this fashion was

considered ‘comfortable.’ fMRI activity was collected every two seconds. Thus we have two

time series, one of words and one of fMRI activity for every individual. To match the time

series up, the word time series was chunked into groups of four words per TR for a time

resolution of two seconds.

In the original paper [34], we essentially thought of the words wt as a list of concrete

noun examples presented in some order which did not matter. In this paper, the order

in which the words presented does matter, and the authors take this into account in their

model. Furthermore, each time step now consists of four words rather than one (so that

text and fMRI time series are aligned). Thus, features fi(wt) are now transformed into

features fi({w1, w2, w3, w4}t) since features can be a property of each four-word chunk.

For convenience we will refer to this as fi(t), the feature i ∈ [n] at time t ∈ [T ]. In the

original paper [34], the features were word co-occurrences with 25 different verbs relating

to sensory-motor activities. In this paper, the story features attempt to address multiple

levels of representation. The types of features can be divided into four categories: visual

features, semantic features, syntactic features, and discourse features:

1. Visual features are just the average word length in each TR and the word length

variance in each TR.

2. Syntactic features are derived using an automated parser to get parts of speech for

each word as well as dependency roles for each word inferred from a parse tree. There
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are 28 part-of-speech relationships and 17 dependency relationships for a total of 45

binary features indicating if a given part-of-speech or a dependency occurred in a

4-word TR. An additional 46th feature is the average position of the words in the TR

in the sentence they belong in, numbered starting at 1.

3. Discourse features are derived from manual annotations going through story text.

Pronouns are annotated with the character they refer to, and binary features are

created for whether or not a certain character (one of 10) shows up in a TR. Frequent

physical motions were chosen as well: These come with two values, a binary feature

representing the start of the motion and a binary ‘sticky’ feature representing whether

the motion is currently ongoing. Similarly, speech between characters is represented

by a feature representing which character is speaking and a sticky binary feature

indicating speech by a specific character is ongoing. There are also features for when

emotion is mentioned and a corresponding sticky feature indicating an emotion is

ongoing. For non-motion verbs (hearing, knowing, seeing), only a binary feature

indicating that the verb took place is used, since these verbs typically do not last long

enough to necessitate a sticky version of the feature.

4. Semantic features are most closely related to the features from [34]. They use non-

negative sparse embedding (NNSE) to learn semantic vectors from a massive web

corpora on which various dependency and document co-occurrence counts are com-

puted. There are two co-occurrence matrices with different definitions of ‘context’:

document counts are the number of mentions a word has in a particular document,

and dependency counts are the number of times a word is in a given dependency

parse link (e.g. word u is the subject of the verb “eat”). These dependencies are

primarily verb- and adjective-related [13]. The co-occurrence matrices are factored

using NNSE. to produce 1000 features of which this paper uses the top 100: these are

essentially 100-dimensional word vectors. Since each TR has four words, they need

a way to compose these word vectors: Their approach is to simply sum the features

within each TR.
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The semantic features in the model are derived from the Non-Negative Sparse Embed-

ding (NNSE) algorithm [14]. Let X ∈ Rw×c be made from c corpus statistics for w words

(i.e. X is a word-context matrix). Then, NNSE produces a low-dimensional, sparse, non-

negative latent representation using matrix factorization. The idea behind non-negativity

is that you typically describe an object or concept by its positive facets; i.e. you say “an

apple is a fruit” and not “an apple is not a tool”. Sparsity is common to encourage only

the most important features to have high weights. The NNSE objective is given by

argminA,D

w∑
i=1

‖Xi,∗ −Ai,∗D‖22 + λ‖A‖1

s.t

Di,∗D
T
i,∗ ≤ 1 for all 1 ≤ i ≤ r

Ai,j ≥ 0 for all 1 ≤ i ≤ w, 1 ≤ j ≤ r

(2.3)

where the algorithm outputs the solution A ∈ Rw×r that represents word semantics in

r-dimensional space while being sparse and non-negative. D ∈ Rr×c, and note that Di,∗

and Ai,∗ are row vectors of dimension 1 × r. Thus this program factors X to minimize

reconstruction error using l1 regularization for sparsity. This objective is not convex due to

the fact that we are learning both A and D.

The authors make the following assumptions in the model:

1. They assume that each feature has a signature activity in each voxel which is consis-

tently repeated every time the brain encounters this feature (and if a voxel does not

encode this feature, the weight is 0).

2. The signature activity is scaled by the value of the feature at the time the feature is

presented.

3. Total activation of a voxel is a linear combination of the feature values.

4. There is spherical Gaussian error in voxels with a different variance for each voxel.

However, the variance for each voxel remains fixed over time.
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5. The activity created by the feature is the convolution of the response signature with

the time course of the feature. This convolution makes sense in the context of the

hemodynamic response function (HRF) of the BOLD (blood-oxygen level dependent)

signal, which fMRI measures. The HRF gives the activation curve for each voxel.

While canonical HRFs do exist, literature has shown that the HDF is not necessarily

uniform across the brain nor is it uniform across people. Thus learning weights for

different time dependencies makes sense. Inspecting the weights over k = 1, 2, 3, 4

after training for each feature reveals these resemble the characteristic shape of the

HRF at different points of the HRF.

6. Putting the last two assumptions together, the activity of voxel v at time t is given

by

yv(t) =

F∑
j=1

4∑
k=1

fj(t− k)cvjk (2.4)

Here we adopt the convenient notation that F = n/4, and cvjk is a special indexing

of feature coefficients where we let k range from 1 to 4. In practice we stack on 4

additional feature columns per feature to our coefficient matrix C to represent the

weights cvj1 , c
vj
2 , c

vj
3 , c

vj
4 .

Training

First we write down the training objective as for Mitchell et al. (2008): Note that the

definitions are almost identical. Let X be the T × n matrix such that each row is the

featurization of a different time step. Let C be an m× n matrix where m is the number of

voxels in an fMRI scan and n = 4 × 195 is the number of features, where the factor of 4

comes from time shifts. Then each row Cv,∗ is the n× 1 weight vector we learn for a given

TR. Let yv be the T × 1 vector such that each entry is the response of voxel v at each TR

t. Let y(t) be the m× 1 vector denoting activation at each voxel at TR t. Let fi(t) be the

ith feature at TR t and let f(t) denote the feature vector of the four words at TR t.

This paper’s model adds noise to the fMRI voxels. Let εv ∼ N
(
0, σ2vIT

)
be spherical
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Gaussian noise with zero mean. Let ε be the m× 1 random variable of Gaussian variables

[ε1, · · · , εm]. As before, we learn a different C for each subject, and thus every parameter

is learned differently for each subject. The only constant parameter is X, which represents

the featurization of the Harry Potter text over time.

Thus, the equation to predict fMRI from the four words in a given TR t is

y(t) = Cf(t) + ε (2.5)

and the least squares regression objective is

argminCv,∗‖yv −XC
T
v,∗‖22 + λv‖CTv,∗‖22 (2.6)

Training separately for each row Cv,∗ gives us the full matrix C. Note that this is simply

ridge regression again, for which we are guaranteed to get a unique solution (the solution

of least norm when λv = 1). l2 regularization gives us the MAP estimator for least squares

when we assume Gaussian errors. In practice, cross-validation is used on the training data

to find the correct λvs. Ridge regression also results in effective automatic voxel selection

since it learns high penalties for noisy voxels and small penalties for good voxels.

Results

They show that the predictions of the trained model are sufficient to distinguish between

which of two previously unseen short passages is being read, given only observed fMRI

activity. The first test task is analagous to the task from Mitchell et al. (2008)[34]. The

trained model predicts the fMRI time series for two held-out story passages. Then it selects

the passage such that the predicted fMRI time series is most similar in l2 norm to the

held out real fMRI time series. The results are cross-validated across all choices of the

two held-out story passages. Random performance on this task is 50%. They attain an

accuracy of 74%, which is significant with p < 10−8. (p-values are determined by assuming

the null hypothesis is 50% and then generating sample data and looking at the distribution

of predictions for random weights). Notably, the authors also study to what extent the

different features contributed to the accuracy. Without additional cross validation and voxel
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selection methods, the semantic features (100 dimensions due to NNSE) only performs at

58% accuracy over chance, while the hand-crafted discourse features have a 84% success

rate over chance [45]. These results suggest that a lot of the signal being captured is not due

to the distributed embedding at all, but rather the hand-designed story-specific features.

The second test the authors run is to identify what type of information is processed by

various regions of the brain. First, they effectively partition the brain into 15 × 15 × 15

mm cubes corresponding to 5 × 5 × 5 voxels (note there are typically on the order of

105 voxels, so this is about 10−3 of the full volume). They test every type of feature at

every cube location to determine in which brain regions (the cubes) which types of features

yield high classification accuracy. They found that the occipital cortex of the brain were

strongly associated with the visual features (word length), as expected.As some examples

of other results they find, they also see that the right temporo-parietal cortex is related

to sentence length and the presence of dialog. Interestingly, the right temporo-parietal

cortex has previously been shown to be more activated for better readers and is related to

verbal working memory processes. The imagined physical motion of the story characters

is found to activate in the posterior temporal cortex and angular gyrus, which agrees with

neuroscientific knowledge. The identity of story characters is distinguishable by activity in

the right posterior superior/middle temporal region, a region that has been found to encode

facial identity. They also suggest they have found a partial answer to the question of whether

semantic and syntactic properties of language are represented in different locations in the

brain: For the semantic and syntactic features they use, there is a large overlap in some

areas. They also find regions selectively processing syntax and semantics and that syntactic

information is more widely and strongly represented (though this just may be due to the

quality of the semantic features versus the synatactic features).

2.3.2 Decoding fMRI Stimuli Into Language

Pereira et al. (2011) [38] propose the inverse problem of the one solved by Mitchell et al.

(2008) [34]. Instead of predicting fMRI given a word, given an fMRI response, they generate
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text using a generative model (Latent Dirichlet Allocation, or LDA). They can generate a

probability distribution over words pertaining to left-out novel brain images and that the

quality of this distribution is measured quantitatively via a classification task that matches

brain images to Wikipedia articles. The authors use the dataset from Mitchell et al. (2008)

[34], which is fMRI data while subjects looked at both a picture and a word representing

a concrete noun (e.g. house). From these fMRI images, the authors generated words

pertaining to the relevant concept (e.g., door, window, home). Then the generated words

are matched to corresponding articles from Wikipedia, providing a way of quantitatively

analyzing the results.

A Brief Description of LDA

LDA (Latent Dirichlet Allocation) operates on a word-document co-occurrence matrix,

placing documents in low dimensional space by taking advantage of sets of words which

appear in multiple documents. Each dimension corresponds to a co-occurrence pattern (a

topic word probability distribution). LDA is a generative model and allows you to interpret

topic probabilities as the probability that a word came from the distribution of a particular

topic. LDA models each Wikipedia article representing concept w as coming from a process

where the number of words N and the probabilities of each topic being present θw are

drawn. Each word u is drawn by selecting topic z according to probabilities θw, and then

drawing from P{u|z}, the distribution over words given topic z. θw is the featurization of

each concept; i.e. f(w) = θw. Since LDA places the topics in a simplex, the presence of

some topics and detract from the presence of others.

Given a concept w, we can also induce a probability distribution for words u in w:

P{u|θ} =

|topics in w|∑
i=1

P{u|zi}θ(i)w (2.7)

Training

Pereira et al. use the following series of steps to arrive at their generative text model:
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Figure 2.1: A list of topics and their 10 most likely words [38]

1. First, from a corpus of 3500 Wikipedia articles about concepts deemed concrete or

imageable (including 60 concepts from [34]), the authors created a topic model (latent

factor representation using LDA) of each article, which represents the concept the ar-

ticle is about. This topic model effectively takes the place of the semantic features

from [34] as an approximation of the mental representation of the concept. The au-

thors ran LDA with the number of topics allowed ranging from 10 to 100 in increments

of 10. The result is a representation of each of the 3500 Wikipedia articles in terms

of the probabilities of each topic being present: We call these latent factor loadings.

Each topic is a probability distribution over words.

2. They use ridge regression to learn a mapping from each topic/concept to a corre-

sponding pattern of brain activation: This is equivalent to learning C before. The

only difference from the formulation established from Mitchell et. al (2008) [34] is that

the definition of f(w) changes. Instead of using the hand-chosen verb co-occurences,

Pereira et. al. use the topic probabilities describing the Wikipedia articles corre-
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sponding to the concept w, which are the concrete nouns from Mitchell et. al (2008)

[34]. The regression inputs are f(w) and output is voxel activation yv. The number

of subsampled voxels used here is 1000 as opposed to 500 in [34]. As before, the

fMRI images can be decomposed into a set of topic-specific basis images ({C∗,i}ni=1,

corresponding to the semantic feature signatures in [34]). At this point we are still

predicting fMRI image from featurized words. Now, from before, a probability distri-

bution over a set of topics representing a concept induces a probability distribution

on words for that concept, P{u|θw} = P{u|f(w)}.

3. For brain images in a test set, the mapping can be used to infer a weighting over

latent factors. The generative model from the first step can then be inverted to map

from latent factors to text.

In Mitchell et al. (2008), learning f(w) given C (m × n matrix where m is number

of voxels and n features) and y(w) would not have allowed us to generate text, since

f(w) was just co-occurrences with certain verbs. In principle it could be possible to

derive a probability distribution from these co-occurences: The authors would need

to tabulate for each of the 25 verbs which words occur within a 5-word window of the

verbs; this vector could then be normalized into a probability distribution. In this

paper, f(w) is a probability distribution over topics θw which induces a probability

distribution over words u. Thus we can use fMRI images of concepts to produce words

from that concept. We simply need to solve the convex optimization problem

argminθ‖y − Cθ‖22

s.t.

θi ≥ 0 for all i ∈ [n]∑
i

θi = 1

(2.8)

C is fixed from the ridge regression and its columns are the basis fMRI images for

each concept, y is the new image we want to infer the topic distribution for, and θ is
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the distribution to infer. Recall that the number of features n is the number of topics.

Let θy be the optimal topic probability distribution for a given novel fMRI image y.

Now recall that for each topic zi for i ∈ [n], we have P{u|zi} for word u learned from

LDA.

P{u|y} =
n∑
i=1

P{u|zi}θ(i)y (2.9)

Note the similarity to Equation (3): The difference here is that θy is inferred. Thus, by

solving this convex program, we have inverted our map to estimate topic probability

distribution θ from new unseen concept fMRI images y.

Results

First we note that the topic representations of the 3500 articles are sparse with respect to

topics (though there are multiple topics in the representation of most articles). There is

a link online to browse the 3500 concepts and topic distributions in detail. To objectively

evaluate the quality of the generated text, 58 of the concepts are used for training and they

test on the held-out 2 concepts. For the 2 concepts, we get the fMRI images and infer

the topic probability distributions, θy1 , θy2 . The topic distributions are then matched with

corresponding Wikipedia pages by using Py1{u|θyi} to determine which Wikipedia article is

most probable. Note that random chance as accuracy 50% since we are pairing two fMRI

images with the two held-out Wikipedia articles. In the majority of cases, classification was

accurate.

When the two held-out concepts were in different semantic categories (i.e. vegetable and

car), accuracy was on average over the nine participants was around 0.8, with a max of

around 0.9 and a min of around 0.65. When the two held-out concepts were in the same

semantic category, average accuracy over the nine participants was around 0.55, with a max

of around 0.6 and a min of around 0.48. Note that these values are averaged over using

different numbers of topics from 10 to 100, for every possible pair of two held-out concepts.

http://minerva.csbmb.princeton.edu/wikipedia/index.html
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Figure 2.2: Visualization of weighted sums of latent factors [38]

The reason for the inaccuracy suggests text outputs for semantically related concepts are

very similar, which is both good and bad: It suggests the model is not fine-grained enough

(too bag-of-words-ish), or that the concept-representations (Wikipedia articles) are too

similar intrinsically. They also saw that the voxels from the temporal and occiptal cortex

voxels were the most stable across the 6 presentations of a concept to the fMRI subjects,

suggesting that the learned fMRI basis associated with a topic is related to both semantic

(word) and visual (picture) aspects of the topic.

2.3.3 A Joint Embedding Model for Language and fMRI

So far, we have discussed voxel reconstruction, a binary classification variant of brain decod-

ing, and more genuine brain decoding into text [34, 45, 38]. We would also like to consider

how we might find a shared space for both fMRI data and semantic word embeddings.

The Joint-NNSE algorithm intends to improve semantic word embeddings by utilizing

information about the brain as input [14]. The purpose of the Joint-NNSE objective is

simply to add an additional data source for a subset of the words in X. In the context

of [14], the additional data is to be either fMRI or MEG data to encourage A to behave

similarly in both the brain and word settings. Here, first re-order the rows of the corpus

data X so that the first 1, · · · , w′ rows have associated brain recordings. Then let Y ∈ Rw′×v

be the data matrix of brain recordings, where v is the number of features associated with

the brain data. Then let Dc ∈ Rr×c, Db ∈ Rr×v. The JNNSE objective is given by
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argminA,Dc,Db

w∑
i=1

‖Xi,∗ −Ai,∗Dc‖22 + ‖Yi,∗ −Ai,∗Db‖22 + λ‖A‖1

s.t.

Dc
i,∗
(
Dc
i,∗
)T ≤ 1 for all 1 ≤ i ≤ r

Db
i,∗

(
Db
i,∗

)T
≤ 1 for all 1 ≤ i ≤ r

Ai,j ≥ 0 for all 1 ≤ i ≤ w, 1 ≤ j ≤ r

(2.10)

where again we receive the output A ∈ Rw×r is in a low-dimensional space while being

sparse, non-negative, and representing word and brain semantics, since we have ensured

that words represented in brain space must behave similarly by keeping A fixed across opti-

mizations. Note that JNNSE can handle partially paired data, in comparison to Canonical

Correlations Analysis (CCA) which requires fully paired data. In JNNSE, we only seek a

solution keeping the transformed form fixed and maximally correlating the data reconstruc-

tion instead. In contrast, CCA maximally correlates the transformed form while keeping

the input data fixed. This change allows the data to only be partially paired. The JNNSE

objective is not convex due to the required alternating optimization. JNNSE also suffers

from the weakness that there is only one other brain allowed in the model.

Fyshe et al. (2014) goes on to perform experiments using the data from [34] to demon-

strate that JNNSE vectors are more consistent with independent samples of brain activity

collected from different subjects for use as semantic features. Here, the authors train a

linear predictor of semantic vectors given brain state vector, and use the predicted semantic

vectors to see if the model can differentiate between two unseen words. This task inverts

[34] and predicts a word from a brain state. Since semantic vectors have a sensible def-

inition of similarity (unlike the verb co-occurrence semantic features from [34]), it makes

sense to predict the word associated with the true semantic vector closest to the predicted

one. On this prediction task with 50% accuracy, JNNSE achieves around 74% accuracy

after cross-validating (this time only using 150 random pairs of hold-out words), which is

on average 6% better than when using NNSE.
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2.3.4 Assigning Semantic Meaning to Voxels

While the previous experiments primarily relied upon binary classification tasks to suggest

that their results were statistically significant, the following work by the Gallant lab is

able to demonstrate the ability to reconstruct voxels to a surprisingly high level of accuracy

(namely, 0.3−0.5 Pearson correlation; this can be interpreted as a cosine similarity measure)

using semantic word embeddings. In this April 2016 work, Huth et al. have an fMRI dataset

consisting of seven subjects who listen to over two hours of stories from The Moth Radio

Hour as BOLD response was measured, with an entire 10-min heldout story for testing

purposes [24]. The group takes a simplistic approach to word embedding, computing a

word coocurrence matrix for the top 985 common English words (according to Wikipedia).

For each word, they simply normalize the cooccurrence counts with these 985 common words

to obtain a 985-dimensional semantic vector. Additional features to account for word rate

and phonemes are added in the learning phase of the model, and are discarded after a map

between the semantic vectors and the fMRI responses is learned. Temporally downsampling

the word vectors at an appropriate rate allows for the pairing between words and fMRI

images lined up by TR. A ridge regression extremely similar to the model used by [45] is

then applied to learn the map between the vectors and the voxels. Then, they proceed to

find a low-dimensional subspace by concatenating the maps they learned across subjects and

performing PCA. They find that four dimensions explained a significant amount of variance,

and project onto the word embeddings onto this space [24]. Then, they perform k-means

clustering with k = 12 to identify distinct semantic categories, thus tiling the regions of

the brain with these categories. They perform further refinement of their semantic voxel

maps with a new algorithm called PrAGMATiC to create a “shared” atlas across people.

Essentially, given the semantic map due to the principal component features for each person,

PrAGMATiC shifts around the tiles across people to ensure the semantic tiles match up as

good as possible.

This work is particularly interesting due to the very high voxel reconstruction perfor-

mance directly from semantic vectors. However, the semantic vectors they use are rather
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strange from the natural language processing perspective. LSA is a very old algorithm

which has been shown to be outperformed in numerous papers using word embeddings.

Moreover, the particular variant of LSA the authors appear to be using does not apply a

dynamic range transformation of any sort, which has been previously shown to improve

semantic embeddings (Arora et al., 2015). The authors try an alternative feature space for

the words using word2vec ([33]), and find that they get slightly worse performance than with

their 985-dimensional vectors. They conclude that perhaps 300-dimensions is not enough to

capture semantic meanings present in the text and the 985-dimensional space has a richer

representation of the stimuli, but it has also been shown by Arora et al. that lower dimen-

sionality actually improves embeddings and that lower dimensionality acts as a denoising

operation [4]. Moreover, it is very clear that the word vectors are very semantically rich,

given their ability to decompose into fine-grained atoms of meaning [5]. Therefore, it re-

mains a bit mysterious as to why the 985-dimensional vectors are able to perform so well at

this task. Their results suggests that simple cooccurrence is what is being measured in the

brain, since the 985-dimensional vectors of Huth et al. (2016) only rely upon this simplistic

construction.



Chapter 3

Building Context Vectors from

Natural Language

In this chapter, we explain how to construct semantic embeddings of context for several

descriptive sentences worth of text. For now, let us imagine that a context is a few sentences.

The idea is simple: For a given sentence, we would like to get low-dimensional vectors for

which it is possible to recover as many as possible word descriptors of what is going on in

the sentence.

3.1 Skipthought Vectors

One direct approach to modeling context vectors is to use the code directly from Kiros et al.

(2015) [28]. Recall that this model learns vectors for sentences by applying the Skip-Gram

approach to the sequence-to-sequence learning framework. In order to generate sentence

vectors for a small corpus paired with fMRI images, we simply need to take the pre-trained

model and continue training the model: The hidden state in the RNN after inputting each

sentence is the sentence vector. The result outputs 4800-dimensional vectors which are

supposed to be broadly applicable as features for generic NLP tasks.

We tried this approach on the Chapter 9 of the first Harry Potter book. However,
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the heuristic quality of the vectors was not good, and the dimension was too high, so we

abandoned this approach hereafter.

3.2 Corpus Size and Transfer Learning

In order to take advantage of word cooccurrence properties, it is necessary to examine a

large enough body of text such that words of interest cooccur with enough other words to

discern their relative meaning. One easily accessible such corpus is the data dump of the

English Wikipedia. Arora et al. use this corpus to construct word vectors [4] as well as

atoms of meaning [5]. They only construct word vectors for words which appear at least

1000 times so as to ensure the assumptions of their model hold.

This setup brings us to an issue when we consider constructing word vectors for a small

corpus which has out-of-vocabulary words. In this thesis, two such corpuses are the textual

descriptions of scenes in the Sherlock dataset and the text of Harry Potter and the Sorceror’s

Stone, Chapter 9. Both corpuses have very small vocabulary sizes (on the order of 2000

distinct words), and not many words overall. Moreover, if a word in this smaller corpus

takes on additional meanings that are rarely or not at all present in the large corpus, then

using the large corpus vector directly will cause issues in the smaller corpus.

3.2.1 Transfer Learning

This conundrum leads us to the notion of transfer learning. In order to augment the large-

corpus semantics with small corpus semantics, we propose the following algorithm. Let the

large corpus vocabulary be Vbig and the small corpus vocabulary be Vsmall. Suppose the

dimension of the original word vectors is d.

1. Initialize the word vectors as follows: If w ∈ Vbig ∩ Vsmall, then initialize the new

word vector of w to be ṽw = [vw η], where vw is a d-dimensional vector learned

from the large corpus and η is a κ-dimensional random initialization. Then the new

dimensionality of our word vectors will be d+ κ. If w 6∈ Vbig ∩ Vsmall (i.e. w is out-of-
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vocabulary), then initialize ṽw to be a random (d+ κ)-dimensional vector with norm

equal to the average of the norm of the large corpus word vectors. In our application,

d = 300, κ = 20.

2. Run the Squared-Norm matrix-factorization algorithm on the small corpus using

{ṽw}w∈Vsmall
as initialization. One can choose to either update the first d dimensions

or leave them alone. Additionally, one can choose a weight η for the first d dimensions

to prioritize them over the newly learned dimensions. These are parameters that must

be empirically tuned.

For the case of the Harry Potter corpus, it is possible to take an intermediate step

between the Wikipedia corpus and Chapter 9 of Book One. Transfer learning is particularly

critical in the Harry Potter dataset since several words are made-up specifically for the world

of the Harry Potter books. Moreover, there are distinct characters in the books who are

referred to by common names (i.e., “Harry”). Therefore, we propose using all seven Harry

Potter books as an intermediate transfer learning corpus to learn the senses of words like

“Quidditch” and “Hogwarts” [40]. Then it is possible to use these word vectors for the

Chapter 9 Book One vocabulary.

For the Sherlock annotation corpus, there is no intermediate corpus to transfer learn

on. Because the annotation corpus only consists of 1000 sentences, this dataset is much

smaller than the entire Harry Potter series. However, it turns out that the vocabulary

overlap between the Sherlock corpus and Wikipedia is very small, excluding the characters

introduced in the show. Therefore, it is possible to replace all out-of-Wikipedia-vocabulary

terms with synonyms which are in the vocabulary of the Wikipedia corpus without changing

the meaning of the annotations too much. We are careful to avoid using name-vectors from

the Wikipedia corpus in place of character names. This problem arises since characters like

Dr. Watson have generic first names: He is referred to as “John” throughout the Sherlock

episode. In the Wikipedia corpus, John shows up in many places and has a whole host of

word senses associated with it, most of which are not at all relevant to the character of

John Watson. Therefore, we also attempt the transfer learning algorithm in this setting to
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solve this problem, but since the annotation corpus is too small, this modification does not

help matters.

3.3 Sparse Coding as Word Sense Filtration

We just saw that for small, specific corpuses like the Sherlock annotation corpus, large

corpuses like Wikipedia often insert multiple, irrelevant senses into the word vectors. It

would be very useful if we could somehow clean up these irrelevant senses automatically,

leaving behind pristine word vectors for use in the smaller corpus. Our approach will be

centrally based on Arora et al. (2016) [5]: We apply sparse coding to decompose the

word vectors of a corpus into coherent, fine-grained atoms of meaning, which can then

be sparsely linearly combined to create the original word vectors. This process involves

setting a parameter for the desired number of atoms (for large corpuses, we use 2000 as

the benchmark and for small corpuses, we use between 50 and 100). Then we learn five

dictionaries for the same set of word vectors and prune bad atoms (those atoms which are

not close to any word vectors). In the end, we combine these atom sets together. Note that

we have the option of performing sparse coding on the word vectors of a large corpus, or

on the transfer-learned word vectors of a small corpus. On the Wikipedia word vector set,

3-sparse coding with 2000 selected atoms results in 2607 atoms in total.

3.3.1 Subtracting the First Principal Component

If a corpus is big enough, performing sparse coding directly on the word vectors of a corpus

results in several atoms which do not appear to mean anything. The nearest words to these

atoms consist of vague, common words like “but” and “and”. We would like to remove

these atoms a priori.

There are two approaches we can attempt to do this. For the first, consider the matrix of

all word vectors of the vocabulary. Then, expressing this matrix via singular value decom-

position as UΣV T , simply set the first singular value to 0 and perform the reconstruction.

Then sparse-coding can proceed. Typically, we use a sparsity of 3 in our experiments. The
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idea is that if the first principal component is small enough, you remove an “average” trend

towards a generic atom. In practice, this operation works decently well on large corpuses.

However, if the corpus is small, then the top singular value is very large, and performing

this operation results in the removal of almost all semantic content, and sparse coding gives

nonsense results (this situation is precisely what occurs when we try to create atoms for the

transfer-learned word vectors on the Sherlock annotation corpus). This situation motivates

a slightly different idea for removing generic atoms. Instead of setting the top singular

value to 0, we instead subtract the scaled top principal component of all the word vectors

in the vocabulary from every word vector in the vocabulary. We perform the scaling by

multiplying the normalized top principal component by the size of the average word vector.

We can think of this vector as directly representing the “generic word vector”. Moreover,

subtracting by a single vector does not change the rank by very much. Using the linear

algebraic properties of meaning, we can view this subtraction as removing the direction

towards “genericness”: We have found a translation which moves the word vectors away

from the region of semantic space that is close to generic words. Empirically, this approach

works better on both large and small corpuses, and after sparse coding produces more

reasonable atoms for the Sherlock annotation corpus.

3.3.2 Vocabulary Subsetting and Manual Deletion

Despite our efforts in the previous section, the resulting atoms due to 3-sparse coding on

the small corpus are not fine-grained and consistent enough for use. Therefore, we pursue a

different approach: Manual removal of irrelevant or bad atoms. The strategy is as follows:

1. Prune the number of out-of-vocabulary words in the Sherlock vocabulary by finding

synonyms. We also remove various numbers and so on which are irrelevant. Exclude

character names; we will handle character appearances in future work. For now we

wish to focus on distributional semantic meaning, and the Sherlock annotation corpus

is too small to learn individual word vectors for each character.

2. Subset Wikipedia’s vocabulary by the Sherlock vocabulary, and only consider atoms
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which help explain words in the Sherlock vocabulary. This procedure reduces the

number of atoms to consider from 2607 to 1550.

3. Examine the 20 closest words to each of the 1550 atoms. If they seem relatively

coherent (to a human judge), and the atom seems either relevant to the Sherlock story

or is general enough (i.e., “pulling, moving, dragging”), keep the atom. Otherwise,

remove it. This pruning step reduces the number of atoms considered to 477.

4. Express each word in the Sherlock vocabulary as a weighted combination of the re-

maining atoms. This step means that the resulting word vectors have now lost their

irrelevant senses for this corpus, and are finer-grained as a result. However, the previ-

ous step may have caused some words to lose all their atoms. We either replace these

words with more synonyms to accomodate our new vocabulary (the words spanned by

the 477 remaining atoms), or we ignore these words alltogether since the original word

vector from the Wikipedia corpus had a nonsensical interpretation in the context of

Sherlock.

It may be possible in the future to help automate the third step of this process by using

a language ontology like WordNet [11]. Nevertheless, it seems a difficult problem to decide

which atoms should be kept and which should be thrown away.

3.3.3 Application to Harry Potter Dataset

We would like to apply this approach to all seven Harry Potter books, as it would likely

help create finer grained word vectors. It would be particularly helpful to figure out an

automated method for performing this pruning, since it may take a longer time to evaluate

the resulting word-vectors and atoms. For now, we do not use the approach outlined above,

and as a result, have medicore word vectors for the Harry Potter dataset. We can visualize

the correlation in a time-time correlation matrix, where we see that there is practially zero

correlation involved.
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Figure 3.1: The Time-Time Correlation Matrix of the Averaged Harry Potter Context
Vectors

3.4 Creating Contexts

Now that we have a bunch of coherent, relevant atoms of meaning, we have to organize the

sub-second level descriptions of what is going on in the Sherlock movie into a single context

per TR. Recall that for the Sherlock dataset, a TR is a 1.5 second fMRI snapshot of the

brain. Some of the descriptions overlap across TRs, i.e., the TRs do not cleanly break up

the annotations into chunks. When this issue occurs, we simply add the overlapping portion

of the description to both segments. Finally, we have a set of words per TR, each of which

is associated with ≤ 3 atoms with weights. These tuples of weighted atoms are now ready

to be converted into context vectors via a variety of methods which we now outline.
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3.4.1 Evaluation Methods

How can we evaluate the quality of context vectors? Throughout this section we will

heuristically mention that certain approaches are good or bad. Here are the metrics we use

to assess vector quality:

• Inspecting the time-time correlation matrix. That is, we take the context vectors at

time points ti, tj and take the dot product 〈cti , ctj 〉 for all possible ti, tj . This method is

handy for quickly checking whether something is clearly wrong with the word vectors

(everything correlated, nothing correlated). See Figures 3.2 and ??

• Inspecting nearby atoms and the nearby words of atoms to get an idea for how coherent

the atoms are and how well the context vectors recover appropriate atoms.

• Hand-inspecting the atom weights for a given word vector: If a weight is negative,

the meaning should be to some extent the opposite of the true meaning, if a weight is

large, then the sense of the word should match the meaning of the atom very closely.

3.4.2 Averaging

For the Harry Potter words, recall that we have four words per TR. Following [45], we

simply average the word vectors for each of the important words in the set of TRs. We can

also double TR size to use more words for each context. In both cases, the performance

is not so good: The context vectors have very little correlation with other context vectors,

and are therefore rather meaningless.

In the Sherlock setup, we also simply average the word vectors which we refined in

previous steps. This method results in too much correlation across word vectors of all

times: The word vectors end up being close to everything.

3.4.3 k-Means and Principal Component Approaches

Another approach outlined in [5] is to represent context as a low-dimensional linear space.

We can use PCA to identify the best approximation rank 3 subspace of the word vectors
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present in the context. We can then take linear combinations of these principal components

to describe what the hyperplane looks like. If we need a single vector to represent the

context, we can always concatenate the vectors together in order of singular values.

We can also use a non-linear approach to get representative vectors. Consider performing

k-means on the word vectors for a given context, and finding the closest atoms to each of

the means. Setting k = 3 gives a similar situation to the rank-3 approximation of the word

vector space. Again, we can concatenate the vectors to form a single context vector.

However, there is an issue with using concatenations of various vectors as a context: The

ordering is somewhat arbitrary, and we would like to consider all cross-term dot products.

A reasonable way to implement this condition for concatenated vectors is to look at vTAw,

where A is an interaction matrix that encodes some permutation of the vector pairs of

v = (v1, v2, v3) and w = (w1, w2, w3) (i.e, (v1, w1), (v2, w1), · · · ). We would then need an

approach to consider all possible combinations. In general, we would like to express a

geometry between sets of vectors, but this essentially requires moving to tensor algebra.

We adopt a simpler approach instead.

3.4.4 Truncated Weighted Sums

For each context, we have a list of tuples of atoms and weights, according to the words in

the context. The absolute value of the weight determines how relevant that atom is to a

specific word. Therefore, we propose setting a cutoff for the minimum weight an atom must

have to be considered in the context. Then, we sort the atoms by weight and choose the top

four atoms in terms of weight. Because we set a cutoff, there may be situations where no

atoms meet the required criteria. In these cases, it is necessary to go back and add further

description to the context using the 477-atom vocabulary to do so.

Having selected at most four top atoms, we take their weighted average and declare that

the context. Empirically, this method works relatively well.

Some structure shows up when we look at correlation between word vectors. We also

examine the individual contexts and see that the atoms which are near them are generally
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Figure 3.2: The Time-Time Correlation Matrix of the Top 4-Truncated-Weights Context
Vectors. There are 1976 TRs and the vectors are 300-dimensional.

somewhat relevant.

Figure 3.3: The context at TR #230, and the top 4 atoms associated with the vector.

However, these context vectors are by no means perfect. The biggest issue is missing

some crucial word in the sentences. The atoms are also not as fine-grained as would be

desired. Future work in this area should investigate structural computational linguistics

approaches for pruning and selecting the atoms to use in the context, perhaps by using

some information about grammar and word order.
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3.4.5 Sparse Atom Weight Vectors

We come up with another representation of contexts mostly for display. For each context,

we create a 1550-dim vector where each index represents an atom. In the slots for the atoms

which are activated by the current context, we put the associated atom weights. Thus, we

have a 1550-dimensional sparse vector with which to view the evolution of context over

time. The main idea this representation espouses is the notion that the atoms of meaning

are an interpretable basis of context. The downside to this approach is that first of all,

these sparse vectors no longer live in the word space and thus no longer have the desirable

geometric properties of the word vectors and semantic atoms.

3.4.6 Aside: On Randomized Dimension Reduction

The word vector, atom, and context space we work in is typically 300-dimensional. However,

it is easy to get a low-dimensional version of these vectors which preserves the distance

geometry of the atoms.

Lemma 3.4.1. Johnson-Lindenstrauss (1984) [1].

The Johnson-Lindenstrauss lemma gives that for a set of points x1, · · · , xm ∈ Rn, there

exists a linear map f : Rn → Rp with p = Ω
(

logm
ε2 log(1/ε)

)
such that for ε ∈ (0, 1), there exists

a set of points f(x1) = y1, · · · , f(xm) = ym ∈ Rp such that for all i, j

(1− ε)‖xi − xj‖22 ≤ ‖yi − yj‖22 ≤ (1 + ε)‖xi − xj‖22 (3.1)

Therefore, supposing we want lower dimensional vectors to work with, we can always

apply Johnson-Lindenstrauss and take a random projection to lower dimensional space until

we find a set of points in the lower dimensional space satisfy the property of our desired ε.

For instance, supposing m = 500 (as is roughly the case with the atoms) and ε = 0.5, we

have that p ≥ 9 ∗ 4 = 36 suffices for finding a projection which maintains pairwise distances

with minimal decay in polynomial time. We can view this approach to dimension reduction

as a bound on worst-case performance compared to the average case performance that

performing low-rank SVD guarantees.



Chapter 4

fMRI Preprocessing and Quality

Control

4.1 Region of Interest Masks

In our fMRI analyses, we first specify regions of the brain related to abstract meaning and

context understanding. As per the Background Work section, the default mode network

(DMN) has been shown to be very related to notions of story context understanding.

4.1.1 Sherlock Masks

We use several of the masks due to Simony et al. (2016) [41], visualized in Figure 4.1.

Figure 4.1: The DMN A, DMN B, Ventral Language, Dorsal Language, and Auditory
Networks [41]

Two masks not in represented in Figure 4.1 are the occipital lobe and early visual cortex,

both of which house several visual processing centers of the brain. We list all ROIs here:
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• DMN A Network (2329 voxels)

• DMN B Network (1233 voxels)

• Ventral Language Network (2232 voxels)

• Dorsal Language Network (1412 voxels)

• Auditory Network (1189 voxels)

• Occipital Lobe (6474 voxels)

• Early Visual Cortex (307 voxels)

4.1.2 Harry Potter Masks

The Harry Potter dataset differs from the Sherlock dataset in that each subject has a

different number of voxels. However, the data comes annotated with the locatoin of each

voxel in a brain atlas, allowing us to subset voxels based on which region of interests they

come from.

For comparison purposes and the reasons we mentioned in the previous section, we use

the posterior cingulate cortex (PCC), the precuneus, the medial prefrontal cortex (PMC),

the ventral and dorsal language areas DMN, which typically has between 12, 000 and 14, 000

voxels in the Harry Potter dataset.

4.2 Correcting for Noise Bias and Normalizing

fMRI data is inherently very noisy [30]. Therefore, it is necessary to identify sources of noise

due to machinery, head movement, and so on, and remove them early in the analysis. These

requirements mean that it takes a large amount of time to produce a good fMRI dataset.

Often, fMRI studies are conducted over several sessions so that the human subjects may

take breaks. It is necessary to correct for the beginning and ending of each of these sessions

with appropriate experiment design (i.e., leaving a blank stimulus at the beginning and end

of each session, and then removing these data points in the analysis).
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4.2.1 How to Recognize Artifacts in the Data

A simple technique for recognizing overriding bias signals in fMRI data is to simply plot the

`2 norm of the voxel activity at a given timepoint. If any strange periodic signals show up, it

is an indication that there is some noise correction to be performed. We see in Figure 4.2 an

example of periodic quadratic artificats which appear over the course of each fMRI session.

These artifacts are likely due to bias from the machine itself, and should be removed.

Figure 4.2: Norm of fMRI Voxel Activation Plotted over Time Pre-Noise Correction

4.2.2 Low-High Pass Filters and Polynomial Subtraction

A common strategy for removing such noise is filtering out frequencies of the data which one

does not care about for a given experiment. For instance, it is known that the default mode

network (DMN) has a low-frequency long temporal response. Therefore, it is reasonable

to filter out high-frequency components. Another approach for removing such noise is

polynomial fitting and subtraction. Since we suspect there is an additional signal present

in the data unrelated to the fMRI BOLD response which appears over a very long time

scale, we just fit this function and remove it. In the case of the Harry Potter data, it fits to

a quadratic equation very closely, and we subtract this quadratic to get the noise-removed

data.
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4.3 Methods for Time-Aligning Stimuli and Responses

It is critical to line up the fMRI BOLD response with the stimulus which produced it. This

task is not as simple as simply matching TR to TR, since the BOLD response is rather slow

and there is a time delay between stimulus and response.

4.3.1 One-Time Shift

The simplest possible approach is to estimate a time-lag based on the average delay of the

BOLD response to a stimulus (this is roughly on the order of 4−5 seconds [30]). Therefore,

just count out the number of TRs that comes out closest to this number of seconds and shift

the stimulus input and response output accordingly by that number of TRs. We take this

approach in featurizing the Sherlock data, and choose the number of TRs to throw out to

be 3. We throw out the first 3 TRs of the response data (since it doesn’t correspond to the

stimulus), and the last 3 TRs of the stimulus data (since we never see the fMRI response).

The advantage of this method is that it avoids modifying the original data and is simple to

implement, introducing a small assumption about the relative positioning of the data.

4.3.2 The Hemodynamic Response Function (HRF)

The hemodynamic response to a single brief and intense neural event (imagine the Kronecker-

δ function impulse) is referred to as the hemodynamic response function (HRF) [30]. The

canonical HRF model suggests that the BOLD signal begins to increase about 2 seconds

after the onset of the external stimulus, and peaks around 5 − 8 seconds after the neural

activity has passed (see Figure 4.3). After peaking, the BOLD signal goes below its baseline

level for around 10 seconds [30].

Notably, this canonical hemodynamic response function is known to vary across indi-

viduals and even across different portions of the brain for the same subject. Therefore,

in some models, instead of using the hemodynamic response a priori, researchers learn a

subject-specific hemodynamic response [20].
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Figure 4.3: Shape of the Hemodynamic Response Function (HRF); picture due to
Lindquist et al. (2008)[30]

Convolution by HRF

The hemodynamic response function provides a way to estimate the fMRI BOLD signal

given a stimulus occurring over time. Given a neuronal spiking stimulus and a hemodynamic

response function, convolving the HRF with the neuronal spikes produces a predicted fMRI

BOLD response dependent on the specific HRF chosen. We can apply this idea to vector

valued stimuli as well. If we convolve a known HRF treating the time-vector for each

feature of the semantic vector as a neuronal stimulus, we are replacing the feature’s time

series with a predicted fMRI BOLD response based on that single feature as a stimulus.

This convolution must be carried out in the discrete sense, where we sample a discretization

of the HRF to get its values at the times of our TRs. We can then fit some linear model to

the transformed stimulus [20].

Glancing at Figure 4.3, we see that the convolution will have the effect of pushing the

main effect of the stimulus at the current time into the future by around 5 seconds, with

some additional decay starting at around the 6 second mark. Thus, we recover the effect of

ignoring the first few seconds of the response, and also gain the potential benefit of weighted

smoothing transformation operating on the stimulus.



48

4.3.3 Learning a Convolution Operation

The approach taken by Wehbe et al. (2014) [45] as well as by Huth et al. (2016) [24] is

to add additional regressors to their ridge regression models to learn parameter weights

for stimuli for a window of length 4 TRs. That is, they are including interactions from

the previous four stimuli in order to predict fMRI BOLD response: Effectively, they are

learning their own hemodynamic response function for a small time window, which may be

tuned across subjects and across voxel location in the brain. As a sacrifice, these models

end up using more parameters.

We use this approach to perform time alignment between fMRI responses and semantic

context vectors for the Harry Potter dataset. This model modification is relatively easy

to accomplish, as all we need to do is modify the featurization of the stimuli: We simply

concatenate the context vector at time t with the context vectors at times t− 1, t− 2, t− 3,

in order from most recent to least recent. If t < 3, we pad with zeros.

4.4 Quality of Individual Subjects’ fMRI Responses

In this section, we consider approaches to assess the quality of an fMRI dataset. If basic

properties do not hold, then it is entirely possible that the dataset had errors in its collection

methodology or experimental design.

4.4.1 Approximate Rank of the Temporal Correlation Matrix

We are first interested in investigating the right dimensional space with which to view the

fMRI data. How much low-dimensional structure is there, and can we take advantage of it

via dimension reduction approaches?

An easy way to evaluate the linear dependence structure present within the voxels is to

perform Principal Components Analysis on the data matrix X, which amounts to analyzing

the energy distribution of the singular values of the voxel-voxel correlation matrix (which

calculates correlations over time). If 80% of the variance is explained by the top 10 singular
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vectors (or principal components), then the voxel space is low-dimensional, which means we

should expect dimension-reduced versions of the fMRI data to work just as well if not better

in fitting predictive models. This approach has the advantage of being easy to visualize as

well. In Figure 4.4, we visualize the voxel-voxel correlation matrices for the DMN region of

the first subject for the Harry Potter dataset and the DMN-A region of the first subject in

the Sherlock dataset. It is obvious at first glance that the Sherlock dataset has a lot more

structure than the Harry Potter dataset.

Figure 4.4: Voxel-Voxel Correlation Matrix for a Representative Subject in Harry Potter
(left) and Sherlock (right)

The approximate rank of the Sherlock data is between 10 and 20 out of 1976 possible

singular values for all masks: These singular values explains 75−90% of the Frobenius norm

of the voxel-voxel correlation matrix. On the other hand, the Harry Potter dataset requires

550 out of 1295 possible singular values to explain 75% of the norm, suggesting there is

potentially a lot of noise in the Harry Potter dataset.

Nonlinear Dimension Reduction via Voxel Clustering

This visualization method suggests a nonlinear dimensionality reduction approach via per-

forming voxel selection. Simply perform k-means clustering on the temporal correlation

matrix. Then map each voxel to a supervoxel, i.e., the cluster which contains it.
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4.4.2 Visualizing Timepoints which Correlate

We can also calculate the time-time correlation matrix (where correlations are spatial, and

over voxels). This visualization is another approach to get an idea about the quality of

an fMRI dataset. If the stimulus is a narrative, we expect to see blocks of correlation in

“scenes” which are similar to each other. We can choose to analyze correlation along blocks,

a task we refer to as “automatic scene detection”, or we can choose to analyze correlation

in the off-blocks, which is essentially “time-segment matching”. In this thesis, we focus on

the latter problem.

In Figure 4.5, we compare the time-time correlation matrices of a representative subject

in both the Harry Potter and Sherlock datasets. Again, we find considerably more structure

in the Sherlock dataset.

Figure 4.5: Time-Time Correlation Matrix for a Representative Subject in Harry Potter
(left) and Sherlock (right)



Chapter 5

Shared Embeddings and Maps

Between Language and fMRI

In this section, we study the central goal of this thesis: To learn relationships between fMRI

spaces and semantic word embedding spaces.

5.1 Models

5.1.1 Ridge Regression

Ridge regression is one of the simplest modifications to linear regression. We use a similar

approach to Mitchell et al. (2008), Pereira et al. (2011), and Wehbe et al. (2014) [34,

38, 46]. See the description of ridge regression in Chapter 2 for more details. We make

the modification in that we do not learn a hemodynamic response function for the shift,

but we rather just throw out the first 3 TRs of the fMRI data and the last 3 TRs of the

semantic context vectors. Note that on the Sherlock dataset, this deletion corresponds to

a 4.5 second time shift. This shift is incredibly important: If it is not carried out, then our

experiments fail. In this work, we do not cross-validate over λ, and simply set it to 1 for

comparison purposes.

51
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5.1.2 Shared Response Model (SRM)

The Shared Response Model (SRM) (Chen et al., 2015)[9] is a probabilistic latent variable

model for multisubject fMRI data under a time synchronized stimulus. From each subjects’s

fMRI view of the movie, SRM learns projections to a shared space that captures semantic

aspects of the fMRI response. Specifically, SRM learns orthogonal-column maps Wi such

that ‖Xi −WiS‖F is minimized over {Wi}, S, where Xi ∈ Rv×t is the ith subject’s fMRI

response (v voxels by T repetition times) and S ∈ Rk×T is a feature time-series in a k-

dimensional shared space.

The orthogonal maps Wi let us travel from the shared space S to a specific subject’s

response Xi. Since W T
i Wi = I, we also have that we can go back from Xi to S via W T

i .

In the probabilistic setting, we consider a shared latent variable at time t st ∼ N (0,Σs),

where st ∈ Rk. Then, our probabilistic model for the response for subject i at time t

xit ∈ Rv conditioned on the shared feature vector st is given by

xit|st ∼ N (Wist + µi, ρ
2
i I) (5.1)

where we require that W T
i Wi = Ik and we choose parameters µi, ρi,Σs. We furthermore

assume isotropic noise for each subject (that is, we do not bias the voxels in any particular

way). By conditioning xit on st, and share st across all subjects i, we recover the notion

that the shared vectors are in fact shared. Note that Xi =
[
xi1 xi2 · · · xit

]
, S =[

s1 s2 · · · sit

]
. This probabilistic model for SRM can be optimized by a constrained

EM-algorithm (Chen et al., 2015)[9].

Semantic Shared Response Model

The semantic shared response model is just two layers of SRM. The first layer learns an

fMRI shared space SfMRI , while the second layer learns a shared space between SfMRI

and the semantic context embeddings Y . We call the shared space Sjoint. Note that for

normal SRM, the inputs typically have similar rank since they are all fMRI data views of

the same stimulus. For Sjoint, however, this may not be the case. The extent to which
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inputs having a similar rank is a necessary condition for success of the SRM model remains

to be seen. Future work should check whether SRM performance suffers in situations where

one subject’s fMRI data has a drastically different variance structure. We hypothesize the

answer is yes.

5.2 Experiments

5.2.1 Mystery Segment Ranking

In order to evaluate the quality of our shared spaces, we investigate whether mapping

multiple views of the same stimulus to the shared space results in increased correlation

between different views of related stimuli, and decreased correlation between different views

of unrelated stimuli.

One experiment which captures the aim of our question is the mystery segment ranking

task. Chen et al. (2015) introduces the mystery segment task as follows: First, train a

shared response model ({Wi}i, S) on the first half of the Sherlock dataset (temporally).

Consider the second half of TRs of the raw fMRI responses Xi. Map the second half of

each of these responses using the pre-learned W T
i . From now on, we will work in the

shared space induced by projecting W T
i Xi. Now, choose a holdout subject j. We come

up with an average template for the other subjects by finding Z = avgi 6=j(W
T
i Xi) on the

second half of the dataset. Similarly, we have separately W T
j Xj . Now for every window

[w : w+r] of length r in the held-out part of the stimulus, calculate the correlation between

W T
j Xj [w : w+r] and Z[u : u+r] for every possible u, where [u : u+r] denotes the values in

the window of length r for some time point u. If u = w maximizes the correlation, then the

mystery segment task has correctly identified the matching stimulus in the average view Z

for the heldout subject j. We can relax the notion of top 1 correlation to top-k, to allow

for situations where there may be several reasonably similar stimuli in the dataset (Chen et

al., 2015)[9]. Note that if our windows are allowed to overlap, then it is harder to identify

chance level if we use top−k, since there are intercorrelations in the time series itself.
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Scene Matching

The scene classification task maps a scene from a held-out view of the stimulus into some

shared space, and evaluates the top−1 correlation rank over all other scenes. This task is

essentially identical to mystery segment, except there are only 50 windows in the Sherlock

dataset and they are pre-defined based on semantic content in the Sherlock movie stimulus

and do not overlap. Training occurs on 25 out of the 50 windows, and we cross-validate

over 10 random splits of scenes. We test on the remaining 25 scenes. Therefore, chance

level is 1/25 = 4% for this task. Instead of holding out a single subject as we did in mystery

segment, we instead split the 17 subjects into two groups of size 8 and 9 and average the

projected fMRI response in the shared space. Then we do the same task as before. Note

that this scene matching test is very similar to the one used in Chen et al. (2016) [8].

Note that we can use this experiment for the ridge regression model as well. We consider

the case where we fit a linear map from semantic context vectors Y → SfMRI on a training

portion of the data. Then, we can take the raw fMRI views from the testing part of the

data from different subjects and map them into SfMRI as an average. We also take the

testing part of Y and map it into SfMRI as the heldout “subject”. Then, we perform the

scene matching task in exactly the same manner.

5.2.2 Voxel Reconstruction

Voxel reconstruction is the task of measuring the predictive generalization performance of

a linear map f : Y → X, where X is some fMRI space and Y is word-embedding space,

by looking at the magnitude of some distance measure d(X, f(X) = X̂). The smaller the

distance the better. This experiment is stricter than the Mystery Segment experiment for

it measures overall correlation directly, while the Mystery Segment task can succeed as long

as the correlation between correct pairs of scenes is larger than the correlation between

incorrect pairs of scenes (the absolute magnitude may be low). A possible exception to this

reasoning may be in cases where there are many similar scenes in the stimulus, in which the

top−1 rank may overly harshly penalize the score since truly, any of the scenes would have
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been a reasonable answer. This problem can be mitigated by considering the top−k rank

instead, where a scene pair (α, β) is deemed correct if α is in the k closest (by correlation)

scenes to β and β is in the k closest scenes to α.

Evaluation Metrics for Voxel Reconstruction

Definition 5.2.1. Pearson correlation r.

For two vectors x, y ∈ Rn, we have

r =
xT y

σxσy
(5.2)

where σx, σy are the standard deviations of x, y. This can be thought of as a scaled measure

of cosine similarity, which is identical when x, y have zero-mean.

Definition 5.2.2. Residual fraction f .

For two matrices X,Y , we have that the residual fraction with respect to X is

fX =
‖X − Y ‖F
‖X‖F

(5.3)

where ‖ · ‖F is the Frobenius norm of a matrix (i.e., ‖X‖2F =
∑

i,j x
2
i,j). In all cases, we

choose Y = X̂ for some prediction X̂ of X. Then we define f = fX .

In cases where we want to calculate Pearson correlation for matrix X,Y ∈ Rm×n, we

unpack the matrices into a (1 × m · n)-length vector and apply the definition as before.

Typically, y will be some prediction of x̂. The correlation can be thought of as capturing the

angle between the matrix-vectors in high-dimensional space. For high-dimensional vectors,

the probability that two randomly chosen vectors are orthogonal is well-known to be closer

to 1 the higher the dimension. Therefore, medium sized (say, 0.4) correlation can actually

suggest a lot of reconstruction potential. The residual fraction is a more direct measure of

how close a predicted matrix is to the true matrix. We normalize by the true matrix so

that values of the residual fraction for reasonable predictions are ≈ 1.
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ROIs [41] Reconstruction Correlation Residual Fraction

Ventral Language Network
Auditory Network 0.90 0.45
DMN (A) Network 0.87 0.48
DMN (B) Network 0.89 0.45
Dorsal Language Network 0.84 0.53
Occipital Lobe 0.83 0.54
Early Visual Cortex 0.97 0.22

Table 5.1: Sherlock: Reconstruction of pure fMRI Heldout Data using SRM

5.3 Results

5.3.1 Performance of the Shared Response Model on pure fMRI

We would now like to evaluate the extent to which we can find a shared space for the fMRI

responses of all subjects synchronized to the same temporal stimulus, like a movie.

Reconstruction

First, we report the Pearson correlation reconstruction results for each mask in the Sherlock

dataset in Table 5.1. We first learn the maps Wi on the training half of the data. Then, on

the testing part of the data, we project W T
i Xi into the shared space. In order to measure

reconstruction, we evaluate corr(〈Xi,WiW
T
i Xi〉). For the pure fMRI SRM, the correlations

values are very high and the residual fraction is correspondingly low on the testing data.

The Harry Potter reconstruction performance is considerably poorer. Average testing

residual fraction over subjects in the Harry Potter dataset is 0.83, which suggests that the

difference vector between Xi and X̂i is 0.8× the size of the vector we approximate.

Mystery-Segment and Scene Matching

For the Sherlock dataset, the results (Figure 5.1) show the averaged prediction accuracy

over 10 random splits on movie scenes and 40 random left out subjects for each split. We

note that peak accuracy (65%), which is fairly significant over chance of 2%, is achieved for

only 20-dimensional shared space S.
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Figure 5.1: Sherlock Scene Matching: Scene Prediction Experiment with SRM Using a
DMN ROI (image due to Janice Chen)

For the Harry Potter dataset, we split training and testing into the first and second

half of the TRs. Each section lasted around 21 minutes. The top−1 variant of Mystery

Segment performed relatively poorly when we choose a window size of 9 (this corresponds

to 18 seconds): We got around 7% accuracy. However, as we increased the window size

to 15, 30, 45, 60 TRs, mystery segment performance increased to 14.5%, 18.8%, 22.9%. Note

that 60 TRs corresponds to 2 minutes, which is already a rather long time. It may be more

reasonable to use a longer time scale since we are using the DMN region of interest (which

is known to have long time scales, see Section 2.2). However, Chen et al. (2015) are able

to get 33% accuracy using only a window size of 9 inside the postcingulate cortex (PCC),

a subset of the DMN which also should have a long timescale [9]. This fact suggests that

our Harry Potter data has low signal.

5.3.2 Performance of Ridge Regression between fMRI Spaces and Se-

mantic Context Vectors

Here we first note that the Harry Potter semantic context vectors had essentially zero

correlation with the fMRI data on the testing part of the data. Since all results were

equally bad, we do not mention them again. The average value of the residual fraction was

around 1.13, and the average correlation was 0.
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ROIs [41] 20-dim SRM raw fMRI

Ventral Language Network 0.15 0.06
Auditory Network 0.11 0.05
DMN (A) Network 0.11 0.04
DMN (B) Network 0.08 0.03
Dorsal Language Network 0.10 0.03
Occipital Lobe 0.08 0.04
Early Visual Cortex 0.08 0.04

Table 5.2: Sherlock Ridge Regression Shared Space Reconstruction: Comparing corr(Ŝ, S)
and avg. corr(X̂i, Xi)

Reconstruction

Here for the Sherlock dataset, we look at linear maps f : Y → SfMRI and fi : Y → Xi

learned through ridge regression. The results are summarized in Table 5.2 for 20-dimensional

SRM. We saw a considerable improvement in performance after using low-dimensional SRM,

suggesting that SRM results in a semantically relevant low-dimensional space. Interesting,

the ventral language network had the best performance across the ROIs. We ran the same

experiment for 50-dimensional and 100-dimensional SRM, and noted that while we still saw

a great boost in performance, the numbers were not quite as high as they were for the

20-dimensional SRM (perhaps 0.01 lower on average). Therefore, it seems that for these

particular masks, the voxel-space of the ROIs is truly low-dimensional.

However, if we try to reverse the map with a linear map g : SfMRI → Y to perform word

decoding, the performance is considerably worse. Reconstructing the word vectors results

in only 0.03 Pearson correlation. However, the fact that SfMRI is 20-dimensional while Y

is 300-dimensional implicitly imposes a constraint on the rank of the image of g: Therefore,

we are implicitly learning a rank 20 approximation of the context vector space. Since this

map does not fit very well, the approximate rank of the word vector space is higher than

20. Interestingly enough, when we calculate the low-rank approximations for several values,

for all the different ROIs, we find that the rank 60 consistently explains 75% of the norm,

despite the fact that there are different numbers of voxels involved. Therefore, it would be

an interesting experiment to see if whether we learned 60 dimensional word vectors directly

instead of 300-dimensional had any influence on the performance of g : SfMRI → Y .
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ROIs [41] Mystery Segment Test Accuracy

Ventral Language Network 0.16
Auditory Network 0.12
DMN (A) Network 0.20
DMN (B) Network 0.16
Dorsal Language Network 0.36
Occipital Lobe 0.08
Early Visual Cortex 0.0

Table 5.3: Sherlock Ridge Regression Top-1 Mystery Segment Accuracy

Mystery Segment

Here we only give results for maps from Y → SfMRI in the Sherlock dataset, since the

other ridge regression variants had rather poor performance. The results are summarized

in Table 5.3. We have above-chance accuracy (> 4%) for all masks except for the visual

cortex, which had zero accuracy. Notably, the Dorsal Language Network performs the best

with a 36% accuracy for top 1 scene classification. This means that using the map we

learned on training data, both from SRM and ridge regression, we can map context vectors

as well as original subject fMRI response into the same space and succeed at matching

the context vector to the correct fMRI segment 36% of the time when we focus on the

Dorsal Language Network. The DMN (A) Network has the second highest accuracy at

20%. Notably, these results are comparable to the Scene Matching task performed in Chen

et al. (2016) [8], where the authors got 38.4% accuracy on a similar task which only dealt

with multiple subject views instead of views from a different modality, i.e. semantic context

vectors.

5.3.3 Performance of 2-Layer Semantic Shared Response Model

In this section, we again only discuss the Sherlock dataset results since the Harry Potter

dataset results were insignificant. Since the performance was so poor, it was not worth

checking the scene matching task at this point.
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Reconstruction

For reconstruction of either SfMRI or the semantic context vectors Y , the Semantic Shared

Response Model performed a bit worse than the ridge maps between the raw fMRI activa-

tions and Y . That is, the reconstructions Sjoint → SfMRI and Sjoint → Y both had Pearson

correlation only around 0.02; i.e., essentially nothing. We speculate that it may be possible

to improve performance if we are able to find a low-dimensional space for the word vectors.

5.4 Discussion

In this chapter, our primary positive result on the Sherlock dataset was increased correlation

between the context vectors and the pure fMRI shared space, compared to the correlation

between semantic context vectors and individual fMRI responses Xi. We were able to get

36% accuracy with the Dorsal Language Network, 20% accuracy with the DMN (A) ROI,

and 16% with the Ventral Language Network and DMN (B) ROI over 4% chance at the

Mystery Segment experiment by mapping semantic context vectors and raw individual fMRI

responses into the same space, suggesting that SRM is able to act as a shared space for

data views beyond the fMRI modality. The map from semantic context vectors into SfMRI

also performed alright at raw reconstruction capability, with a 0.15 correlation between

prediction and truth for the Ventral Language Network and 0.11 correlation for the DMN

(A) and Auditory networks. Interestingly, both Language Network ROIs performed the best

at one of the tasks, and the Auditory Network and DMN (B) were also in the top 4 regions

of interest. Notably, Early Visual Cortex got 0% accuracy on the Mystery Segment task,

and the Occipital Lobe also poorly performed, suggesting that our semantic context vectors

correlate better with the language, “meaning”, and auditory portions of the brain than

the visual, a not entirely-surprising result. Nevertheless, there is still some above-chance

correlation with the Occipital Lobe, an area focused on vision.

On the other hand, we were not able to learn a map going the other direction from

the fMRI shared space to the context vectors. Both ridge regression and SRM failed as
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approaches here, suggesting there is something beyond the particular method of fit which is

causing the difficulty. One candidate issue which comes to mind is the differing dimension-

ality between SfMRI and the semantic context vectors. Since the semantic context vector

matrix is roughly rank 60, it is possible to use the Johnson-Lindenstrauss randomized di-

mension redution method. We will attempt this setup in future work.

Despite the SRM improving our voxel reconstruction capabilities, when we compare

our results to Huth et al. ((2016)) [24], we fall considerably short in terms of correlation:

Our best voxel reconstruction correlation is 0.15, while theirs is roughly 0.6. They also

have several voxels reconstructed with Pearson correlation in the range 0.3− 0.5 [24]. This

shockingly good performance leads us to ask what aspect of our analysis prevents us from

getting as high numbers: The dataset itself? The preprocessing of the data? The semantic

vectors? The linear maps we learn? Some of this gap may be explainable by their task

being slightly easier in a certain sense: Huth et al. (2016) have fMRI data which records

brain response to hearing specific words; they then match the featurizations of exact words

that they heard in story sequence with the resulting fMRI data. Our task is slightly more

challenging, since we match descriptions of scene information and story content to a holistic

fMRI response to visual and auditory elements.

In the future it would be desirable to apply their approach to our dataset to see what

the critical factor in Huth et al.’s performance is. We suspect that regardless of their

performance, their results may improve if they also used SRM instead of post-processing

the individual maps they learned. Our elusive goal of true thought-decoding remains elusive,

though we have taken steps towards results which suggest it is possible to do. Notably, we

can pseudo-decode fMRI in the brain by way of the mystery segment task, though this hack

is considerably less satisfying than finding an embedding from fMRI data into semantic space

which generalizes well. Thus the question of Huth et al. (2016) that asks on whether “the

contents of thought, or internal speech, might be decoded using these voxel-wise models”

remains open [24].



Chapter 6

Future Work and Conclusions

The work presented in this thesis is ongoing; therefore, here we have enumerated several

directions in which to consider proceeding.

6.1 Improving Word Context Vectors

One of the first tasks at hand is to further improve the semantic context vectors used in

learned shared models. We desire that they be even more low-dimensional and fine-grained

than they currently are. Furthermore, there is no negative correlation among word vectors,

while there is negative correlation in parts of the brain. This tendency should be fixed.

Secondly, it would be very interesting to continue developing methods for automatically

parsing story-specific information using the sparse coding approach. After creating the

dataset consisting of all seven Harry Potter books, it seems worthwhile to experiment further

with the NLP techniques to see if any results come out of it. Learning better semantic

vectors would greatly help the performance of the various approaches to shared model

learning.
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6.2 Nonlinear Shared Models

Throughout this thesis we have solely considered linear models. It seems fruitful to consider

whether nonlinear models can improve the generalization fit of the semantic word embed-

dings to the shared fMRI space. We would also like to see whether it is possible to construct

a nonlinear shared space where different dimensionality features may be embedded. Here

we propose two starting points, though the literature on nonlinear dimensionality reduction

is quite vast.

6.2.1 Kernel SRM

A kernelized version of SRM exists: That is, consider fMRI vectors x, y. Suppose we would

like to treat these vectors as living in some strange higher dimensional space; perhaps even a

Hilbert space. Denote the mapping of x, y into this higher dimensional space by φ(x), φ(y).

Then, we have the property that 〈φ(x), φ(y)〉 = f(〈x, y〉): That is, we can replace all

inner products with a function of inner products and evaluate inner products in the higher

dimensional space by only consider inner products in the current space. Since the objective

of SRM can be expressed in terms of inner products, we are able to run SRM for nonlinear

featurizations of the fMRI space. An interesting starting point is the quadratic kernel,

which takes into account second order correlation information. Currently, no datasets have

been found which drastically benefit from using a kernel, so it would be interesting to see

if any ROIs in the Sherlock dataset could take advantage of this approach.

6.2.2 Convolutional Autoencoders

A yet more general nonlinear approach to finding a shared response is to use neural net-

works. An autoencoder is a nonlinear map from a higher dimensional space to a lower

dimensional space back to a high dimensional space. In their simplest form, autoencoders

act as a kind of low-dimensional approximation to input information, since you are forced

to throw some information out when you pass through the lower-dimensional space. To

create a shared space, simply force multiple subjects Xi to be reconstructed after passing
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through a shared hidden layer. That way, the hidden layer averages out over subjects and

sacrifices idiosyncratic terms in the individual Xi to learn an overall shared representation.

Convolutional layers add constraints on the model, and act as small filters over the fMRI

response. Convolutional neural networks have seen incredible successes in recent years es-

pecially in image processing and computer vision, so it is not too farfetched to think they

would perform well at brain response featurization too. Learning a shared embedding space

between fMRI response and language seems like a good idea to try, and is reminiscent of

recent work performed by Johnson et al. (2015) [26].

6.3 Bootstrapping fMRI Decoders with End-to-End Image

Captioning

We previously demonstrated that the multi-view SRM model produces a semantically rel-

evant 20-dimensional space using views of multiple subjects watching Sherlock. However,

our analysis omits the original visual and audio views of the movie to focus on the fMRI re-

sponse and semantic word embeddings of scene annotations, and notably, this fact shows up

in the performance of the Mystery Segment task where it appears the visual processing por-

tions of the brain are not highly correlated with our semantic context representations. The

next step is to mimic the image captioning system [26]. Their Dense-Cap model includes

a CNN for images which feeds into an RNN language model for producing textual descrip-

tions. Training the model end-to-end results in a shared space between images and semantic

vectors. However, the current SRM cannot be simply incorporated into this end-to-end ar-

chitecture. For this reason, the autoencoder variant of SRM becomes more attractive to try

out, since it can more easily be included as a component of such an end-to-end architecture.

Preliminary tests suggest that this new model performs well, but further testing remains to

be completed.
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6.4 Conclusion

Our primary positive result in this thesis is that the multi-view SRM model produces a

semantically relevant 20-dimensional space using views Xi of multiple subjects watching

Sherlock. This low-dimensional shared space SfMRI is able to match fMRI responses to

scenes with performance considerably above chance. We were also able to construct a 300-

dimensional embedding of the semantic context induced by scene annotations Y . Finally,

we showed that we can learn a linear map f : Y → SfMRI such that corr(SfMRI , f(Y )) is

significantly larger than corr(Xi, fi(Y )), implying the shared fMRI space better organizes

the semantic meaning from individual fMRI views.

Of course, we also have many negative results: The Harry Potter dataset failed at

most of our experiments, the 2-layer SRM did not work well at creating an embedding

space for both language and fMRI voxel activations, and all current experiments have failed

at constructing a map from the shared fMRI space SfMRI to the word embedding space

Y to facillitate thought decoding. However, there is reason to believe these failures may

be due to the differing dimensionalities of these two spaces, and future work will focus

on producing lower-dimensional semantic context vectors which have finer-grained lists of

associated words to help mitigate this problem.



Appendix A

Embedding Words and Semantic

Context in Rn

A.1 Global Matrix Factorization Methods

Distributed embeddings for the semantic senses of words have been popular starting in the

1990s. Deerwester et al. introduced Latent Semantic Analysis (LSA) as a vector space

model for language. The essential premise this work follows from is the Distributional

Hypothesis of Meaning, which suggests that the meaning of a word is related to its

co-ocurrence statistics with other words [43]. LSA considers words and “contexts” in which

the words occur. For instance, a context could be defined as “within four words to the left

or right of the word ‘giraffe’ ”, or “whatever fills in the following blank: ‘She was the best

at in school.’ ”. Typically, context is taken to mean a document (as in topic modeling)

or some text window of some radius. The radius can be one-sided (i.e., only consider co-

occurrences to the left of a word) [43]. Thus, we see this natural language understanding

approach to context relates to our understanding of a story context. Having defined a

vocabulary for some body of text, and having defined our contexts, we can then proceed to

ingest a corpus (for instance, the English language Wikipedia) and record the co-occurrence

counts of each word in each context. After normalizing by row, we may then apply some

66
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dynamic range transformation (i.e., take the logarithm) and proceed to take a low-rank

approximation of the transformed matrix using singular value decomposition. Then, taking

the resulting row vector for each word produces an embedding into the geometry of Rn,

where various distance metrics may be evaluated. As a result, these “word vectors” may

now be used for various information retrieval and machine learning algorithms. This simple

set of steps comprises latent semantic analysis [43]. Over the years, work in the vector

space community continued, introducing probabilistic LSA and several other variants of the

original algorithm. Most often, changes consider different transformations on the original

values of the word-context matrix, like term frequency-inverse document frequency (tf-idf)

and positive pointwise mutual information (PPMI). Distance metrics used to compare the

resulting vectors also vary. Other variants of the basic LSA approach include the way

these values are smoothed and sparsity constraints. Of course, the choice of context also

remains variable, and some approaches constucted multiple word-context matrices, which

are known as dual-space models. Other approaches model more complex interactions of

context through tensors [43].

A.2 Local Context Window Approach

In the meantime, another line of work which continued throughout the 2000s was a neural

network approach to featurizing language for machine learning algorithms. The original

approach is due to Bengio in 2003, with the original Neural Network Language Model [7].

The goal of any language model is given a set of previous words, to output a distribution on

the likelihood of the upcoming word. To perform this task, a single-hidden layer neural net

is constructed where the inputs are a previous local window of text with the loss function

defined by the softmax distribution eyi∑n
j=1 e

yj over the possible vocabulary outputs yj . In

order to run this efficiently for large vocabulary sizes, it is intractable to simply encode

each word in the vocabulary using the standard basis in R|V |, where |V | is the size of

the vocabulary. Instead, Bengio proposed to learn a representation of each word as a

low-dimensional word embedding (both at input and output) and then to parametrize the
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probability distribution in terms of the softmax of the image of the neural network function

on these low-dimensional word embeddings. In the neural net architecture proposed, the

single hidden layer can be though of as a combination of the input word vectors, and is thus

a sort of semantic context embedded in real vector space [7].

Several variations of this approach occurred over the following decade, introducing Re-

current Neural Network (RNN) and Restricted Boltzmann Machine (RBM)-based models,

both of which are considered “deep” in the sense that each used multiple layers of network

to parametrize the functions which defined the language model. Ironically enough, the next

big breakthrough which came in 2013 had no hidden layers. The word2vec model of Mikolov

[33] is essentially a log bilinear model, where hidden layers are thrown away to speed up

computation. Both an input vector vin and an output vector vout are learned for each word

in the vocabulary. In the CBOW (continuous bag-of-words) model, the model attempts to

predict the next word given the previous k words. Here, the probability of word w being

the k + 1st word is P{wk+1|{wi}ki=1} ∝ exp
(
〈vw+1,

1
k

∑k
i=1 vwi

)
. Comparing to Bengio’s

NNLM, we can think of the average as an alternative, non-hidden context vector. The fact

that we use the moving average of word representations as a context vector also relates

back to the psychological descriptions of context, as in [23]. In the more popular skip-gram

variant of Mikolov’s work, the training task is as follows: Given a word w, predict the words

in a surrounding local context window of radius r. Given the input w, the probability of

an output being word x P{x|w} ∝ exp
(
〈vinw , voutx 〉

)
(thus, log-linear). This objective is then

trained using gradient descent. The final word vector for w is then typically the average

vinw +voutw
2 .

A.3 Explaining Analogy Properties of Word Vectors

Word2Vec became quite popular in 2013 due to the seemingly magical analogy property:

For tuples of words like (“king”, “queen”, “man”, “woman”), it turns out that vking−vman+

vwoman = vqueen [33]. In the following year, Pennington et al. came out with the GloVe

model [37], which performed even better on various benchmark tasks than Word2Vec and
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maintained the analogy property. GloVe looked back to the low-rank matrix factorization

point of view of LSA, and saw that Word2Vec local context approach could be interpreted in

the matrix factorization framework and thereby improved. However, theoretical justification

for these methods was absent until 2015, when Arora et al. proved a theorem implying the

analogy property follows from variants of a squared norm objective for weighted low-rank

matrix factorization [4].

First, we represent our notion of an analogy mathematically. For the “man:king ::

woman:queen” example, we have

P{χ|king}
P{χ|man}

≈ P{χ|queen}
P{χ|woman}

(A.1)

This formulation is reasonably expressed as an objective that should be small:

∑
χ

(
log

(
P{χ|king}
P{χ|man}

)
− log

(
P{χ|queen}
P{χ|woman}

))2

(A.2)

where taking logarithms does not affect the relationship encoded - it is merely convenient

to relate our measure to that of a standard procedure in building word-context matrices,

applying pointwise mutual information (PMI) to every element in the matrix. Then we

proceed to define a high-dimensional embedding of words into a vector space. Suppose we

define the vector vw for word w as being indexed by all contexts χ in which it appears,

where vw(χ) = log
(
P{χ|w}
P{χ}

)
is PMI(w,χ). Therefore, in general for the a : b :: c : d analogy:

∑
χ

(
log

(
P{χ|a}
P{χ|b}

)
− log

(
P{χ|c}
P{χ|d}

))2

=
∑
χ

(va(χ)− vb(χ)− vc(χ) + vd(χ))2

= ‖va − vb − vc + vd‖22

(A.3)

Note that taking logarithms of the probability quotients allows us to express our ob-

jective with simple vector addition and subtraction. In order to predict d optimally, we

find

d̂ = argminj‖va − vb − vc + vj‖22
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The equality in [A.3] only holds for the high-dimensional embedding we chose. How-

ever, the dimension of the vectors in word2vec is 300 - much smaller than the number

of contexts χ. Arora et al. propose a model for low dimensional embeddings. For the

simple case where the contexts are just single words, consider the PMI matrix M where

Mij = PMI(wi, wj) ≈ vwi · vwj . The idea is that we want to express word vectors as a

weighted low-rank factorization of M (low-rank to allow low-dimensional word vectors).

It turns out that this factorization is useful if the word vectors produced from the

factorization are isotropic, and ifM is close to positive semidefinite. The following theorem

is proven in [4]:

Theorem A.3.1. Log-Probability of Words.

Assuming word vectors are drawn from scaled spherical Gaussian distribution v ∼ r·N (0, σI)

where r is a scalar random variable, and furthermore the partition function of the probability

model is concentrated, then

logP{w1, w2} =
‖vw1 + vw2‖22

2d
− 2 logZ + log

(
q

2

)
± ε

logP{w} =
‖vw‖22

2d
− logZ ± ε

(A.4)

where d is the dimension of the space, q is the context window size, and Z is approximately

the value of the partition function.

Note that the term log
(
q
2

)
directly follows from the fact that for two words to appear

in a context of size q, there are
(
q
2

)
possible locations, which is a multiplicative factor on

the probability and thus an additive factor for the log probability. Let γ = log
(
q
2

)
. These
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together imply that

PMI(w1, w2) = log
P{w1, w2}

P{w1}P{w2}

= logP{w1, w2} − logP{w1} − logP{w2}

=
‖vw1 + vw2‖22

2d
− 2 logZ + γ ± ε−

(
‖vw1‖22

2d
− logZ ± ε

)
−
(
‖vw2‖22

2d
− logZ ± ε

)
=
‖vw1‖22 + ‖vw2‖22 + γ + 2〈vw1 , vw2〉

2d
− ‖vw1‖22 + ‖vw2‖22

2d
±O(ε)

=
〈vw1 , vw2〉

d
+ γ ±O(ε)

(A.5)

In order to prove Theorem [A.3.1], it is necessary to identify the probability model

conditions under which we get the approximation PMI(w1, w2) ≈
〈vw1 ,vw2 〉

d so as to make

the matrix factorization objective reasonable. The necessary conditions given in the theorem

statement can be encapsulated by treating corpus generation as a dynamic process, where

a new word is output at each time point t. We define the probability of word w being

output at time t with respect to a unit `2-norm context vector ct ∈ Rd called the discourse

vector, which follows a random walk in the space. Note that this generalizes the notion of

context from the CBOW word2vec model.

P{w emitted at time t|ct} ∝ e〈ct,vw〉 (A.6)

The idea of the discourse vector is that it represents the subject matter of the text at

time t. Since the log probability is just a dot product over two vectors which we learn,

this model is log bilinear, just like the word2vec model. By requiring ct+1 = ct + ηt,

where ηt is some random displacement vector, we recover the psychological notion of

context as the slow drift of information introduced in a previous section. The context

must drift slowly enough so that the partition function
∑

w e
〈ct,vw〉 is nearly the constant

Z (i.e., the random walk uniform over the unit sphere must mix quickly). We briefly

note that the maximum a posteriori estimate of ct is given by the c which maximizes

P{c|w1, · · · , wk} = P{c}Pw1,··· ,wk|c{=}P{c}
e
∑k

i=1〈vwi ,c〉

Z . Recalling that we draw c uniformly,

we only need maximize the second term. By linearity of inner products, we have that
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c =
∑k

i=1 vwi , normalized since we must have ‖c‖2 = 1 [4].

We can then make the following approximation using the dot products of the word

vectors:

argminj
{
‖va − vb − vc + vj‖22

}
≈ argminj

{
E[χ] · ‖va · vχ − vb · vχ − vc · vχ + vj · vχ‖22

}
≈ argminj

{∑
χ

(
log

(
P{χ|a}
P{χ|b}

)
− log

(
P{χ|c}
P{χ|j}

))2
}
(A.7)

by the definition of M. Therefore, we may replace each dot product with the PMI. Thus

Arora et al. give an explanation of why the vector addition approach approximates analogies

for low-dimensional word vectors as well.

A.4 A Weighted Matrix Factorization Objective

We now define the Squared-Norm Objective for weighted matrix factorization, which

can be derived by maximizing the log likelihood of the word cooccurrence distribution.

Since we assume the random walk mixes quickly, the distribution is roughly multinomial

[4]. We skip the algebra and approximations to give the definition:

Definition A.4.1. Squared-Norm Objective.

min
{vw},C

∑
w1,w2

Xw1,w2

(
log(Xw1,w2)− ‖vw1 + vw2‖22 − C

)2
(A.8)

where C is a constant and Xw1,w2 denotes the number of cooccurrences of w1, w2 in the

same window. Xw1,w2 can be replaced with the truncation min(Xw1,w2 , ψ) for some constant

ψ. This truncation is necessary for performance, and can be justified with the recognition

that overly frequent words will obey the assumptions used in Theorem [A.3.1]. Note that

this objective is essentially fitting the first equation of Theorem [A.3.1], while scaling the

importance of the fit according to the number of cooccurrences involved. It naturally follows

that an alternative objective would also be reasonable, replacing the log cooccurrence of
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w1, w2 with PMI(w1, w2) and replacing ‖vw1 + vw2‖22 with 〈vw1 , vw2〉, as per the conclusion

following Theorem [A.3.1].

Both of the objectives in the preceding definition are versions of weighted SVD, which is

an NP-hard problem. It is still possible to approximately solve these objectives using some

form of gradient descent, and in practice this method works well.

A.5 Sparse Coding and Atoms of Meaning

Interestingly, the methods produced by the Squared-Norm objective have other useful prop-

erties. Consider a word with multiple meanings, for instance, the word “bank”. A bank is

a financial institution, it’s possible to “bank” a shot off the board into the hoop in basket-

ball, and the river “bank” is a place teeming with wildlife and plants, near the water. In

a follow-up work, Arora et al. (2016) prove that word vectors with multiple senses learned

by PMI factorization (see the previous section) are decomposable into weighted sums of

the hypothetical word vectors for the various senses of the original word [5]. Furthermore,

it is possible to recover these senses via sparse coding. That is, given n word vectors

v1, · · · , vn ∈ Rd and a sparsity parameter κ, we would like to find an overcomplete basis of

vectors a1, · · · , am such that we can write each vw as

vw =
m∑
j=1

βwjaj + ηw (A.9)

where ηw is some noise term and # {βwj which are nonzero for w} ≤ κ. We learn {aj}mj=1

as well as {βwj}w,j . The k-SVD algorithm can be used to optimize these variables and

empirically achieves good results despite the original problem being non-convex [5]. We call

the resulting {aj}j semantic atoms. Investigating the nearby words using cosine distance

results in sets of words which can be used to tag the atoms, which depending on the number

and quality of the word vectors, can result in very fine-grained senses of meaning.
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A.6 Paragraph and Sentence Vectors

We now backtrack a bit and recall where we left off with word2vec by Mikolov et al.

[33]. While one can consider estimates of the context vector via averages of word vectors

or the MAP estimate of the random walk context of Arora et al. (2015), other work

has moved forward to attempt to directly estimate real space embeddings of sentences,

paragraphs, and larger textual context groups. Le and Mikolov in 2014 came up with

Paragraph Vector, an algorithm for learning feature representations for variable lengths of

text [29]. The algorithm is very similar to the CBOW and Skip-Gram models of word2vec,

and is also thus reminiscent of the work in psychology by Howard [23]. The first model,

the Distributed Memory Model of Paragraph Vectors (PV-DM), is essentially the same as

CBOW (learn low-dimensional inputs for the word vectors and use their average to predict

the next word) with the addition of a “paragraph context” vector in addition to the words

which gets shared across all words in the paragraph. The second model, Distributed Bag

of Words (PV-DBOW), is more similar to the Skip-Gram model in word2vec, and uses a

single paragraph vector to predict words in a small window for all words in the paragraph.

Though the authors use the word “paragraph”, this can really be applied to any size of

text [29]. The best performance is obtained by combining the paragraph vectors learned by

these two models via concatenation.

Another more recent approach to learning variable length distributed representations

of text is the work on Skip-Thought vectors by Kiros et al. in 2015 [28]. This work is

inspired by Skip-Gram as well as the sequence-to-sequence learning framework introduced

by Sutskever et al. (2014) for machine translation [28]. The idea is to consider sentences as

sequences of words, represented by unfolded LSTM networks (a specific model of Recurrent

Neural Net). Then, much like in the Skip-Gram model of Mikolov et al. [33], the task

is to predict the sequence before the current sequence and the sequence after the current

sequence. The model is trained on a corpus of sentences from many kinds of books, and the

gradients are computed via Backpropagation Through Time for the before-sequence and

the after-sequence, in a manner identical to Sutskever’s machine translation model. This
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model has the advantage in that the sentence vectors produced as a result act as inputs to

a decoder RNN, which can then spew out more sentences relevant to the input sentence of

the vector. Considering this model from the cognitive science point of view is interesting

because the RNN models sentence context directly as a form of semi-leaky memory due to

the use of LSTM networks, which act as differentiable memory cells (one can learn when

to keep or throw away information without experiencing technical issues like disappearing

gradients or gradient explosion [28]).

Both of these models claim good performance on a wide variety of benchmark tasks,

and suggest that they are good for use as featurizations in all sorts of NLP tasks.

A.7 Summary

In this section, we have overviewed a wide variety of approaches for encoding the meaning

of words and semantic context in real vector space Rn. The history of the approaches is

relevant to our work because half of our task is based in natural language understanding: In

order to construct maps between fMRI data and language, we need a method for featurizing

the meaning of context in a space which has meaningful geometry.
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