
Comparing Hebbian Semantic Vectors
Across Language

Kiran Vodrahalli

Princeton University

May 12, 2015

1. Introduction

Meaning is a relatively ill-defined term when discussing language. We could
suppose that the meaning of a word is a map from seen text or spoken sound to a
concept existing in the physical world. For instance, a "tree" refers to the leafy, tall
green-and-brown thing outside of my window. But the difficulty becomes more
apparent as we attempt to describe what an "ideal" is, or perhaps "love".

How then, do our brains represent meaning in such a manner that people
understand what other people are talking about, particularly when discussing
abstract concepts? Furthermore, is it possible to use processes similar to those of
the brain to represent abstract concepts in a computer? In fact, ideas for solving
this representation problem from computer science are justified approaches in
neuroscience as well.

1.1. Semantic Vectors
One prevalent idea from natural language processing is the semantic vector
approach (also referred to as vector space model, or VSM), which hypothesizes that
the meaning of words can be expressed as vectors in Rd, typically for d 2 [102, 103].
The origin of this idea is from the late 1990s when word-context matrices were
defined in the field of information retrieval. The goal is to exploit the distributional
hypothesis of meaning, which roughly says that words which have similar co-
occurrence patterns in a corpus have similar meaning. For instance, the words
"dog" and "cat" might appear in a lot of similar contexts: "The owner petted
the dog/cat.", "The owner fed the dog/cat.", and so on. These popular pets are
both domestic mammals of similar size and are in a rough sense similar, at least
compared to whales or cars.

The original approach was to build a word-context matrix for a corpus: rows
are words, columns are "contexts", essentially settings in which the words appear

1

in the corpus. The co-occurrence frequencies go in the entries, and are usually
normalized, smoothed, and transformed. Typically some dimension reduction
process (for instance, singular value decomposition (SVD)) is applied to this matrix,
and the vectors from the resulting process are termed semantic vectors. Simple
linear algebraic operations are then applied to these vectors to solve linguistic
problems. As an example, the cosine distance between two vectors is often applied
to tell how similar they are. k-means clustering is also often used to find groups
of words which are similar. There is a large literature on the application of
word-context matrices to topic modeling, word sense disambiguation, and other
tasks. More information about vector space models is presented in detail in the
comprehensive survey by Turney and Pantel [Turney2010].

Another approach to creating semantic vectors came about from Bengio’s study
of neural networks intended to learn a language model of a corpus. Words in a
fixed-size vocabulary V are represented as one-hot vectors and are fed as inputs
into a neural net. An intermediate layer C represents each of the words with a
small number of units, which are then fully connected to a hidden layer H. H
finally produces a softmax output layer of size |V|, where each unit represents the
probability that the word correponding to it occurs next in the corpus [Bengio2003].
More recently, Mikolov et. al. developed a much simpler and easier to train log-
linear model (known as the skip-gram model) the sole goal of which is to learn
semantic vector representations. A central idea in this approach is to throw out
the complexity of a fully-connected neural net with nonlinearities, and instead use
a barebones structure to learn the vectors [Mikolov2013]. Somewhat surprisingly,
this method (known as word2vec) works a lot better than other word vector
representations in the word analogy task. A better model known as GloVe was
introduced the following year by Pennington et. al. [Pennington2014]. However,
the results were entirely empirical for all of these approaches. A few months
ago (March 2015), Professor Arora (who is at Princeton) published a simple
unsupervised learning model with empirical guarantees as to the performance of
word vectors on an analogy task [Arora2015].

From the point of view of the computer scientists, semantic vectors applied
to natural language problems in machine learning have been wildly successful
empirically. The theoretical grounding behind why this approach works is an
exciting field that is developing rapidly. However, while some semantic vector
approaches to representing meaning do rely on the architecture of a neural net,
these neural nets are not biologically inspired. Typically, the cost function relates
to a language model and the objective is to learn word vectors which maximize
the probability of predicting the correct next word. Our goal in this paper is to
introduce and evaluate a more clearly biologically-justified neural network which
learns semantic vectors in an unsupervised fashion.

2

1.2. Semantic Vectors in Neuroscience

Semantic vectors have also attracted interest in the neuroscience community as
an approach to correlating fMRI, EEG, and MEG data from a person with what
a person is actually thinking. First we must ask if fMRI, EEG, or MEG data
actually correspond with semantic meaning. Pulvermüller did some work to
demonstrate that the brain encodes representations which distinguish words
in separate classes: For instance, grammatical function words, concrete content
words, and words referring to visual stimuli. He analyzes fMRI data as well as
temporal dynamics (through EEG and MEG data) to come to these conclusions.
fMRI studies revealed that cortical areas devoted to motor function were activated
upon being presented with words associated with motor movement, and visual
perception cortical areas were activated upon being presented with visually-
associated words [Pulvermüller1999]. Furthermore, Pulvermüller’s work supports
a Hebbian model of word representation, which roughly summarized is that every
concept or word has a separate neuronal assembly. A neuronal assembly refers to
a group of cells that are strongly connected, and activate together ("fire together,
wire together"). Particularly, Pulvermüller observed that concrete content and
abstract function (i.e., grammar) words had neuronal assemblies which were
lateralized differently across both brain hemispheres. Laterality refers to the
number of cross-hemisphere connections. Abstract function words had assemblies
with high degree of laterality while concrete content words had a low degree of
laterality. Pulvermüller also advocates support for the hypothesis that grammatical
knowledge is represented in connections between neuron assemblies and in the
activation dynamics exhibited by the cell assemblies - in other words, it is not only
which neurons activate, but also the intensity of their activation which determines
representations of meaning [Pulvermüller1999].

Further evidence for neural signatures of concepts embedded in brain activity
data comes from multidiscplinary work on the intersection between neuroscience
and machine learning. Tom Mitchell, Robert Mason, Svetlana Shinkareva, Vincente
Malave, and Francisco Pereira collaborated on a project to learn which neural
activation patterns correspond to various semantic categories by using classifiers
like logistic regression to fit the data. They found that neural representations of
concepts contain perceptual and motor information relevant to that concept. Also
notably, these neural representations span all four lobes in both hemispheres as
well as the cerebellum. This approach also was able to classify the category of
word being read, and even more impressively, the precise word that was in a
person’s mind at a given time [Just2008].

More recent work has corroborated evidence for these neural encodings of
language meaning by comparing semantic vectors to brain activity data, and even

3

incorporating brain activity data in the construction of semantic vectors. Fyshe
et. al. (2013) developed a vector space model based on a large (16 billion word)
corpus. Vectors in this corpus were 2000 dimensions: The first 1000 dimensions
were termed "Document" features and the last 1000 were termed "Dependency"
features. Document features are built from co-occurence data with a single word’s
presence in a document, while Dependency features are built from co-occurence
data with contexts of the type "eat ___" or "a ___ television screen", where the
blank represents the word in question. The objective was to model adjective-noun
phrases. This paper also analyzed the resulting semantic vectors with respect
to brain activity data. Specifically, Fyshe et. al. analyzed the following task: A
person is presented with a phrase while MEG data is collected. Then, the authors
formed a training set {(x, y)}, where x is input and y is the label. The input was
taken to be the averaged MEG data for a subject, while the label is the sentence
associated with the data. They then defined a mapping from sentences to their
VSM-based semantic vectoral representation of the phrase and trained a regressor
to predict semantic vector representations from MEG data, which when trained
on 36 phrases was able to predict the correct semantic vector representation for 2
sentences in the test set with 0.9440 accuracy [Fyshe2013].

In a second paper by Fyshe et. al. (2014), brain activation data recorded while
people read words is incorprated into building the semantic vector space model.
They introduce a new matrix factorization method called JNNSE which creates a
VSM that is more correlated to word semantics, produces semantic vectors that
are more predictable from brain activity data across recording technologies (i.e.,
fMRI, MEG), and maps semantic concepts directly onto the brain. In other words,
there is a mapping between brain representations of meaning and a vector living
in Rn which also represents the same information. Fyshe et. al. also suggest
that their findings indicate that there is semantic information available in brain
activation data that is not present in corpus data which text-based VSMs lack
[Fyshe2014].

Therefore, there seems to be sufficient evidence for a semantic vector-like
representation of concepts in the brain. Following Pulvermüller’s support of
the Hebbian hypothesis, we will build a Hebbian network-based semantic vector
model as a greatly simplified representation of what may be occurring in the
human brain.

1.3. Evaluating Semantic Vectors

Most methods are concerned with the performance of word vectors on tasks
within a single language; for instance, a word analogy task or a sentiment analysis
task. The aspect of word meaning that semantic vectors are evaluted on capturing

4

is primarily relational within a single language. For instance, we might produce
the k closest vectors according to some distance metric to a given semantic vector,
and check a thesaurus or a concept database to evaluate precision and recall - do
the surrounding vectors show up as synonyms, or at least as highly related words?
Another example of a single language task we can use to evaluate word vector
performance is analogy. We might desire word vectors to provide a mapping from
words to Rn solving the equation vec(“king”)� vec(“man”) + vec(“woman”) =
vec(“queen”). Arora et. al. show that word vectors which solve an equation of
this type actually encode distributional properties along the lines of

P{c|king}
P{c|man} ⇡ P{c|queen}

P{c|woman} (1)

where c is a word [Arora2015].
At the very least, most papers publishing new approaches to building word

vectors within the past few years assessed performance on single-language tasks.
Sutskever et. al (2014) apply word vectors to machine translation between

English and French. Sequence-to-sequence learning works by learning weights for
an LSTM-based neural network which translates from one language to another
by compressing natural English language into vector representations, which
are then passed to a second LSTM network which extracts French words out
of it, indicating that the community recognizes that semantic vectors should
encode meaning transferable across language [Sutskever2014]. Hassan et. al.
(2012) use multilingual representations of words to improve quantification of the
strength of semantic connections between textual units (i.e. semantic relatedness).
However, these papers do not evaluate methods which produce word vectors
by evaluating how similarly they perform across languages. Rather, the goals of
these approaches is either to improve machine translation algorithms or make
use of multilingual information to improve performance on some linguistic task
[Hassan2012]. To the knowledge of this author, there have been no published
approaches which evaluated a given semantic vector representation by assessing
its cross-language performance.

In this paper, we will evaluate a method of creating semantic vectors by
assessing the similarity of their performance across English and French. The
justification for this evaluation metric stems from the dictum that "meaning is
invariant across language" for the most part. Therefore, since semantic vectors are
supposed to represent meaning, language structure needs to be accounted for in
the construction of word representations so that interactions between semantic
vectors do not change across languages.

5

1.4. The Task
The goal of this paper is to build and evaluate a Hebbian network vector space
model of language. Our parallel texts are the English and French translations of J.K.
Rowling’s Harry Potter and the Philosopher’s Stone ([Rowling1997], [Ménard1998]).
We learn semantic vectors for matching subsets of the words in the text and
introduce some new metrics for assessing word vector performance that depend
on cross-lingual corpora.

2. Learning Semantic Vectors with Hebbian Learning

Given a corpus, we wish to define a neural network that applies Hebbian learning
to learn low-dimensional representations of the semantics of each word. Recall that
the main principle of Hebbian learning is "fire together, wire together". Neurons
that are active at the same time strengthen their connection, while neurons that
are not active simultaneously weaken their connection.

2.1. The Hebbian Network
In Figure 1, we present an illustration of the network we use to learn the word
vectors. It contains an input layer representing the vocabulary V and a single
sigmoidal hidden layer H with k-winner-take-all inhibition. V represents a one-
hot encoding of all the words in the vocabulary: Each word is assigned an index
from 1 to |V|. H is fully connected to V . We denote these weights between the two
layers as W 2 R|H|⇥|V|, where these weights are updated in a Hebbian fashion.
The basic scheme is that we take a sliding window of some size 2r + 1 across
the corpus. For all words present in the same window, we "fire" the neuron and
compute the activations of the hidden layer. Letting x 2 R|V| be the activation
input and y 2 R|H| be the activation output, we have

y = s (Wx) (2)

where s is the sigmoid function s(z) = 1
1+e�z , where the function is applied

elementwise in the vector setting. These inputs and outputs are then used to
calculate the weight updates. In the k-winner-take-all setting, the equation is
slightly different. Let ŷ be y in sorted order from largest to smallest, and ai denote
the ith element of the array a.

yj =

(
s (Wx)j if s (Wx)j � ŷk

0 otherwise .
(3)

6

Figure 1: Diagram of the Hebbian Network

2.2. Theoretical Interpretations of Hebbian Learning

The basic Hebbian learning update is given by

4Wij = hyjxi (4)

where xi is the activation of a unit corresponding to the ith word in V , yj is the
activation of a unit corresponding to the jth unit in H, and Wij is the weight of
the edge between xi and yj. h is the learning rate.

A more stable learning rule is Hebbian learning with weight decay, which is
modified slightly from the original Hebb rule:

4Wij = hyj(xi �Wij) (5)

We now give a theoretical justification for why these rules work.

2.2.1 Hebbian Learning as PCA

To provide intuition, we consider the simple case of a linear threshold neuron:
Essentially, Figure 1 where |H| = 1 and s is a linear function instead of sigmoid.
Here we denote y as y since there is only one output unit, and W as simply w,
since again, there is only one output. We claim that in this setting,

7

Theorem 2.1. The first Hebbian learning update (Equation 4) computes the first principal
component of the data matrix X for a linear-threshold neuron.

Here, X can be considered as a concatenation columnwise of all inputs x to
the network. As a reminder, the first principal component can be interpreted as
the eigenvector associated with the largest singular value after singular value
decomposition (SVD) of X . Another interpretation is as the direction with most
variance in the data.

Following the treatment in Chapter 4.5 of [O’Reilly2000], we show that Theo-
rem 2.1 is indeed the case:

Proof. First, we consider the weight-change rule analagously to velocity in physics
[Seung2015], and make a simple average velocity approximation for the weights
by assuming that the number of input patterns is 1

h :

4wi ⇡ Et [xiy] (6)

Substituting Equation 2 for y,

4wi ⇡ Et [xi (x · w)]

= Et [xix] · Et [w]

= Ci · Et [w]

(7)

where C is interpreted as a correlation matrix if the inputs x have mean 0 and unit
variance. Re-writing in vector notation, we have that

4w ⇡ Cw (8)

where w is a valid approximation of Et [w] if we assume that the weight matrix
changes slowly. Now we have the formulation of the power iteration algorithm
to find the largest eigenvalue (taking C tw for t large and normalizing will give
the largest eigenvector of C assuming that w as a non-zero component in the
direction of the largest eigenvector). Thus as t ! •, 4w will converge to a vector
in the direction of the largest eigenvector, and the update will keep stepping in
the direction of the principal component, which will dominate the finite number
of steps in directions other than the principal component.

2.2.2 Hebbian Learning as CPCA

However, Equation 4 diverges as t ! • since we keep stepping in the direction
of the strongest principal component. This problem inspires us to come up with
Equation 5, which includes a weight-decay term to ensure that w converges. We

8

can see this regularization forces convergence by assuming that the output is
always active, i.e. y = 1. Then, Equation 5 becomes

4w = h (x � w) (9)

Again using the average velocity approximation and letting ŵ be the value w
converges to, we get that

4ŵ ⇡ Et [4ŵ]

= hEt [x � ŵ]

= h (Et [x]� ŵ)

(10)

and therefore ŵ = Et [x] when 4ŵ = 0. Thus with regularization, the weight
vector w converges to something sensible with constant activation, the average of
the inputs [Seung2015].

We can also interpret this learning rule in terms of Conditional PCA, or CPCA
[O’Reilly2000]. By conditioning on a given input pattern occurring at time t, and
treating activations as probabilities, we can write the update of Equation 5 as

4wi = h

Â
t

P{y|t}P{xi|t}P{t}� Â
t

P{y|t}P{t}wi

!

= h

Â
t

P{xi, y|t}P{t}� wi Â
t

P{y|t}P{t}
! (11)

Setting this update equal to 0 to find the equilibrium yields

wi =
P{xi, y}

P{y} = P{xi|y} (12)

by the definition of conditional probability. For the case where y = 1 all the time,
we recover our previous analysis: P{xi|y} = P{xi}, since y never changes. Since
we are interpreting xi as a probability, wi = Et [xi].

2.2.3 Adding k-Winner-Take-All Inhibition

Thus far we have only considered linear neurons with a single output unit.
However, we would like to use Hebbian learning to build semantic vectors with
many features to represent words in language. The solution to this problem is to
use competitive learning, i.e. interneuronal inhibition. Our method of choice is to
use k-winner-take-all inhibition as in Equation 3. We can think of k-winner-take-all
as finding the mean vectors of various subsets of the data. Essentially, we are

9

diving the data into k clusters, each summarized by a single vector. We can see this
result by applying the average velocity approximation to Wj, where j corresponds
to a unit in the hidden layer H (thus, j 2 [|H]). The activation of this unit is yj.
Here, Wj is a vector since we no longer have one output. Following [Seung2015],

4Wj ⇡ h
⇣

Et

h
yjx
i
� Et

h
yj

i
Wj

⌘
(13)

Again setting the update to 0 to find the steady state, we get

Ŵj =
Et

h
yjx
i

Et

h
yj

i (14)

If we simplify Equation 3 so that yj is either 0 or 1, then we get that Ŵj is the
normalized average for the subset of vectors for which yj is non-zero. If we let
yj 2 [0, 1], then we have a weighted average of sorts.

With this competitive learning inhibition, multiple hidden units give additional
information about the inputs. We can take Wi as the semantic vector for each
input unit i.

2.3. Interpreting Hebbian Semantic Vectors
We can use the analysis in the previous section to better understand what it is
the word vectors really are. Keep in mind that our inputs are sequential blocks
of words of size 2r + 1, where r is a window radius. In the simplest case, we
express these blocks in vector form by letting xi = 1 if word i in V is present and
0 otherwise (we will later refer to this setup as the uniform case, because we do
not distinguish between locations in the window).

Now, Equation 14 tells us that each unit in H is associated with an average
vector over a subset of words that are co-activated simultaneously fairly often. Let
Sj be the word subset associated with hidden unit j. Denote vi as the semantic
vector of word V(i). Then vi’s largest feature values are located at indices j such
that V(i) 2 Sj.

We can also get intuition about the extent to which we are restricting the
representation. Since there are k possible units active at a given time, there are
 (|H|

k) different possible subsets of units that can be learned. The parameter k
represents how many units we use to represent a given subset of words. However,
we are limited by the need to allow for "dead cells" which do not learn in order
to find an optimal representation, which is why (|H|

k) is only an upper bound
[O’Reilly2000]. There are (|V|

2r+1) possible windows of length 2r + 1 (since in the

10

uniform case, word order does not matter and these windows are essentially bags
of words). If |V| is much larger than |H|, then we are imposing a restriction on
the relatedness of various words. There may be some optimal value of |H| such
that the number of subsets of words is very close to the actual value of meaningful
subsets of size k.

2.4. Beyond Bag-of-Words

The uniform Hebbian approach is invariant to sentence structure and grammar.
In fact, in the implementation given in [O’Reilly2012], language structure is only
scrutinized at a paragraph level in a bag-of-words style. We would like to see if
we can modify the basic model to learn semantic vectors that take into account
the structure of sentences.

2.4.1 Context Window Distribution

The modification we make to the previously given model lies in the representation
of the input vectors x. Instead of letting xi = 1 if word V(i) is present in the
window and 0 otherwise, we attach a distribution D so that xi = D(f (i)) and 0
otherwise, where f (i) is a map from the input indices which are activated to the
ordered set [2r + 1] (essentially, we want the distribution to be applied in order
over the sliding context window).

The idea behind this setup is that word order should matter. If our context
window size is small enough, we will essentially be scanning over sentences or
subsentence contexts. As a simple example, perhaps the closer a word is to the
middle of the window, the more important it is in relation to the other words
in the window. Here, a reasonable model would be choosing D to be Gaussian
N (r + 1, s2) centered at the middle index of the window (a middle is guaranteed
since 2r + 1 is odd). A more novel distribution might be bimodal, peaking at the
edges of the context window with a minimum at the center. The influence behind
this choice of distribution would be the hypothesis that words spaced 2r + 1 words
apart are particularly related with each other, and only mildly related to words
inbetween this distance. We could consider this to be a skim-reading model of
language: A skim-reader who glances at every 2r + 1st word to get the gist of a
document would tie representations of these words strongly together.

In this paper, we analyze three different context window distributions:

1. uniform, where D(i) = 1 for all i 2 [2r + 1].

2. unimodal, where D = N (r + 1, s2), where r + 1 is the center of the window.

11

3. bimodal, where D(i) =

(
N (0, s2)(i) if i  r + 1
N (2r + 1, s2)(i) if i � r + 1.

. We take care to

choose s so that th distributions agree at the center, r + 1.

We can also parametrize our models by r - this translates to varying context
window size.

3. Cross-Lingual Evaluation Metrics for Semantic Vectors

We introduce a few novel metrics for evaluating semantic vector spaces. Gener-
ally, the mantra to remember is "meaning is invariant across languages". This
phrase guides our intuition that a set of word vectors trained on a corpus from
language L1 should behave very similarly to a corpus trained on a corpus from
a language L2. We will use the quantitative metrics to compare semantic vector
models parametrized by tuples (Li,D, r). Basically, each attempts to determine
a "closeness" between two semantic vector models. We also give a visual metric
so that we can gain intuition about the overall shape of the distribution of the
semantic vectors.

3.1. Quantitative Metrics

3.1.1 Language Similarity Distance

Let vL1
i be the word vector in language L2 for a given word VL1(i), and vL2

j be
the word vector for the translation of the word T �VL1(i)

�
= VL2(j). Note that

we assume T : VL1 ! VL2 is bijective, and therefore that |VL1 | = |VL2 |. Then,
we want to compute how well the vectors for VL1(i) and VL2(j) represent the
language-invariant meaning behind the word. Note that we first normalize all
vectors. Let word i 2 VL1 .

LSD(i,VL1 , T) =

vuuut
|VL1 |
Â
j=1

⇣
(vL1

i · vL1
j)� (vL2

i · vL2
j)
⌘2

(15)

The justification behind this is as follows: First we find the cosine distances
between the ith and jth word vectors in both languages. Then we take the difference
in the cosine distances - this value roughly tells us the difference in rotatation it
would take to get from one of the vectors to the other. We ignore the direction
we have to rotate, so we take a square sum. We conclude that the word vector
representation is good across languages for a given word i if LSD(i, · · ·) is close

12

to zero, and thus that the word vectors do a good job of capturing meaning of i
with respect to the other words.

Using this metric, we can define metrics for a pair of word vector sets in terms
of the total language similarity distance (TLSD) and average language similarity
distance (ALSD):

TLSD
�VL1 , T : VL1 ! VL2

�
=

|VL1 |
Â

i
LSD

�
i,VL1 , T �

ALSD
�VL1 , T : VL1 ! VL2

�
=

1
|VL1 |

TLSD
�VL1 , T �

(16)

Again, the smaller these metrics are, the more invariant the word vectors are to
languages L1,L2.

3.1.2 Procrustes’ Transformation

If the languages L1,L2 are similar enough in origin, we may expect the word
vectors that result from them to behave similarly already. If they are truly nice,
we may expect that we can define a linear transformation (scaling, rotation,
translation) from one word vector set to the other. The Procrustes’ transformation
gives the optimal linear transformation P from matrix M1 to M2 in the sense of
the Frobenius distance

⇣
defined as kMkF =

q
tr
�MM>�

⌘
. That is, P : M1 !

M2 minimizes kP (M1)�M2kF .
Here, we represent the semantic vector sets as matrices XL1 ,XL2 2 R|H|⇥|L1|

for each language since |L1| = |L2|. We can define three different metrics based
on Frobenius distance.

1. We can evaluate the starting distance kXL1 �XL2kF .

2. We can evaluate the Procrustes’ distance after a Procrustes’ transform

kP �XL1

��XL2kF (17)

3. We can evaluate the Procrustes’ ratio
kXL1 �XL2kF

kP �XL1

��XL2kF
(18)

which would be large for word vector sets for which a very close Procrustes’
transform existed. A large score is better for the third metric since a larger
decrease ratio in Frobenius distance implies that the Procrustes’ transform
found more linear structure in the map, which we define to represent a
better semantic vector set.

13

3.1.3 k-Nearest Neighbors

It is also useful to develop a tool to find the closest words to a given word in both
languages to see how different the returned words are. The larger the overlap
between the k-closest word sets in L1 and L2, the better the word vectors.

We compare across languages by seeing how many of the words are corre-
sponding translation pairs, thus enabling the calculation of recall for several vector
pairs to evaluate performance. Recall that recall is defined as |Desired Retrieved|

|Desired Total| . We
will call this metric k-recall in order to embed the parameter k in their definition.
Defined explicitly, for each word in L1, we will produce the k closest words in
the sense of Euclidean distance in the semantic vector space for L1. For each
translation we do the same thing. Then for each translation pair, we have a set
of closest words. We can translate the L2 words to their L1 forms and evaluate
k-recall (which, since there are k points for both French and English, is the same
as k-precision).

We can also use k-Nearest Neighbors as a more visual tool to assess how good
the word vectors are qualitatively. For instance, if we know two characters are
very strongly related in a story, we would expect the angle between the words
to be small (i.e. the cosine is large). We find the closest vectors to a few other
interesting words and see if they make sense.

3.2. t-SNE Projection

We would also like to visualize our word vectors in a more qualitative way to see
if there is interesting structure.

t-SNE projection is a method of projecting words in higher dimensional space
down to R2, so that they can be plotted and visualized [van der Maaten2008].
The basic idea is that we define a distribution over pairwise distances between
vectors in the high dimensional space, as well as a distribution over pairwise
distances for vectors in R2. The object of t-SNE is to minimize the Kullback-
Leibler divergence between these two distributions, where the KL-divergence is
an asymmetric pseudometric that satisfies DKL (PkQ) � 0 for any distributions
P ,Q. It is essentially the expectation of the difference in log probabilties and is
defined directly as

DKL (PkQ) = Â
i
P(i)ln

✓P(i)
Q(i)

◆
(19)

Another interesting interpretation of the KL-divergence is as the Bregman distance
over the simplex, which is relevant in more technical machine learning theorems.

14

t-SNE projection has become popular as a means of visualizing high-dimensional
spaces over the past several years, and most of the newer papers involving word
vectors cited in the References use this approach to make plots.

4. Implementation Details

4.1. Dataset

The process of narrowing down parallel corpora took some time. First we decided
upon the languages L1,L2. In this paper, L1 = English and L2 = French. We
chose English and French because they have similar roots and most importantly,
the author is able to read both languages.

Originally, the parallel corpus was to come from the publicly available Eu-
roParl corpus (EuroParl). However, the EuroParl corpus was very large and the
vocabulary was also very large for both English and French, which imposed
an issue on time constraints and methods of choosing an appropriate subset.
We wanted a vocabulary that was small enough so we could include the whole
vocabulary in the input layer of the neural net. Ideally, the corpus will not be
too large so that we can train on the whole corpus in a reasonable amount of
time. We also required that the semantic content of the windows should be very
similar, which is relatively true across book translations. We then decided that a
reasonable length chapter book would provide all of these properties.

We also thought it would be useful to be particularly familiar with the chosen
book, so as to have an intuitive sense for word distributions in the corpus. Finally,
we thought it would be interesting to have a book with some words that are
specific to the book to see how they interact. A chapter book with a plot also
allows us to see interesting interactions between characters. Here, words can
be names - names represent a whole character, more than just the meaning of a
word. Therefore, we choose Harry Potter and the Philosopher’s Stone ([Rowling1997],
[Ménard1998]), one of the author’s own favorite books. The English version of
the text used has 81536 words , and the number of words after preprocessing is
77744. The English vocabulary size is 5982. The French version of the text used
has 85472 words, and after preprocessing has 89709 words (due to expansion of
some apostrophe-joined words). The French vocabulary size is 8152.

In order to transform the books into an analyzable format, we converted
owned PDFs of both versions of the book and used a freely available online tool
(convert-to-txt) to convert it to a text file.

15

http://www.europarl.europa.eu/
http://document.online-convert.com/convert-to-txt

4.2. Preprocessing the Corpora

As a result of the method of obtaining text file versions of the two books, language-
specific cleanup was necessary before performing any training or analysis. First
of all, some typos were made in the English version of the text due to a few
failures of the OCR PDF-to-TXT technology. Specifically, the largest problem was
the usage of non-alphanumeric characters to replace alphanumeric characters.
For example, several instances of the letter combination "fi" were replaced by
another (single) character that looked similar to the combination. Similar issues
were presented in the French corpus. In order to ensure that words did not have
separate spelling representations when they should not, we used an English and
a French dictionary (via the Python Enchant module) to check if each token that
we found was a word. To ensure tokens were words, we had to strip periods,
commas, colons, semicolons, questionmarks, parentheses, brackets, and slashes
from both texts. We also lowercased all text. Specific to the English text were
quotation marks (i.e. ""), and specific to the French text were French quotation
marks (i.e. «»). More care was required for single quotes (i.e. ”) in both texts, since
some words include a single quote inside of them (for instance, "aujourd’hui" in
French). Of course, contractions also contain these single quotes. In French, it
was also important to handle the dash "-" correctly: Dashes are used to denote
speech, and are also used in verb conjugations in questions. We also took care to
ensure that these modifications did not result in words getting pulled together.
Considerable hand-checking was performed whenever a word was not identified
by the dictionary, usually requiring specialized Python scripts to check specific
patterns in text.

Because Harry Potter is a fantasy series, there are also several words that are
not in normal English and French dictionaries. The Enchant module has a function
to add your own dictionary to the module, and Harry Potter-specific words were
added by hand throughout the process. Some multi-word objects were encoded
as single words (i.e. "You Know Who", a common phrase referring to Voldemort,
the villain of the book). For French, translation of Harry Potter-specific words had
to be performed carefully since the author had not read the whole French book
before. To the end of ensuring translations were accurate, a context-checker was
implemented to search the book for all appearances of a specific word and then
provide the surrouding context so that the translation was obvious. In cases of
serious doubt, the word was looked up on the internet.

After this process was carried out, a string containing the entire novel was
split up by spaces and stored in an array that fit entirely in RAM. For easy access
later on, this array was saved into a file that can be re-loaded easily.

One possible issue with our approach might be that we did not preprocess with

16

consideration to lemmatization. Instead, we just preprocessed at the specific word
level, which means that different tenses of verbs are considered different words
and that plural and singular nouns are considered different as well. We did not
consider this too much of a problem since effectively, we will be duplicating word
vectors if (for instance) the plural and singular of a noun are used in the same
settings. In some settings, singular and plural nouns may be used in different
ways: "the Weasleys" refers to the family as a group, while "Weasley" may refer to
only one member of the family. In these cases, we desire different word vectors
anyways.

Another possible issue is that since we remove periods, when running the
sliding window across the corpora, we ignore sentence boundaries, meaning that
some windows might have semantic content that is not as self-contained. However,
there is also an argument that we should consider windows across sentences.
Even if there is not as clear a grammatical relationship between such words, we
are more interested in semantics and adjacent sentences may have similar content.
A more profound problem is across paragraphs, or potentially chapters. The
approach we took was the simplest in the interest of time. Further work could
experiment with more specific boundaries on window context.

4.3. Restricting the Vocabularies

Originally, the English vocabulary size after preprocessing was 5982 and the
French vocabulary size was 8152. We wanted to analyze a subset of the vectors
produced for these words, and ensure they were interesting. After poking through
the word lists ordered by frequency in corpus, we decided to throw out the most
common 100 words except for 14 of them, since most of the words were articles,
conjunctions, and pronouns. We then kept the 1900 words following for a total of
1914 words.

Then we had to create a bijective translation dictionary in order to evaluate
the metrics defined in Section 3. To perform this task automatically, we program-
matically accessed Google Translate and checked if the English-French translation
result was in the set of valid French Harry Potter vocabulary words (standard
French + the handcrafted Harry Potter-specific dictionary). We made a list of
words that did not check out, and then checked those by hand. From this process,
we ended up with 1368 English words and 1187 French words. We noted that
the set of French words is smaller than the English set, since sometimes there are
two English words with the same French translation: For instance, in plural cases
("Gryffindor" and "Gryffindors" both become "Gryffondor" in French). Another
example is synonymity: "Warm" and "hot" both map to "chaud". To ensure we can
compare word-to-word, we removed these duplicates so that there is a one-to-one

17

mapping between French and English words. The final vocabulary size was
therefore |V| = 1187. Therefore, the number of word pairs in each vocabulary is
(1187

2) = 703891 different comparisons to make.
We restricted the vocabulary size so that computations were feasible (we may

have had to hand-translate a lot more otherwise). Furthermore, smaller frequency
words probably have worse word vectors. Since we have a relatively small corpus,
we should focus more on the words which have good representation. Also, if we
had analyzed more words, picking out individual words to analyze may have
been more difficult, as the number of word pairs increases roughly as the square
of the vocabulary size.

4.4. Training the Networks
We trained 18 separate Hebbian networks of the type described in Section 2 to
compare. We describe the set of parameters that maps to each network. Here,
"en" refers to English and "fr" refers to French. Recall that the tuple refers to
language, distribution, and window radius r (windows are size 2r + 1). The set of
the networks N is therefore given by

N = {"en", "fr"}⇥ {uniform, unimodal, bimodal}⇥ {2, 3, 4} (20)

The weight matrix W was uniformly randomly initialized with values in the
range [0, 1]. We chose |H| = 100 and k = 10 for k-winner-take-all inhibition. Thus
the semantic vectors live in R100. We chose h = 0.1 for the learning rate. We
enforced a shared vocabulary size across corpuses of |V| = 1187 words, and had
a bijective translation dictionary for the vocabularies. The number of connections
in the network was therefore |W| = |H| ⇤ |V| = 118700, which is comparatively
small to more recent networks in the literature. We trained each network on only
one run across the corpus in the interest of time. It took roughly 2 hours for
a single network to train on the English text, and closer to 3 hours for a single
network to train on the French version of the text. In order to train networks
efficiently, we used three computers to simultaneously train networks. It took a
total of around 24 hours to complete all training (sans debugging).

5. Results and Analysis

5.1. Performance of Semantic Vector Space Language Pairs

5.1.1 Language Similarity Distance

We use the Average Language Similarity Distance (ALSD) (see Equation 16) score
to sort the language pairs of semantic vector sets. Each of the 81 pairs and its score

18

are presented in Figure 2. We also plot the distribution of the scores in Figure 3.
Recall that the smaller scores imply more similarity across semantic vector sets.
Each comparison takes an average over roughly 1187 LSD comparisons (each
of which is calculated as the square root of a sum of 1187 squared distances).
So 11872 = 1408969 ⇡ 1.4 ⇥ 106 cosine distance comparisons are being made to
calculate the ALSD score for one pair of parallel semantic vector sets.

First of all, we notice a large dropoff in ALSD quality at semantic vector set
language pair 65. Interestingly, this dropoff contains all vector space models
which use (uniform, r = 4) for both the English and French models. Therefore,
the (uniform, r = 4) setting is terrible for this metric: Perhaps the content window
is too large, suggesting that smaller content windows are sufficient. Indeed, the
English (uniform, r = 3) distribution also does not perform very well. r = 2 is
drastically better than the other uniform distributions for English. The trend of
low r performing better seems to hold across distributions and languages as well:
The top 10 model pairs have 15

20 models with r = 2, 3
20 models with r = 3, and

only 2
20 models with r = 4. Perhaps not too surprisingly the best model pair is the

same model, simply compared across language. It is also arguably the simplest
model with the fewest assumptions: uniform weights and the smallest r possible.
The (bimodal, r = 2) set of word vectors seems to be roughly the second best in
terms of ranking.

5.1.2 Procrustes’ Distance and Procrustes’ Ratio

For every semantic vector set pair, we give the Procrustes’ distance scores in
Figure 4, where the smaller the score, the better the pair. We give the Procrustes’
ratio scores for every pair in Figure 5: Here, larger scores imply a better pair.
We also provide plots of the values for the Procrustes’ Distance and Procrustes’
Ratio scores in Figure 6 so that the distribution of values is clear. The first
aspect of the Procrustes metrics that we notice is the highly similar shape of the
Procrustes’ distance plot to the ALSD plot – they have practically the same shape,
just slightly translated by maybe 5 semantic vector set pairs. Particularly, note
the slight bump before the values shoot up. This phenomenon would lead us
to expect that the pairs that do well in ALSD also do well with the Procrustes’
distance metric. However, briefly scanning Figure 2 and Figure 4 demonstrates
that (English, uniform, r = 2) performs badly with Procrustes’ distance and very
well with ALSD (we count several pairs for which this vector set is at the end of
the list of pairs for Procrustes’ distance, and several pairs for which this vector
set is at the top of the list of pairs for ALSD). However, it is clear that several
of the top performing ALSD vector set pairs are top performing on Procrustes’
distance as well; for instance, (French, bimodal, r = 2, 3). We also note that for

19

Figure 2: Each of the Semantic Vector Set Pairs and Associated ALSD Score

Figure 3: Distribution of the ALSD Scores (Smallest to Largest)

20

Figure 4: Each of the Semantic Vector Set Pairs and Associated Procrustes’ Distance Score

Figure 5: Each of the Semantic Vector Set Pairs and Associated Procrustes’ Ratio Score

21

Figure 6: Semantic Vector Pairs Plotted Best to Worst for Respective Metrics

the first 50 or so vector set pairs, the score does not change that much and there
is considerable overlap. However, the tail ends which perform quite badly do
not seem to match up very much. Curiously, the pair ((English, uniform, r = 2);
(French, uniform, r = 2)) has the best score for ALSD and the worst score for
Procrustes’ distance. Therefore, though the metrics were intended to measure a
similar notion of word vector invariance across language, ALSD and Procrustes’
distance appear to measure opposite traits of the word vectors! The strange part
is that the distributions of values appear so similar: In fact, it is almost as though
the bad pairs from ALSD have become the good pairs of Procrustes’ distance, and
vice versa.

In contrast to the distance scores, the pairs containing (English, uniform,
r = 2, 4) typically do particularly well with the Procustes’ ratio score. This
behavior is matched in ALSD for r = 2, but not at all for r = 4 (recall that (English,
uniform, r = 4) performed terribly on the ALSD metric).

Looking over Figure 4 and Figure 5, we see that the top semantic vector set
language pairs are dominated by model comparisons that have at least one non-
uniform distribution for the sliding window; particularly, the French unimodal
and bimodal models tend to be considerably better than uniform.

In Figure 7, we plot both Procrustes’ scores where the x-axis is ordered from 0
to 80 by increasingly worse semantic vector set pairs according to the Procrustes’
ratio. In this plot, Procrutes’ ratio is necessarily monotonically decreasing (since
lower ratios imply worse vector set pairs) while the behavior of the Procrustes’
distance need not be monotonically increasing (i.e., getting worse). Essentially,
this graph demonstrates that the Procrustes’ distance is an inherently different
metric from the Procrustes’ ratio. There appears to be no noteworthy monotonicity

22

in the Procrustes’ distance when pairs are plotted in order with respect to the
Procrustes’ ratio metric. While the dropoff in performance at the end (a decrease
for Procrustes’ ratio and an increase for Procrustes’ distance) remains in the two
plots - the decrease in score is nevertheless much more dramatic for the Procrustes’
distance. Overall, it is fair to say that the ratio captures a different aspect of the
word vector relationship.

One interesting data point is pair 49, or (English, uniform, 2) and (French,
uniform 2). This pair is unique in the drastic difference in performance of the
distance and ratio metrics. Recall again that this pair performed the best under
the ALSD metric. While this semantic vector set pair performs averagely in terms
of ratio, it is the worst in terms of Procrustes’ distance, which suggests that the
initial distance between the English and French vectors was particularly bad for
the uniform case with r = 2. Since the ALSD score is good for this pair but the
Frobenius distance is bad, perhaps some nonlinear transformation dilates the
(French, uniform, r = 2) vectors so that distance is large while angles between
correponding vector pairs across language are small.

Another pattern we scrutinize in more detail is the decay in quality of both the
Procrustes’ ratio and Procrustes’ distance at the 73rd semantic vector set language
pair. Referring to Figure 4 and Figure 5, we see that these pairs are dominated by
uniform distributions compared to distributions with non-identical parameters
(i.e., either different r or different distribution). In particular, (French, uniform,
r = 2, 3, 4) dominates the bottom end of the pairs for both Procrustes’ metrics.

5.1.3 t-SNE Plots

Now we provide visual representations using t-SNE for all 18 semantic vector
spaces.

Figure 8, Figure 10, Figure 12 are the English semantic vector spaces while
Figure 9, Figure 11, Figure 13 are the French semantic vector spaces. Note that
r increases left to right in each of these figures. Most of the representations
tend to have a cluster at the center of varying size while the rest of the vectors
are distributed in an increasingly sparse oval around the dense center. Two
distributions violate this trend; namely, the two uniform distributions (particularly,
(English, uniform, r = 3), (English, uniform, r = 4), and (French, uniform, r = 4)).
These distributions perform very badly with the ALSD metric, but pretty well with
the Procrustes’ distance metric and Procrustes’ ratio metric. It might be interesting
future work to apply these methods on a bigger dataset to see how the picture
changes – some of the uniformity is probably due to noise due to low frequencies
of some words (especially given the relatively uniformly radial distribution of the
data). Another bit of fruitful future work may be the categorization of the cluster

23

Figure 7: Overlayed Procrustes’ Distance and Procrustes’ Ratio

of low-norm vectors in the center. Based on examining the actual vector values,
we suspect these smaller vectors at the center may be the vectors representing
low-frequency words. Then, it would appear that the uniform distributions
without this central clump may in fact have found significant representations
for the low-frequency words. However, because there is not enough information
in the corpus for low-frequency words, these representations might be in fact
incorrect, explaining the bad ALSD scores, which leads us to posit that for the
uniform distribution, higher r values require a larger corpus, which is in line
with common wisdom regarding n-grams: namely, larger context windows lead
to more possible combinations of words, and thus require more data to perform
well. Intriguingly, this problem does not appear to arise for the unimodal and
bimodal distributions. The general shape and structure is roughly retained as
r increases, with the possible exception of (English, bimodal, r = 4), which has
a significantly smaller clump at the center. Indeed, the bimodal and uniform
distributions with larger r makes their appearance in the top 20 word vector
set pairs multiple times, and perform similarly well for the Procrustes’ distance
and ratio metrics. Perhaps these distributional models have the effect of being
trainable for larger contexts than a regular bag-of-words model would, due to
discounting either the tail ends of the context window (unimodal) or the inner
parts of the context window (bimodal).

24

Figure 8: t-SNE Projection for (English, uniform, r = 2, 3, 4)

Figure 9: t-SNE Projection for (French, uniform, r = 2, 3, 4)

Figure 10: t-SNE Projection for (English, unimodal, r = 2, 3, 4)

Figure 11: t-SNE Projection for (French, unimodal, r = 2, 3, 4)

Figure 12: t-SNE Projection for (English, bimodal, r = 2, 3, 4)

25

Figure 13: t-SNE Projection for (French, bimodal, r = 2, 3, 4)

5.1.4 k-Nearest Neighbors

For k-Nearest Neighbors, we chose k = 10 and calculated average k-recall over
every semantic vector set pair, shown in Figure 14. Looking at the numbers, it
seems that average recall was very low for all semantic vector set pairs. This
facet of the models could be due to the size of k, which was chosen somewhat
arbitrarily to be not too large but not too small. The small precision could also be a
feature of the low-frequency word vectors which perhaps were not trained enough
to perform decently. Nevertheless, this result demonstrates a clear weakness in
the model.

For qualitative interest, we now consider some of the k-nearest neighbor sets
for some interesting words: In Figure 15, we present the 10 closest neighbords for
the following translation pairs, in both the English and French vector spaces using
the (English, uniform, r = 2); (French, uniform, r = 2) word vector set language
pair. Note that we present the nearest words in French semantic space translated
to their English counterparts.

Some of the nearest neighbors are pretty good! The most questionable set
would probably be the French "muggle" nearest words or the French "youknowwho"
nearest words. "snape" has particularly good nearest neighbors for French. Recall
that these nearest words are only produced for a small subset of the 2 ⇥ 1187
vectors associated with a given distribution and radius, and that we are only
demonstrating what these nearest words look like for one semantic vector set
language pair. The code is available to try out producing nearest neighbors for
other words in other semantic spaces.

26

Figure 14: Each of the Semantic Vector Pairs and Associated k-Recall

Figure 15: 10 Nearest Neighbors for Words in ({English, French}, uniform, r = 2)

27

6. Conclusions

We summarize the results of this paper as follows:

1. We modified a CPCA Hebbian learning network to take word order into
account when learning semantic vectors for a parallel corpus across two
languages: Namely, the English and French editions of Harry Potter and the
Philosopher’s Stone. We also defined and implemented several metrics for
assessing word vector invariance across language, and tested them.

2. We noticed that for all metrics, the French uniform vectors were not as good
as the bimodal and unimodal vectors for r = 2, 3, possibly suggesting that
French is not as amenable to a bag-of-words model as English is (which for
two of the metrics performed well with uniform distribution at r = 2).

3. Based on the t-SNE plots, the r = 4 case seems to be poor for uniform
distributions, but rather better for the bimodal and unimodal distributions.
The cause of this phenomenon may be due to the lesser weighting given to
words in the middle (for bimodal) and words on the ends (for unimodal).
The smaller amount of overall activation could potentially counteract the
increased window size of the sliding context.

4. We noticed that the shape of the ALSD and Procrustes’ distance distribution
values were strikingly similar, though very oddly, the order of the vector set
pairs was to some extent reversed.

5. The Procrustes’ metrics behave differently, but have the commonality that
(French, uniform, r = 2, 3, 4) receives low scores on both the distance and
ratio metrics.

6. The seemingly simplest data point, (English, uniform, r = 2); (French,
uniform, r = 2) proved to be one of the most confusing points in the set. It
experienced excellent performance in the ALSD and Procrustes’ ratio metrics,
and the worst performance in the Procrustes’ distance metric. Examining
the t-SNE plots do not suggest anything out of the ordinary for these two
vector sets. The strangely terrible performance on the Procrustes’ distance
metric suggests that the Procrustes’ distance metric should potentially be
modified, and that this metric is not currently capturing the language-
invariant properties we desire. In fact, it does make more intuitive sense that
we should examine the change in Procrustes distance as opposed to the final
distance, because it is a large change that should encode the notion of the
existence of a good linear map between semantic vectors across languages.

28

7. Future Work

This paper is but a preliminary foray into the evaluation of semantic vector spaces
by comparing performance across parallel corpora. Furthermore, extensions to
the Hebbian neural net to improve sentence-level semantics are also possible. We
enumerate a few possibilities for future projects in this section.

7.1. The Relationship between ALSD and Procrustes’ Distance

More work should be performed to elucidate the strange inverse relationship
between these two defined metrics. It seems possible that Frobenius distances
are not relevant at all in measuring semantics, but the oddly similar distribution
and the essential inversion of the order statistic of the semantic vector set pairs
suggests that there could be something more interesting to discover upon further
investigation.

7.2. Varying Network Parameters

We would like to see which number for k produces the best cross-lingual represen-
tation in terms of our various metrics. In some sense, the optimal k would show
what the necessary size of a subset of words is in the algorithm. In other words,
the optimal k would give a sense of the average number of words in the corpus
that are relevant to a given word’s meaning across both languages. We could also
experiment with the size of H, test out other context window distributions D, and
vary r to larger values to see the effects of these changes (though based on the
experimental evidence from this paper, it seems that larger r would only hurt the
ALSD metric, at least).

7.3. Establishing Theoretical Connections Between the Network
and the Cross-Lingual Objectives

It would be a fantastic result if by modifying the Hebbian network further, it were
possible to establish theoretical guarantees on performance according to some
cross-lingual objective function as defined in this paper. We have already laid the
groundwork for potential objective functions that obey the maxim "meaning is
invariant across language", but more work must be done to find or show that
these objectives are directly connected to what the Hebbian network is learning.
In fact, it is likely that the objectives are not connected. If this is in fact the case,
then it would be ideal to find an objective that is neuroscientifically plausible as

29

the Hebbian network is that encodes this maxim (varying from the traditional
Distributional Hypothesis of Meaning).

7.4. Non-Neuroscientific Cross-Lingual-Based Objectives for Train-
ing Semantic Vectors

Semantic vectors in the literature are primarily trained according to an objective
determined from distributional properties across a single language, whether the-
oretically proven valid or not. It would be interesting to change the definition
of "semantically similar" to a definition that takes into account meaning across
language (for instance, the Language Similarity Distance or the Procrustes’ Dis-
tance defined in this paper) as an objective. Perhaps it is possible to define a
convex objective in terms of these functions, and if not (likely), then perhaps
further theoretical analyses in the vein of [Arora2015] could provide guarantees
for semantic vectors with different properties. These language-invariant semantic
vectors could improve machine translation tasks if applied to networks as defined
in [Sutskever2014].

7.5. Testing Other Semantic Vectors

There are available word vector sets online - namely from word2vec, GLoVE,
and others [Mikolov2013], [Pennington2014], [Arora2015]. We simply note that
interesting future work could examine the properities we analyzed in this paper
for these other word vector sets. Some work has been done analyzing their
properties, but to the knowledge of the author, there have been no analyses
of cross-lingual preservation performance (which is what this paper seeks to
analyze for the Hebbian vectors). Notably, these vector sets have proven empirical
performance so it would be interesting to see if the metrics they are trained on
are also language-invariant.

7.6. Unifying the Similarity Metrics

Currently, the similarity metrics defined in Section 3 are all used independently
as order statistics. It would be interesting to see if these various metrics could
be unified in a sensible manner, perhaps creating a better objective for learning
vectors in the process.

30

7.7. Treating Brain Activity as L2

The most sensible way to build word vectors that represent meaning most similarly
to brain would be to define an objective that seeks to minimize distance between
brain vector representations and word vector representations to produce a better
semantic vector overall. In some sense, this approach is taken by [Fyshe2014].
More rigorous work in this area relating the objective function they use to an
analagous "semantic invariance across brain and language" type property would
be quite interesting to see.

8. Acknowledgements

This work was produced as a final project for NEU 330, Connectionist Models as
taught at Princeton University in Spring 2015. I would like to thank Professor Ken
Norman, who was a great help in discussions and in giving pointers to relevant
books, papers, and resources. I would also like to thank Francisco Pereira, who
gave additional helpful guidance and pointers to other resources and critiqued
the initial design of the model. Finally, I would like to thank Pavlos Kollias, who
read the inital proposals and gave helpful feedback.

9. Appendix I: How to Build the Code

The code for this project was written entirely in Python. If you do not have
Python installed, it will be necessary to install it on your computer. The code is
entirely self-contained outside of the modules it will be necessary to install, and
is available on Github.

9.1. Brief Instructions on Python Installation

If you have a *NIX computer, then Python should already be installed. Access
a terminal and type "python" to see what version it uses. The code in this
paper depends on Python 2.7. The Pip package installer is recommended for
downloading new modules. If you have a Windows computer, then there are
many Python distributions available for Windows that come pre-packaged: For
instance, the Anaconda distribution.

Once you have Pip, you can install most modules by simply entering "pip
install <name of module goes here>" into the command line. IPython is also
recommended as the Python shell to use for running code.

31

https://github.com/kiranvodrahalli/hebb_vectors

9.2. Module Dependencies
Here is a list of modules you may have to download the most recent version for:

1. Numpy.

2. Scikit-learn.

3. PyEnchant.

4. Matplotlib.

These should all be fairly straightforward to install if you do not already have
them installed. The dependencies for each file of code are present at the top of
each file.

9.3. Running the Code
Each python file (ends with ".py") has well-commented functions that explain
what all the function inside do. In order to run a function, first open up the
python environment by either typing "python" or "ipython" in Terminal. In order
to run a function from a specific .py file, you will need to import it while you are
inside the Python shell. You can import a specific function "foo" from a module
"bar.py" as follows:

>> from bar import foo

We can also import everything from a module as follows:

>> from bar import *

If we are using IPython, then it often makes more sense to load the module as
follows:

>> import bar as b
>> b.foo()

Note that we have to prefix the name of the module before the function now. You
can also access variables that are inside the file in this manner.

The other kind of file found in the code are ".p" files, which are Pickle files.
Pickle is a Python module which saves Python objects into a file so that they can
be loaded later. The syntax for using this module is as follows:

>> import pickle
>> myfile = pickle.load(open("myfile.p", "rb"))
>> pickle.dump(myfile, open("myfile2.p", "wb"))

32

"rb" and "wb" stand for reading from and writing to a file respectively.
A brief tutorial on Numpy and some basic Python data structures may also be

helpful when dealing with the code presented.

>> import numpy as np
>> a = np.array([1, 2, 3, 4])
>> np.shape(a) # returns the shape of the array, in this case, (4, 0)
>> M = np.matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>> np.shape(M) # returns the shape of the matrix, in this case (3, 3)
>> c = [1, 2, 3] # a python array list
>> len(c) # returns the length of the array/tuple/dictionary
>> d = dict([(’a’, 1), (’b’, 2), (’c’, 3)]) # a dictionary mapping letters to numbers
>> d[’a’] # prints out 1
>> d[’b’] # prints out 2
>> s = set()
>> s.add(1)
>> s.add(2)
>> len(s) # prints 2
>> 2 in s # prints True
>> 3 in s # prints False
>> s.add(2)
>> len(s) # still is 2

As for the specific files, the main Python files are as follows:

neural_net.py: Contains the implementation of the Hebbian net architecture.

wordvec.py: Defines the various distributions and nonlinearities,
and also the cosine similarity function. The main method is a method to
build a set of word vectors for a given text distribution, and r.
Furthermore this file was used to split up the learning work
across several computers.

analysis.py: Contains a boatload of functions for evaluating the various metrics.
Heavily commented.

procrustes.py: Implements the Procrustes transformation.

build_corpus.py: Was used to preprocess the corpora.
Indicates some of the processing involved.

33

goog_translate.py: Used as a utility to do automatic translation in code.
Scrapes off of Google Translate.

saving.py: A utility to automatically save images plotted from matplotlib
into a folder.

progressbar.py: A nice visualization of how fast the network is taking to learn.

hp1_en.txt and hp1_fr.txt are the original text files for the two books. List
versions of each book are stored inside hp1_text_en.p, hp1_text_fr.p respectively.
The 18 semantic vector spaces for each of the parameter permutations are stored
inside hp1_vecs_(lang)_(distribution)(r).p. translation_dict.p stores the English-
to-French dictionary for the reduced wordsets. Other .p files are stored for security,
they are not as important.

References

[Arora2015] Arora, S., Li, Y., Liang, Y., Ma, T. and Risteski, A. Random Walks on
Context Spaces: Towards an Explanation of the Mysteries of Semantic Word
Embeddings. (2015). At <http://arxiv.org/abs/1502.0352>.

[Bengio2003] Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C. A Neural Probab-
listic Language Model. Journal of Machine Learning Research. 3, 1137 � 1155.
(2003).

[Fyshe2013] Fyshe, A., Talukdar, P., Murphy, B., and Mitchell, T. Doc-
uments and Dependencies: an Exploration of Vector Space Models
for Semantic Composition. (2013). At <http://www.cs.cmu.edu/ ⇠
afyshe/papers/conll2013/deps_and_docs.pdf>.

[Fyshe2014] Fyshe, A., Talukdar, P., Murphy, B., Mitchell, T. Interpretable Seman-
tic Vectors from a Joint Model of Brain- and Text-Based Meaning. (2014). At
<http://www.cs.cmu.edu/ ⇠ afyshe/papers/acl2014/jnnse_acl2014.pdf>.

[Hassan2012] Hassan, S., Banea, C., Mihalcea, R. Measuring Semantic
Relatedness Using Multilingual Representations. First Joint Conference
on Lexical and Computational Semantics (*SEM). 20 � 29. (2012). At
<http://www.aclweb.org/anthology/S12-1003>.

34

http://arxiv.org/abs/1502.0352
http://www.cs.cmu.edu/~afyshe/papers/conll2013/deps_and_docs.pdf
http://www.cs.cmu.edu/~afyshe/papers/conll2013/deps_and_docs.pdf
http://www.cs.cmu.edu/~afyshe/papers/acl2014/jnnse_acl2014.pdf
http://www.aclweb.org/anthology/S12-1003

[Just2008] Just, M. What Brain Imaging Can Tell Us About Embodied
Meaning. In Symbols and Embodiment: Debates on Meaning and Cog-
nition. Eds. de Vega, M., Glenberg, A., Graesser, A. 75 � 84. (2008). At
<http://www.ccbi.cmu.edu/reprints/just_garachico-chapter_ccbi-reprint.pdf>.

[Ménard1998] Rowling, J. K. Translated by Jean-François Ménard. Harry Potter à
l’école des sorciers. Éditions Gallimard. (1998).

[Mikolov2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Effi-
cient Estimation of Word Representations in Vector Space. (2013). At
<http://arxiv.org/abs/1301.3781>.

[O’Reilly2000] O’Reilly, R., Munakata, Y. Computational Explorations in Cognitive
Neuroscience. Massachussets Institute of Technology. (2000).

[O’Reilly2012] O’Reilly, R. C., Munakata, Y., Frank, M. J., Hazy, T. E., and Con-
tributors. Computational Cognitive Science. Wiki Book, 1st Edition. (2012). At
<http://ccnbook.colorado.edu>.

[Pennington2014] Pennington, J., Socher, R. and Manning, C.D. GloVe: Global
Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing. (2014).

[Pulvermüller1999] Pulvermüller, F. Words in the Brain’s Language. Behavioral
and Brain Sciences. 22, 253 � 336. (1999).

[Rowling1997] Rowling, J. K. Harry Potter and the Philosopher’s Stone. London:
Bloomsbury Children’s. (1997).

[Seung2015] Seung, H.S. Course Notes for COS 598C, Spring 2015. At
<http://seunglab.org/courses/>

[Sutskever2014] Sutskever, I., Vinyals, O., Le, Q. Sequence-to-Sequence Learning
with Neural Networks. (2014). At <http://arxiv.org/abs/1409.3215>.

[Turney2010] Turney, P.D. and Pantel, P. From Frequency to Meaning: Vector
Space Models of Semantics. Journal of Artificial Intelligence Research. 37, 141 �
188. (2010).

[van der Maaten2008] van der Maaten, L. and Hinton, G. Ed. Bengio, Y. Visual-
ising Data using t-SNE. Journal of Machine Learning Research. 9, 2579 � 2605.
(2008).

35

http://www.ccbi.cmu.edu/reprints/just_garachico-chapter_ccbi-reprint.pdf
http://arxiv.org/abs/1301.3781
http://seunglab.org/courses/
http://arxiv.org/abs/1409.3215

	Introduction
	Semantic Vectors
	Semantic Vectors in Neuroscience
	Evaluating Semantic Vectors
	The Task

	Learning Semantic Vectors with Hebbian Learning
	The Hebbian Network
	Theoretical Interpretations of Hebbian Learning
	Hebbian Learning as PCA
	Hebbian Learning as CPCA
	Adding k-Winner-Take-All Inhibition

	Interpreting Hebbian Semantic Vectors
	Beyond Bag-of-Words
	Context Window Distribution

	Cross-Lingual Evaluation Metrics for Semantic Vectors
	Quantitative Metrics
	Language Similarity Distance
	Procrustes' Transformation
	k-Nearest Neighbors

	t-SNE Projection

	Implementation Details
	Dataset
	Preprocessing the Corpora
	Restricting the Vocabularies
	Training the Networks

	Results and Analysis
	Performance of Semantic Vector Space Language Pairs
	Language Similarity Distance
	Procrustes' Distance and Procrustes' Ratio
	t-SNE Plots
	k-Nearest Neighbors

	Conclusions
	Future Work
	The Relationship between ALSD and Procrustes' Distance
	Varying Network Parameters
	Establishing Theoretical Connections Between the Network and the Cross-Lingual Objectives
	Non-Neuroscientific Cross-Lingual-Based Objectives for Training Semantic Vectors
	Testing Other Semantic Vectors
	Unifying the Similarity Metrics
	Treating Brain Activity as L2

	Acknowledgements
	Appendix I: How to Build the Code
	Brief Instructions on Python Installation
	Module Dependencies
	Running the Code

