
Representing Noun Compounds in
Semantic Quad-Space

Kiran Vodrahalli

Princeton University

January 6, 2015

1. Introduction

Every problem can be reduced to a translation problem. A bold statement – nevertheless,
consider that mathematics is the art of translating abstract ideas into a precise language.
Computer science has foundations in describing routines for computers to follow in
machine language, and the search for better algorithms is simply translating the compu-
tation of a quantity from a less efficient process to a more efficient process. The ability
to represent what an algorithm means is well-defined. We have the precise language of
mathematics to account for all details.

The language with which we speak to each other, as humans, is however not precise.
There are many ambiguities. Natural language interacts with reality, and is unavoidably
influenced by many aspects of the universe that humans do not yet understand. Our
modes of communication are unavoidably imprecise. The lack of precision is amplified by
the fact that sometimes we ourselves do not know what we want to convey.

Yet it is very desirable to have a method for automatically and quickly parsing vast
amounts of natural language, and understanding what is meant – to reduce the cascades
of word phrases and punctuation into concrete, irreducible facts and inferences. Aside
from being interesting for its own sake, natural language understanding has multitudes
of applications to real world problems.

If computers were able to understand unstructured language, we would be able to
build ontology networks of journal articles in the biomedical sciences, and make scientific
knowledge more accessible to both researchers and laymen. We would be able to parse
the news for the purpose of understanding the impact of world events on the financial
markets; we would be able to overcome language barriers with automatic language
translation. We would be well on our way to understanding the human mind.

Thus there is both academic and practical desire to solve the problem of representing
meaning with numbers.

1.1. Philosophy of Meaning

How can we address the problem of representing concretely the abstract notion of meaning
that humans seem to possess? There are two relevant hypotheses that pervade the natural
language processing community.

1

The first is the distributional hypothesis, first posited by Harris in 1954. In short,
word meaning is a function of the distribution of a word in all its contexts [Harris1954].

Second is the geometric metaphor of meaning. Born from a hypothesis that humans
attach a notion of distance to similarity between concepts, the geometric metaphor of
meaning posits that meanings are locations in semantic space, and semantic similarities
can be represented by geometric distances [Sahlgren2006].

Together, these two notions enable the concept of a semantic vector space, which we
will define shortly.

1.2. Definitions

Now we take an interlude for a few definitions that will be useful throughout the paper.

Corpus:
A corpus is a body of texts, usually in a single language. They can center around a

certain mode of language (for instance, news writing, or blog posts, or television sitcom
speech), or they can be inclusive of a whole variety of modes of language.

Semantic Vector Space:
A semantic vector space is a set of words mapped to a set of vectors in Rn. Typically,

it is represented as a matrix, where the rows are the individual words or word phrases,
and the columns are contexts. This matrix is known as a word-context matrix. A context
is any sort of pattern associated with the row word. Suppose the row word is "boat". One
column context may be the seven words between "boat" and the appearance of the word
"water". Another could be simply the word "water" appearing within a radius of 3 words
from an instance of the row word "boat". The contexts can be very complicated or very
simple. The values contained within a word-context matrix are frequencies. For instance,
for the row word "boat" and the column context "water appearing within a three-word
radius of the row word", the value in that row and column value of the word-context
matrix would be the number of times the word "water" appears within a three-word
radius of "boat".

A word-context matrix cannot be described without a corpus. In order to calculate
the frequencies of the row words showing up in the various column contexts, we search the
corpus for all the instances in which the row-column combination happen. Depending on
the contexts, word-context matrices can often be very sparse, necessitating the application
various transformations to the original word-context matrix.

Similarity of Words:
From a human’s perspective, what does similar mean? In order to evaluate the

computational model against real human semantics, we need some ground truth ap-
proximation. In this section, we describe and justify what a notion of similarity should
be.

Similarity comparisons for a pair of single words depends on the types of word. If
both words are nouns, what we may mean by ’similar’ is something along the lines of a
domain comparison. For instance, we might say that ’car’ and ’bus’ are similar, since they

2

are both vehicular modes of transport that both travel by land.
For adjectives (again, comparing a single adjective to another single adjective), the

situation may be a bit different. Here we may be more concerned with the aspect the
adjectives qualify. For instance, ’ugly’ and ’beautiful’ both qualify subjective judgements
of aesthetic attractiveness. Synonyms and antonyms may both be considered similar.

The list goes on. In this paper, we seek to have a qualitative understanding of the
human understanding of similarity between noun compounds, and then convert the
qualitiative into the quantitative.

Noun Compound:
A noun compound is a compound word with two components, both of which are

nouns themselves: the modifier and the head. For instance, the word "paper cup" is a
noun compound with head "cup" and modifier "paper". The head is the base word. It is
almost always true that a "paper cup" is a "cup". It is not necessarily true that a "paper
cup" is "paper". For instance, consider the noun compound "heart attack". While a "heart
attack" is an "attack", it is not a "heart". The modifier qualifies the sense in which the head
word is taken to mean. In some cases, a noun compound is an idiom (for instance, a "fire
sale" is not a sale of fire, but rather a sale where prices are extremely discounted).

1.3. Paper Objective

The goal of this paper is to provide a semantic vector space model for noun compounds.
That is, to quantify the meaning of noun compounds and their interactions with other
words and noun compounds. The metric of our success will be comparison to a human
judgement of similarity between two noun compounds. Our first step must be to provide
a quantitative representation for noun compounds. The second step must be to define an
unambiguous method of calculating a similarity score between two such representations.
We will have succeeded if together, the two parts of our model are able to reproduce
human scores of similarity on pairs of noun compounds.

1.4. Motivation

Why do we focus on representing noun compounds specifically in this paper? First of all,
the similarity of word phrases (of length n) is an necessary object to consider in the future
study of the quantification of the meaning of language. Noun compounds are a simple
case (n = 2), yet with sufficient complexities that provide interesting interrelationships
between the components of the noun compound.

Noun compounds themselves are interesting in the literature for practical purposes.
First of all, standard techniques do not work on them; they cannot be simply ignored in
natural language processing (NLP) routines. They are important in machine translation,
information retrieval, and information extraction, particularly in medicine, where there
are many noun compounds (an example: human colon cancer cell line, which has many
possible parsings [Nakov2013]). For a computer doctor, knowing how to comprehend
these medical-term noun compounds would be a necessary skill.

3

1.5. The Relation of Similarity to Meaning

As we have already noted, a primary goal of computational linguists is to create a
computational model of meaning. As ’meaning’ is an imprecise term [Sahlgren2006],
how can we possibly check whether our models are sensical?

One approach, specific to vector-based models, is to cluster vectors and check whether
the vectors in the clusters all belong to a certain ontological class. For instance, hierarchies
like that of WordNet [Fellbaum1998] may be used. Or, if we note that all the words close
by are related to the topic of government, we might also say they are similar.

Therefore, similarity is a useful concept in ascertaining whether or not the compu-
tational models we build actually map to real-world notions of meaning. Previously
we defined a human notion of similarity with respect to words. In this paper, we are
concerned with noun compounds, and so take this opportunity to extend our notion of
the similarity between word phrases to noun compounds. We pause here to give a brief
description of what is meant, and promise to go into more detail in following sections of
the paper.

The clustering approach described above is one way of defining what we mean when
we say two words are similar. The essence of the clustering definition of similarity boils
down to a notion of geometric distance: When we cluster vectors, the vectors are nearby
under some metric. Typically, the metric used is that of cosine distance (the dot product
of the norms of the vectors).

Before, we were dealing with a single word – we had a vector space representing
each word by a vector. What happens when we increase the number of words to two? To
n? We need an approach that generalizes word similarities to phrase similarities. In order
to arrive at a sensible definition, we must first consider what humans think of as similar
sentences.

Computationally, the extension to phrase similarity can take two paths. First, vector
compositions. Second, similarity compositions. We will be dealing with noun compounds
in this paper, so we are concerned with the case n = 2, with the added special property
that both words are nouns.

The vector composition approach generally tries to reduce the n vectors into ei-
ther one vector, or a matrix of some form. Then the idea is to compare the resultant
vectors/matrices.

In contrast, the similarity composition approach advocated in [Turney2012] tries to
first come up with a similarity structure function between two phrases. That is, a function
that takes in a set of distance comparisons between the words from first and second
phrases, and then acts on them to produce a similarity measure. A similarity structure
function allows for more variety in the methods of computing similarity than the vector
composition approach when it results in a single vector. The vector composition into
matrix approach may be equally expressive; however, the issue is that as n increases, the
size and complexity of the representation become prohibitively large. For n = 2, there is
not too much of problem.

In this paper we compare the dual-space model from [Fyshe2013] that uses vector

4

composition to a new quad-space model that uses similarity function composition.

1.6. Outline

We provide a brief outline of the remainder of the paper.
In Building the Model, we provide the methodology and reasoning behind the

construction of the vector space model for noun compounds that we implement in this
paper. First we briefly describe the space we are attempting to represent, and then plunge
into the components of its representation. For each of the four distinct spaces, we describe
how it is constructed and the associated rationale. We describe how to construct the final
version of each of the spaces after producing each word-context matrix. Then we discuss
functions that take as input the representations of two noun compounds and output a
similarity measure. This is done in two parts: first we describe the notion of a similarity
structure function, and secondly we describe the building blocks of the structure function,
the similarity composition functions which compose similarities. Finally we describe the
similarity functions we actually used.

We specify our testing scheme in Model Evaluation. First we explain the overall
testing scheme for the vector space model we built, and how we chose the 99 noun
compounds we tested. Then we describe how we acquired the responses from Mechanical
Turk: the instructions given to the Turkers, the test data (noun compound pairs), and the
actual generation of the responses. After that, we describe the way by which we parsed
the data and turned it into a yes/no similarity scores for each noun compound pair. Then
we describe which vector spaces we built from the [Fyshe2013] paper, and how we went
about doing so. At the end, we explain both methodologies we used for scoring the vector
space models.

The Results section first presents both sets of results, and explains them. We then
list the errors each VSM model made.

We then finish the paper by discussing plans for Future Work, and providing some
Acknowledgements.

Following the end of the paper are the three appendices: Appendix A: Word-
Context Matrix Processing Steps, Appendix B: Describing the Corpora, and Appendix
C: Implementation Details and Future Usage. We finish with the Citations.

2. Building the Model

We build two versions of our quad-space model, one based on the Corpus of Contempo-
rary American English [COCA], and the other based on the Corpus of Global Web-based
English [GloWbE].

Note that the two models are the same in structure; their only differing feature is the
corpus used to create them. In the tests, we will refer to the former as the COCA model,
and the latter as the GloWbE model.

See Appendix B: Describing the Corpora for a more detailed discussion of the
corpuses.

5

HeadModi f ier Action

Noun Compound

Figure 1: Components of the Noun Compound Model

Using the COCA corpus, we picked 99 noun compounds to find representations
for which we would test, which can be seen in 9.2. We defer the discussion of how we
chose them and why to the Model Evaluation section. There were a total of 106 distinct
words in these noun compounds. Let NC describe the space of noun compounds, andW
describe the space of distinct words.

2.1. The Quad-Space Model: An Overview

The component model of a noun compound is described in Figure 1. Our goal is to
come up with a representation of the noun compound that accurately reflects these
components. Then we need to describe a function that is able to output a similarity score
for two noun compounds. Our approach is guided by the composition of similarities as
opposed to vectors. The similarity function should take as input two representations of
two noun compounds, and use the distances between various component pairs as inputs
to a similarity structure function, which then composes the input similarities to output an
overall similarity score.

Our representation for a single noun-compound will be a 5-tuple of vectors, the
components of which live in four distinct vector spaces. We name the four component
spaces (giving rise to the quad-space name in the title). They are the domain space D, the
action space A, the qualifier-head space QH, and the qualifier-modifier space QM. We
will provide a full definition in the following sections.

Our 5-tuple can be represented as follows: (v1, v2, v3, v4, v5). We have v1 ∈ D,
v2 ∈ D, v3 ∈ A, v4 ∈ QH, v5 ∈ QM. v1 is supposed to be a domain representation of the
full noun compound (represented by all contained inside the oval in Figure 1). v2 is a
domain representation of only the head component of the noun compound. v3 is a partial
representation of the action component. v4 is a partial representation of both the action
component and the modifier component. v5 partially describes the modifier component.

Now that we have this model for a noun compound in our minds, let us describe the
individual spaces in more detail, and also justify the reasoning behind the quad-space
approach.

6

2.2. Domain Space D

We take the idea of domain space from [Turney2012], and modify it slightly. In Turney’s
paper, the domain space is part of his dual-space model, and is supposed to represent
the subject matter or domain of a word. For this paper, the rows of domain space are
single-word nouns or noun compounds (NC ∪W), and the columns are the set of all
nouns closest to the row-word in a window with some radius r. In our construction, we
set r = 4 (this means our window is four words on both sides of the row-word). Labeling
each word from 1 to 9, we seek to find the closest left noun with index i such that 5− i > 0
is maximal. For each window, we seek to also find the closest right noun with index j,
such that j− 5 > 0 is minimal. The left and right nouns get added to the set of words in
the columns, and we count frequencies.

The intuition here is that we want a representation of the subject matter of the noun
compound, and often, we get a notion of subject matter from other nouns. We restrict the
window size to be relatively small so that we stay within bounds and avoid picking up
too much noise. We again restrict when we only pick the closest left and right words, to
avoid picking up too much noise.

There were two resulting D spaces. Both D spaces had 99 + 106 = 205 rows.
The COCA D space had 217438 columns, and the GloWbE D space had 188535

columns.
In our model for the noun compound, we use D two times: first to capture a

representation of the head word, and secondly to capture the domain-meaning of the
whole noun compound.

2.3. Action Space A

In the Dual-Space Turney paper, there is a notion of function space [Turney2012]. Turney
defines function space as intending to represent the relation between two words by using
verb contexts. Verb contexts are patterns of words containing the row-word or row-phrase.
A verb context might be ’rowed on X’, where X is row-word. For instance, suppose that
the row-word is ’water’. Then, it is likely that this value of the matrix has a non-zero
frequency count, since rowing often takes place on water. The idea is that we can use
verbs to understand the functional power of individual words. In Turney’s paper, he
goes on to calculate this function space for both words in his setup, and combines the
similarities in different ways.

We take a slightly different approach, though we retain the notion of using verbs to
characterize function. First we introduce the notion of an action for a noun compound.
The action is the way the modifier acts upon the head word in the noun compound
(see Figure 1). For instance, let us consider the noun compound ’air temperature’. We
might measure the temperature of the air. There is a verb component to understanding
the action of ’air’ on ’temperature’. We seek to capture this component by looking at
windows of relatively large radius (r = 14). Inside this window, every time both words of
a noun compound are in the window, we add all of the verbs in the window to the context

7

columns. The phrase regarding ’air temperature’ described above would reasonably occur,
and we would add the word ’measure’ to the column space.

There were two resulting A spaces. Both D spaces had 99 rows (we draw from NC
only).

The COCA A space had 15566 columns, and the GloWbE A space had 15777 columns.
We use the A space one time in our noun compound expression, to capture a portion

of the notion of the action of the modifier on the head. We can fill out the notion further
by turning to adjectives, which we do now.

2.4. Qualifier-Head Space QH

Turney mentions towards the end of his paper the notion of a quad-space as a possible
route for future exploration in the development of semantic vector spaces [Turney2012].
We perform that extension in this paper by turning to adjectives.

The idea of the qualifier-head space is to provide a frame of reference for the modifier
word of the noun compound by looking at the head. The modifier sometimes acts like an
adjective on the head word of the noun compound. A pertinent example is ’stone bowl’.
’stone’ acts like an adjective on bowl (consider ’grey bowl’). Therefore, knowing only the
head of the noun compound allows us to gain some knowledge regarding the kinds of
adjectives that are used upon it. That is the fundamental idea behind the qualifier-head
space. We construct it by considering a half-window of radius r = 3 for each individual
head word in the noun compounds– that is, we look at the 3 words behind the head word,
and search for the closest adjective. Whatever the closest adjective is gets added to the
column space.

This space is able to model the modifier to a certain extent (by the substitute words
that are adjectives). However, it also contributes to the notion of the action. Verbs are not
the only way we can represent the action of the modifier on the head. In fact, treating
the modifier like an adjective is a more direct representation of action – a ’stone bowl’ is
made of stone: stone is the material (our qualifier) of which the bowl is made, just as
’grey’ is the color of a ’grey bowl’. Thus, QH space can also be said to contribute to the
representation of the action.

We use the QH space once in our representation of the noun compound: for a given
noun compound, we include the QHrepresentation of the head word in our 5-tuple.

There were two resulting QH spaces. Both QH spaces had 106 rows (we draw from
W only).

The COCA QH space had 68216 columns, and the GloWbE QH space had 59168
columns.

2.5. Qualifier-Modifier Space QM

We add a second adjective-based space. The qualifier-modifier space is intended to act as
a sort of domain-esque model for the modifier word, but instead of being based on nouns,
based on adjectives. As we have established, the modifier can sometimes behave like an

8

adjective to the head word. Therefore, we can compare it to a bunch of adjectives that
are nearby to develop a model of the kinds of adjectives the modifier is similar to. For
instance, consider the phrase ’beautiful, luxurious marble bowl upon which were etched
gorgeous scenes’. The QM model would then capture the fact that modifier noun ’marble’
appears to be associated with the adjectives ’beautiful’, ’luxurious’, and ’gorgeous’. These
are qualities of the descriptor. To build this space, we consider windows with size r = 10
around each modifier word, and add all adjectives in the range to the column space.

We use the QM space once in our representation of the noun compound: for a given
noun compound, we include the QM representation of the modifier word in our 5-tuple.

There were two resulting QM spaces. Both QM spaces had 106 rows (we draw from
W only).

The COCA QM space had 194522 columns, and the GloWbE QM space had 114466
columns.

2.6. Processing the Word-Context Matrices

After deriving the word-context matrix for a particular space, each matrix undergoes
two transformations. First we do a ppmi transformation of the matrix, and then we do
rank-k SVD on the matrix. We choose k by picking the first k singular values that explain
90% of the square-sum of the singular values, which is a standard choice in dimension
reduction. We describe the theory behind and benefits of each of these processes in
Appendix A: Word-Context Matrix Processing Steps.

We provide a list of the resulting dimensions of each space here. The number of
singular values kept after dimension reduction is the number of columns in the vector
representation.

COCA D: We kept 105 singular values.
GloWbE D: We kept 113 singular values.
COCA A: We kept 50 singular values.
GloWbE A: We kept 48 singular values.
COCA QH: We kept 78 singular values.
GloWbE QH: We kept 80 singular values.
COCA QM: We kept 79 singular values.
GloWbE QM: We kept 83 singular values.
Note that the GloWbE spaces often ended up having similar dimensions to the

COCA space (and sometimes, the original word-context matrix even had fewer columns!),
despite the approximate 4 times increase in size, which suggests that the patterns used to
generate the columns may have been sparser in the GloWbE corpus.

2.7. Similarity Structure Functions

Now we have defined our four spaces D,A, QH, QM. Recall from before we represent a
noun compound with a 5-tuple.

9

Let us call a given noun compound as the tuple (a, b), where a is the modifier word
and b is the head word. Then, our representation of the noun compound is given by

rep((a, b)) = {D[a, b],D[b],A[a, b], QH[b], QM[a]} (1)

For future reference, let proj(R, i) be the projection function that takes in a repre-
sentation R and an index i and returns the ith term of the representation. Note that
i ∈ [5].

Importantly, this representation of the noun compound is asymmetric: That is,
rep((a, b)) 6= rep((b, a)) due to the usage of QH and QM. Asymmetry is desirable since
it is rarely ever true that inverting the head and modifier of a noun compound create
a similar noun compound (or even a sensical one). For example, consider ’death wish’
and its inversion ’wish death’. A ’death wish’ is a ’wish to die’, and while ’wish death’
is probably much less frequent, could mean something along the lines of ’the death of a
wish’, which is a different meaning entirely.

Now our goal is to find a function F : NC ×NC → R that evaluates the similarity
of two noun compounds. We will generally refer to the first noun compound in the input
to F as (a, b) and the second noun compound in the input to F as (c, d), where a, c are
modifiers and b, d are heads.

At this point, there are two approaches we could take: the vector composition ap-
proach (taken in [Fyshe2013]) or the similarity composition approach (taken in [Turney2012]).
We choose to take the similarity composition approach. What we mean by this approach
is that effectively, F is transformed into a function of type f : Rk → R. The input to f is k
real values. The k real values are derived by computing distances from components in
rep((a, b)) to components in rep((c, d)). We make this explicit in the following equation:

F((a, b), (c, d)) = f (l1, ..., lk) (2)

where li, i ∈ [k] are the distance, or length values. Two questions now arise: First, how do
we compute length? Second, which lengths do we choose as the input to f ?

The answer to the first question is cosine distance. It is the most widely used measure
of distance in the literature because it is agnostic to magnitude [Turney2010]. We are
only interested in vectors that are nearby each other angle-wise, or clusters. We make a
slight modification of the standard definition: typically, the range is [−1, 1]. We modify
the function so that if the output is ≤ 0, the output is 0, thus changing the range to [0, 1].
We implement this cutoff so that we never have negative terms in our distances. This
feature is desirable because negative similarities do not really make sense: either two
noun compounds are similar, or they are not. Similar and dissimilar things do not cancel
each other out algebraically the way opposites do. In fact, opposites may be considered
similar in the geometric clustering! Therefore, we consider all negative similarity values
to mean dissimilar, and set them to 0. The distance function is therefore defined as

10

dist(v1, v2) =

cos(v1, v2) =
v1

||v1||
· v2

||v2||
if cos(v1, v2) > 0

0 otherwise
(3)

We will use this measure throughout the rest of the paper: Every time we refer to
a distance or length between components of noun compound representations, we will
mean the cosine distance. Therefore, note that all lengths and distances are non-negative
and in the range [0, 1].

The second question is a bit trickier, and is subject to more creativity. We want to
only use the li that capture meaningful comparisons between the two noun compound
representations. In some cases that might involve cross-terms, as in [Turney2012]. How-
ever in this paper, we use no cross-terms and only do component-to-component distances.
That is, we have precisely 5 distances.

li = dist(proj(rep(a, b), i), proj(rep(c, d), i)) for all i ∈ [5] (4)

Now we know the inputs to f , we can define it. Henceforth f shall be known as the
similarity structure function, for it tells us how to put together the component similarities
to derive the total similarity between two noun compounds.

It is desirable that the structure function follow some rules. We draw from Turney’s
rules for his structure functions, and add some modifications [Turney2012].

The rules that f must satisfy are given by

f ((a, b), (c, d)) 6= f ((b, a), (d, c)) (5)

f ((a, b), (c, d)) = f ((c, d), (a, b)) (6)

f ((a, b), (c, d)) 6= f ((a, b), (d, c)) (7)

f ((a, b), (c, d)) 6= f ((a, d), (c, b)) (8)

For the most part, these are identical to those of Turney’s with the exception of
the first equation. Turney’s paper does not focus on noun compounds when dealing
with pairs of words. As we saw before, it is not in general true that inverting a noun
compound produces a noun compound with a similar set of relations. Therefore, we are
more strict. We have already accounted for Equation 5 when we added our two qualifier
spaces: they ensure that the order of terms of the noun compound matter. Similarly, the
qualifier spaces solves Equation 7. Equation 8 simply says that we cannot simply swap
head words – this rule is inherent in the whole representation of the noun compounds. We
must therefore be only careful to follow Equation 6, which leaves the noun compounds
alone and focuses on the structure of the function itself.

11

2.8. Similarity Composition Functions

Before we finally describe f , we introduce the notion of similarity composition functions.
A similarity composition function g takes as input n lengths l1, ..., ln and outputs a unified
similarity lcomposed. At first glance, this definition is identical to the previously defined
f . We make the distinction as follows: Similarity composition functions will be used
as building block tools inside of f . In other words, in the structure function, multiple
complicated functions are allowed to be used, while for composition functions, we will
identify only one function. This setup allows for ease of expression when we describe a
structure function in terms of block-like composition functions.

There are two composition functions we use to form our overall similarity function.
The first we borrow from [Turney2012]: we call it the truncated geometric mean (TGM).
We have

tgm(l1, ..., ln) =


(

n

∏
i=1

li

) 1
n

if li > 0 for each i ∈ [n]

0 otherwise

(9)

The idea behind this function is that the combined similarity should be high
when component similarities are high, and low when component similarities are low.
[Turney2012].

Turney notes that there is no set-in-stone reason that this should be the only similarity
composition function used, so we also define our own composition function, called the
weighted sigmoid arithmetic mean (WSAM). It is defined in two parts. First, we take the
arithmetic weighted mean of the input lengths (let the vector with values li be defined
as l), with respect to some weight vector w. The values of the weight vector must be all
non-negative and must sum to 1. Then, we feed the mean to a sigmoid function with
a range [0, 1]. The idea is we take the mean to get a different estimate of the average
from the geometric mean, and then using some guesses regarding the distribution (i.e.,
we would think that more noun compound pairs are not similar than similar), set a
threshold after which the similarity score will spike and flatten to 1 asympotically. A
sigmoid function also encapsulates a lower threshold, below which point the similarity
score flattens to 0.

wsam(l, w) =
a

a + c ∗ e−b(l·w)
(10)

for some parameters a, b, c.
The specific sigmoid function was given by the equation the parameter choices

a = 0.00007, b = 20, c = 4, which was found after playing around with parameters. The
idea was that we wanted the threshold for having high similarity to be larger than 0.6.
The function is plotted in Figure 2.

12

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Plot of the Sigmoid Function

2.9. Putting Structure and Composition Together

In this section, we describe the similarity functions we test.
We will call the first similarity function tgm-vanilla. In this function, we simply

return tgm applied to all of the 5 lengths. It is titled vanilla because of how simple
it is. Recall that l1, ..., l5 are the component-wise distances defined for each of the five
components that make up the representation of a noun compound.

tgm-vanilla((a, b), (c, d)) = tgm-vanilla(l1, ..., l5) = tgm(l1, ..., l5) (11)

The second similarity function we call weighted-sim. Based on our understanding
of each of the components, we assigned a weight vector for the noun compound structure:
wnc = {0.05, 0.2, 0.35, 0.25, 0.15}. That is to say, we gave the least importance to the domain
of the whole noun compound with a weight of 0.05, assigned a significant amount of
weight to components that influence the action of the noun compound (0.35 for A, 0.25 for
QH), and then some weight to domain space for the head 0.2 and a little less weight (0.15)
to QM. The idea was to weight the action the most, and the individual components a fair
amount. We assigned the least weight to the domain of the whole structure because the
idea is that noun compound similarity depends a lot on the interaction between modifier
and head. Thus we simply have

weighted-sim((a, b), (c, d)) = weighted-sim(l1, ..., l5) = wsam({l1, l2, l3, l4, l5}, wnc)

(12)
We now introduce the term linking structure. A linking structure is a diagram of a

comparison of two objects with the same components. Double-sided arrows are drawn
between components that are compared. We also label these arrows with the space in
which the comparison is happening. X ↑ indicates a relation in the space X where high
similarity is desirable.

13

Figure 3: Linking Structure

We describe a linking structure when comparing a pair of noun compounds in
Figure 3.

The last similarity function we test we will call component-sim. The idea in this
function is to follow the linking structure to build component similarities, which we then
combine with some composition function. First we combine A and QH with tgm to form
a function block. Then we combine QH and QM with tgm to form a modifier block. Then
we build a noun compound block by first combining the head representation in D with
the modifier block, and then combining that block with the noun compound domain
representation to form a total domain block. We return finally a weighted average of the
function block and the total domain block, with weights 0.8 and 0.2 respectively. Note
that we re-use components: this is ok! The approach we follow here demonstrates the
power of using similarity function composition to build a realistic idea of what is going
on. The function is given by

component-sim((a, b), (c, d)) = component-sim(l1, ..., l5)

= 0.8tgm(l3, l4) + 0.2tgm(d1, tgm(d2, tgm(d4, d5)))
(13)

3. Model Evaluation

To evaluate our semantic space models, we require three things: First, a set of noun
compound pairs to evaluate the similarities of. Second, a groundtruth dataset of human-
decided similarities between these noun compound pairs. Finally, another set of models
from a previous paper so that we can compare our approach to those of other researchers

14

on the same dataset.

We collect our groundtruth dataset from Amazon Mechanical Turk, a website set up
to provide human-survey data. The process that occurs is as follows: Survey tasks are
provided to a set of workers, known as Turkers. In this case, the survey tasks are pairs of
noun compounds, with a request for a classification (similar, not similar, very similar, or
unknown). Each Turker thinks about each task (with his/her own human brain). Amazon
gets paid a fee for providing the service, and Turkers are paid for each task they complete
at a fixed rate.

Using Mechanical Turk to collect this sort of human-survey data has been com-
pared to in-person approaches to gathering survey data, and been found to measure up
[Schnoebelen2010].

We get a comparison vector space model from [Fyshe2013], who provided theirs on
the internet for download. The Fyshe VSM contains vectors of single words, so composi-
tion functions were needed to generate a Fyshe representation for noun compounds. We
followed the instructions of their paper to create the vector compositions used.

We then process the Mechanical Turk data to come up with a human-approved
similarity rating for each noun compound pair. We simply iterate over all the noun
compound pairs and compare each model’s similarity score to the human similarity score,
and assess each model based on the percent correct (where correct means ’matches the
human score’).

3.1. Set of Noun Compound Pairs

First we describe how we chose our noun compounds. We picked 99 distinct noun
compounds since the number of noun compound pairs resulting is (99

2) = 4851, a number
that was within budget to acquire Mechanical Turk answers for. The specific noun
compounds used can be viewed in the List of Noun Compounds Used.

The way we chose these 99 noun compounds was based on the words in COCA.
We looked at the set of noun compounds with frequencies strictly larger than 100 in
COCA, and then sorted them into groups by head and by modifier. We then looked at the
heads and modifiers with the highest frequencies, and chose from the batch of the top
50 largest head frequencies, and the top 50 largest modifier frequencies. For each head,
we chose around 5− 10 noun compounds based on the number of noun compounds
there were for a given head. We filled in the first 50 of 100 noun compounds in this way.
Likewise, for the latter 50, we chose 5− 10 noun compounds depending on the number
of noun compounds for a given modifier. The noun compounds we chose from each
head/modifier were chosen with the intent of having some similar relationships, and
some different relationships (across each head/modifier). We also sought to avoid overly
generic nouns (like ’system’ and ’use’). We then verified that these noun compounds were
present in GloWbE and the Fyshe VSM.

15

https://requester.mturk.com/

Figure 4: Sample Mechanical Turk HIT

3.2. Building the Mechanical Turk Dataset

In order to provide the Turkers with tasks, we had to first define each task. Each task, or
HIT in Mechanical Turk lingo, was a single noun compound pair with a single question,
"Is the noun compound pair similar, not similar, very similar, or unknown?", presented in
multiple choice format. The nature of Mechanical Turk is that it does not allow you to
cleanly specify on one page more than one multiple-choice question. In the interest of
making the HITs very clear to the Turkers, we left each HIT as containing a single noun
compound comparison task. A sample HIT is presented in Figure 4.

We also had to provide the Turkers instructions on how to complete each HIT, which
primarily constitutes defining what we mean by similarity between noun compounds. We
do not want to give a definition of similarity that permits the Turkers to use an algorithm
to find if two noun compounds are similar, for that defeats the purpose of using similarity
as a measurement of the ability of the computational model to capture a sense of meaning.
We want to know what their gut feeling regarding similarity is as well, and we want
to avoid influencing them too much. However, it is no good if every Turker decides
their own meaning of the notion of similarity between noun compounds. We need some
common ground, so we provide a holistic description of what two noun compounds being
similar means. We provided the instructions shown in Figure 5 to the Turkers.

The inherent difficulty in leaving some leeway in what is meant by similar is that we
cannot flat out reject the Turkers’ responses so easily without knowing their justification.
It is also hard to tell then whether or not the Turkers took their job seriously. To mitigate
these concerns, we employed master Turkers (which must be earned by consistently
getting > 99% of their work approved) for a slight extra cost. In order to ensure we got
different people from perhaps different parts of the world, and not a homogenous Turker

16

Figure 5: Instructions provided to the Turkers

population, we ran the Mechanical Turk experiments at different times of the day. We also
performed sanity checks to ensure that the majority of the responses were not answered
’unknown’ as an easy way to make money. We also checked the average time to complete
each HIT to ensure we were not getting ridiculously quick clickers. If the Turkers spent
more than a few seconds on each HIT, we deemed the HITs acceptable since spending ten
seconds or more at least suggests that thought was put into completing each HIT.

We wanted to ensure that for each noun compound pair, at least three distinct
Turkers had looked at it and assigned a similarity rating. Thus we needed to upload to
Mechanical Turk the same set of HITs at least three times. The average times to complete a
HIT were 46 seconds for the first time we ran the dataset on Mechanical Turk, 21 seconds
for the second time, and 22 seconds for the third time. We also had to block workers
in order to get the minimum of three different Turkers to review the same HIT. Some
Turkers who responded to the same HIT more than once sometimes responded with
different replies (i.e. the first time the Turker said a certain pair of noun compounds was
similar, and the second time the same Turker said the pair was not similar!). We called
these Turkers ’bad Turkers’ and needed to replace all of their work.

For each of the bad Turkers, we did repeat runs in order to replace their work. The
first time we did this, the average time to complete each question was 92 seconds, which
means the Turkers spent more time on each question. The second time, it was 39 seconds.
The third time, it was 13 seconds. If a bad Turker answered a question only twice, we ran
the noun compound pair on Turk two more times. If a bad Turker answered a question
three times, we ran the noun compound three more times (to completely replace the
Turker’s work). There was only one Turker who answered multiple questions three times,

17

and they were also a bad Turker. For the Turkers who answered the same question twice
that were not bad Turkers, we kept their answer and just ran the question another single
more time to get a new response so that we would have three distinct responses for each
noun compound pair. We also classified 268 noun compound pairs ourselves to get a feel
for the task and to fill in gaps so that we would have a minimum of three different human
ratings for each noun compound.

However, we retain some confidence in the accuracy of the Mechanical Turk results
despite some of the mishaps. When we blocked the Turkers, some of the Turkers emailed
asking for reasons why their work was rejected, and provided their detailed reasoning for
choosing particular answers. So it appears that at the very least a few of them were very
earnest and attempting to do a good job.

After we received at least three classifications from distinct humans, we needed to
determine what the final classification was. The number of distinct Turkers who answered
per noun compound was between 3 and 6 inclusive. There were only four possible
classifications. If all classifications were the same, then we did not have to do any extra
work. Otherwise, we looked at the classification that the largest percent of the Turkers
answered with. If this value was larger than 50%, then that was the classification used. If
not, then if any of the Turkers had answered that the noun compounds were very similar,
this distinct was removed and very similar was treated as similar. We recalculated the
classification that the largest percent of Turkers answered with. If it was still less than 50%,
then we said that we did not know what the human classification of the noun compound
was.

3.3. Describing the Mechanical Turk Dataset

We provide the statistics of the Mechanical Turk datset below:� �
Mechanical Turk Test Set Statistics:
How many noun compound pairs f o r each c l a s s ?
Not similar = 4380
Unknown = 90

5 Similar = 376
Very similar = 56

% Not Similar: 89.3%
% Unknown: 1.8%

10 % Similar: 7.7%
% Very Similar: 1.1%� �

Listing 1: Mechanical Turk Dataset Statistics

3.4. Building the Fyshe Vector Space

We downloaded Fyshe’s VSM from the website specified in [Fyshe2013]. The VSM came
in a Matlab file, in which were encoded a matrix with 55000 rows and 2000 columns.

18

http://www.cs.cmu.edu/~afyshe/papers/conll2013/

The first 1000 columns specify Document space, and the second 1000 columns specify
Dependency space. Document space is created by finding word counts in individual
documents drawn from the 50 million document ClueWeb09 data set, and Dependency
space represents each word with a vector where each column is a context in which
the word appears (for instance, for word w, the word w is the subject of the verb ’eat’)
[Fyshe2013]. The rows are nouns and adjective noun phrases.

One task Fyshe et. al addressed was using the VSM to decide if two adjective-noun
phrases were similar, compared against a groundtruth dataset of human assessments,
which is very similar to the noun compound similarity task (the only differences are
noun compound versus adjective-noun, and the fact that they used a Likert scale of 1− 7
instead of the −1, 0, 1, 2 scale we used).

Their best results on this task used vectors built from the first 25 Document columns
concatenated with the first 600 Dependency columns to represent individual words.
To assess phrase similarity, Fyshe et. al used vector composition instead of similarity
composition. Fyshe found that the two best approaches for vector composition were
quite simple: a vector sum of the phrase components, and a dilated vector sum of the
phrase components. The dilated vector sum is just a vector sum with the adjective vector
multiplied by a factor of γ = 16.7, derived based from previous work.

We implemented these two approaches for comparison purposes.

3.5. Testing Procedure

To evaluate our semantic vector models, we calculated a model similarity score and the
Turk classification for each noun compound pair. The model similarity score was in the
range [0, 1]. If the score was ≤ 0.4, the model classification was designated ’not similar’.
If the score was < 0.4 and ≤ 0.6, the model classification was designated ’unknown’. If
the score was > 0.6 and ≤ 0.9999, the classification was ’similar’. Finally, if the score was
> 0.9999, the classification was ’very similar’. This translation from similarity score to
classification was based on the principle that there should be a small window around
0.5 which should be considered too unclear to tell. We made that window symmetric
and with radius 0.1. Therefore, for each model and for each noun compound pair, we
had a model classification and a Turk classification. If either of the classifications was
’unknown’, then we skipped that noun compound pair. Otherwise, we checked if the two
classifications were the same. If they were the same, we recorded the model as getting
the correct response on that noun compound pair. Otherwise, we recorded the model as
getting the incorrect response on that noun compound pair. Then we sorted the models
by the percentage of noun compound pairs they solved correctly.

Since there are large number of ’not-similar’ ratings, we also examined the how the
models perform over the subset of the Turk dataset for which Turkers rated the noun
compound pairs as ’similar’. We performed exactly the same steps as before, just with a
reduced list of noun compound pairs.

Finally, we examined the errors each model made and analyzed them manually.

19

4. Results

We discuss the general meanings of the rankings of the vector spaces for the Fyshe, COCA,
and GloWbE models.

4.1. Results

Here we have the results for all vector space models.� �
Mechanical Turk Test Results

Ranked by % correct on all noun compound pairs:

5 ----------------------------------
Fyshe Dilation Model:
Correct: 4252
Incorrect: 396
Skipped: 254

10 ----------------------------------
Fyshe Sum Model:
Correct: 4313
Incorrect: 389
Skipped: 200

15 ----------------------------------
COCA Weighted Model:
Correct: 4384
Incorrect: 385
Skipped: 133

20 ----------------------------------
COCA Vanilla Model:
Correct: 4369
Incorrect: 385
Skipped: 148

25 ----------------------------------
GloWbE Weighted Model:
Correct: 4378
Incorrect: 389
Skipped: 135

30 ----------------------------------
GloWbE Component Model:
Correct: 4358
Incorrect: 385
Skipped: 159

35 ----------------------------------
COCA Component Model:
Correct: 4360
Incorrect: 384
Skipped: 158

40 ----------------------------------
GloWbE Vanilla Model:
Correct: 4350

20

Incorrect: 381
Skipped: 171

45 ######################################
Summary (sorted by % correct):

COCA Weighted Model: 89.4328845369%

50 GloWbE Weighted Model: 89.3104855161%

COCA Vanilla Model: 89.1268869849%

COCA Component Model: 88.9432884537%
55

GloWbE Component Model: 88.9024887801%

GloWbE Vanilla Model: 88.7392900857%

60 Fyshe Sum Model: 87.984496124%

Fyshe Dilation Model: 86.7401060792%

Ranked by % correct on noun compound pairs that Mechanical Turk labeled
’Similar ’:

65

Fyshe Dilation Model:
Correct: 81
Incorrect: 337

70 # Skipped: 14

Fyshe Sum Model:
Correct: 125
Incorrect: 262

75 # Skipped: 45

COCA Weighted Model:
Correct: 85
Incorrect: 317

80 # Skipped: 30

COCA Vanilla Model:
Correct: 9
Incorrect: 382

85 # Skipped: 41

GloWbE Weighted Model:
Correct: 82
Incorrect: 320

90 # Skipped: 30

GloWbE Component Model:
Correct: 52

21

Incorrect: 337
95 # Skipped: 43

COCA Component Model:
Correct: 52
Incorrect: 337

100 # Skipped: 43

GloWbE Vanilla Model:
Correct: 5
Incorrect: 377

105 # Skipped: 50
######################################
Summary (sorted by % correct):

Fyshe Sum Model: 28.9351851852%

110

COCA Weighted Model: 19.6759259259%

GloWbE Weighted Model: 18.9814814815%

115 Fyshe Dilation Model: 18.75%

GloWbE Component Model: 12.037037037%

COCA Component Model: 12.037037037%
120

COCA Vanilla Model: 2.08333333333%

GloWbE Vanilla Model: 1.15740740741%� �
Listing 2: Performance of the VSM Models

We have two sets of results: results over all the noun compound pairs, and results
over only the similar-Turk-ranked noun compound pairs. We denote the former as the
comprehensive test set, and the latter as the similar-only testset.

We first note that there is very small variation in the scores in the comprehensive set
(86.7%− 89.4%) compared to the similar-only testset (1.1%− 28.9%). A possible reason
for this result is the large number of noun compounds ranked not-similar. The models all
seem to be biased towards ranking not-similar, and thus do well at that job, but not quite
as well on the similar-only task.

All our models performed better than the Fyshe VSM models did when we consider
the whole noun compound pair testset, with the winner being the COCA Weighted
model, followed close behind by the GloWbE Weighted model. The COCA Vanilla
model came close behind, followed by the Component Models, with GloWbE Vanilla
model performing the worst of our models. However, again, this result may only be
an indication of a stronger bias in our models towards rating ’not similar’, especially
since the model that used the least amount of the structure developed got the best score.

22

It is also worth noting that the Vanilla Models are more biased towards giving a ’not
similar’response, since the way they are constructed requires only one component of
the model to have a score of 0 to send the whole similarity score to 0. Since there is no
weighting, a very high score in one component may not outperform middle-low scores in
all the other components, even if the component that has the high score is an action-space
component. It is also interested to note that the COCA versions outperformed their
GloWbE counterparts in all cases. The reason for this remains to be seen. However,
the fact remains that the performances were all very similar. What we can conclude is
that COCA seems to perform at least equally as well as GloWbE on this dataset for the
similarity functions used.

Thus we turn our attention to the similar-only testset. The choice of corpus did
not seem to affect the performance of our models very much for each choice of type of
model. The Fyshe Sum model performed the best on this portion of the corpus with
a score of 28.9%. This model was the better of the two in the original Fyshe paper as
well. The COCA Weighted and GloWbE Weighted performed the best of our models
and succeeded at beating the Fyshe Dilated Sum model, weighing in at 19.6% and 19.0%
respectively. The Fyshe Dilated Sum model was close behind at 18.8%. The COCA and
GloWbE Component models are next with scores of 12.0% and 12.0% respectively. Finally
at the very end, the COCA Vanilla and GloWbE Vanilla models had scores of 2.1% and
1.1% respectively. In the similar-only task, the COCA and GloWbE models for each type
of model (Vanilla, Component, Weighted) perform very similarly, with COCA being
only slightly better than GloWbE on all models. This result is not surprising due to
the fact that COCA and GloWbE had similar vector spaces dimension sizes, though of
course the columns may have had different contexts. Since GloWbE was such a large
corpus however, it is likely that a fair portion of the column contexts were the same or
very similar, especially since the SVD step of dimension reduction culled a lot of the
low-frequency contexts. This result suggests that more creative uses of the columnspace
need to be made in order to gain more from size-increases in the corpus used.

In the similar-only task, it becomes evident that the approach used for the similarity
structure function is crucial in determining whether or not a noun compound pair is
similar. The weighted and component models significantly outperformed the vanilla
model, suggesting that the machinery built into those two models is doing some work to
distinguish similar from not-similar noun compound pairs. It appears that the type of
model used, not the corpus is the significant feature in the models we constructed.

5. Future Work

This project has a lot of extensions that could be pursued as future work.

5.1. Improving the Model: Parameter Learning

One thing we could attempt to improve the model is the implementation of parameter
tuning. There are multiple parameters we could have fiddled with but did not. The first

23

is the p parameter used in [Turney2012]. The singular value matrix resultant from the
SVD is raised to the pth power, and grid search is performed to optimize the value to get
the best row vectors for comparison. In this paper we simply set p = 1. In that paper k,
the number of singular values, is chosen in a similar manner. In this paper we chose the
popular adhoc rule of retaining singular values until we have explained at least 90% of
the square-sum of singular values.

For the Weighted Model, we could also attempt to optimize the parameters of the
sigmoid function, either by using a method along the lines of grid-search, or by potentially
utilizing neural nets to learn the best function. We can also extend this approach to
learning the weights in the weighted model. The weighted similarity structure function
(see Equation 12) therefore generalizes itself well to unsupervised learning procedures,
which could be an interesting approach to take to develop more similarity functions.

5.2. Improving the Mechanical Turk Test Set

We believe the test set we use could also be improved if there were more funding to test
more noun compound pairs. We could also increase the number of distinct Turkers who
provide classifications for each noun compound pair. Ideally, we could also get more
feedback regarding the task description (see Figure 5). Finally, an interesting approach
to human survey data collection is provided by Crowdflower, which provides quality
control for these kinds of surveys.

5.3. More Experiments

There are also more experiments we can do with our VSMs. We list a few of them below:
1. Build and test vector composition models in addition to similarity composition

models with our VSMs.
2. Explore the clustering properties of quad-space vectors.
3. Test our model on other established datasets: particularly, WordSim-353, a

standard dataset that includes human similarity judgements on pairs of words would be
interesting [Huang2012].

4. Construct more of our own different data sets to test: instead of from Mech Turk,
use WordNet to generate noun pairs that would be considered similar [Fellbaum1998].

5. Compare the VSMs we generated to each other, and see if they rate words the same
or differently. Possibly, also implement a majority model that does a majority vote across
a few of the models that we created (for instance, pick the most common classification
across the Vanilla Model, the Component Model, and the Weighted Model).

6. Acknowledgements

I would like to thank Professor Fellbaum for advising me throughout the past year and
for reading the paper, Professor Dvir for being my second reader, the Princeton Math
Department for giving me the opportunity to carry out this work as well as providing me

24

http://www.crowdflower.com/

funding for it, and the Princeton Computer Science Department for obtaining access to
the corpuses COCA and GloWbE, without which this paper would not have been possible.
Lastly, I would like to thank Alice Tao for digitizing the Linking Structure diagram.

7. Appendix A: Word-Context Matrix Processing Steps

7.1. Pointwise Positive Mutual Information

ppmi is a smoothing technique applied to a word-context matrix. We apply the pmi
function to each element of the word-context matrix. If the pmi value is ≤ 0, we set the
value of the matrix at that location to 0.

We have the definition of the pmi function below:

pmiij = log
(

pij

pi∗p∗j

)
(14)

Here, pij is the estimated probability that word wi occurs in context cj, pi∗ is the
probability of the word wi, and pj∗ is the probability of the context cj [Turney2012].

7.2. Singular Value Decomposition and Rank-k Approximation

One of the most important aspects of the algorithm to generate a word space is the
dimension reduction step. In this paper, we use Singular Value Decomposition (SVD) to
split the vector space matrix into 3 factors, U, D, V. U and V are orthogonal matrices,
and D is diagonal with elements known as the singular values. We perform dimension
reduction by retaining only k of the singular values and deleting the related columns of U,
and then multiplying U by D to obtain the reduced vector space. SVD has the side-effect
property of smoothing out the matrix even further. It does not, however, guarantee
anything about the positivity or negativity of the values.

8. Appendix B: Describing the Corpora

The COCA corpus was split into 5 different files, and the GloWbE corpus was split into
23 different files. The corpora files used in this paper were of the Word-Lemma-Part of
Speech format. Database and Raw Text versions were also provided, but not used in this
paper. In the Word-Lemma-Pos format, the parts of speech were tagged by the CLAWS7
tagger using the UCREL CLAWS7 tagset tagset. For more information see the FAQ.

8.1. Corpus of Contemporary American English (COCA)

We calculated some noun compound-related statistics of the COCA corpus for general
interest purposes [COCA].

25

http://ucrel.lancs.ac.uk/claws7tags.html
http://www.wordfrequency.info/100k_faq.asp

� �
#=========COCA INFO============#
Some statistics on COCA corpus:
Number of distinct noun compounds: 10032
Number of distinct heads: 3046

5 Number of distinct modifiers: 2256
Total Number of times a noun compound shows up: 3015413
Approximate fraction of places in corpus that begin with a noun

compound: 0.00685321137921
50 Most Common Head words and their frequencies:

room: 42753
10 care: 35657

system: 34649
members: 24866
rate: 18315
program: 17875

15 industry: 17283
programs: 16665
group: 15743
rates: 15119
students: 14887

20 education: 14253
officials: 14153
market: 14146
companies: 13528
groups: 13518

25 director: 13409
use: 13120
company: 12700
table: 12374
door: 12326

30 force: 12092
team: 11863
station: 11782
process: 11668
cancer: 11608

35 level: 11158
game: 10782
line: 10595
school: 10573
control: 10293

40 center: 10087
systems: 9921
store: 9891
service: 9863
plan: 9758

45 prices: 9622
insurance: 9418
show: 9376
tax: 9246
officer: 9222

50 reform: 9217
life: 8801

26

juice: 8497
enforcement: 8385
time: 8327

55 point: 8236
conference: 8217
member: 8173
services: 8098

50 Most Common Modifier words and their frequencies:
60 school: 63347

health: 62043
family: 32908
tax: 28271
state: 26247

65 drug: 24218
business: 23265
phone: 22376
police: 21988
college: 21958

70 government: 21601
home: 20760
law: 20424
community: 19525
air: 17952

75 news: 17866
security: 17430
research: 17145
food: 17048
heart: 16869

80 water: 16504
oil: 16383
computer: 15391
education: 15153
world: 15028

85 back: 15009
blood: 14890
care: 14654
executive: 14457
music: 14432

90 student: 14122
life: 13621
living: 12973
energy: 12958
art: 12738

95 power: 12709
insurance: 11978
death: 11834
child: 11681
television: 11564

100 credit: 10902
stock: 10897
interest: 10811
time: 10681

27

job: 10661
105 car: 10647

trade: 10523
body: 10496
cell: 10264
defense: 10259� �

Listing 3: COCA Statistics

8.2. Corpus of Global Web-Based English (GloWbE)

We calculated some noun compound-related statistics of the GloWbE corpus for general
interest purposes [GloWbE].� �

#=========GloWbE INFO==================#
Some statistics on GloWbE corpus:
Number of distinct noun compounds: 8880852
Number of distinct heads: 281268

5 Number of distinct modifiers: 255147
Total Number of times a noun compound shows up: 65280084
Approximate fraction of places in corpus that begin with a noun

compound: 0.0343579389474
50 Most Common Head words and their frequencies:

system: 411983
10 state: 363720

service: 336363
program: 294855
group: 251454
time: 249432

15 company: 249155
rate: 245762
center: 243544
member: 234212
people: 228247

20 game: 195068
york: 191445
cent: 191020
team: 186826
day: 183696

25 level: 183516
area: 180968
industry: 178364
site: 176769
city: 175018

30 market: 174124
zealand: 160964
project: 158635
change: 157836
house: 156601

35 management: 154091

28

page: 153384
card: 150690
process: 149214
university: 146909

40 government: 145858
price: 145564
africa: 144942
school: 143986
policy: 141003

45 room: 139926
point: 139061
line: 137187
plan: 136943
number: 128563

50 party: 128059
development: 127997
post: 127858
law: 127663
lanka: 126548

55 report: 125876
issue: 125005
act: 124153
station: 122610

50 Most Common Modifier words and their frequencies:
60 new: 437329

world: 395479
business: 371368
us: 337535
health: 335423

65 time: 272285
south: 258904
mr: 257921
government: 248396
united: 245119

70 state: 233444
family: 225606
john: 218736
school: 212160
million: 205978

75 president: 197533
service: 197281
home: 197016
per: 189919
tax: 187231

80 security: 183940
food: 174182
media: 171043
web: 169550
water: 166168

85 development: 154512
year: 153949
research: 152993

29

city: 150873
day: 150104

90 north: 147233
sri: 147220
energy: 146720
life: 143689
police: 139986

95 community: 139526
power: 139454
david: 137920
market: 133621
news: 132406

100 internet: 131692
air: 127667
west: 127198
dr.-i: 126387
management: 124964

105 climate: 122367
party: 118667
credit: 117562
quality: 115548
de: 112622� �

Listing 4: GloWbE Statistics

9. Appendix C: Implementation Details and Future Usage

9.1. Libraries Used

All the code was written in Python, and Numpy was used significantly throughout the
project. We also used the h5py module to build the Fyshe vector space from the provided
Matlab file.

9.2. List of Noun Compounds Used

Here we provide the list of 99 noun compounds that were used for model creation and
testing.

By accident, we included one noun compound (’life force’) twice for a total of
100 noun compounds in the original list (repeated). Because we generated the noun
compound pairs from this list, there were in fact (100

2) = 4950 noun compound pairs
provided to Turkers, and as a result some of the noun compound pairs were solved more
than once. We also had (’life force’, ’life force’) as a noun compound pair presented to
Turkers as a result.� �

breakfast table
pool table
bargaining table

30

card table
5 oak table

assembly line
cruise line
party line
story line

10 telephone line
punch line
water line
tree line
trend line

15 goal line
air force
brute force
life force
task force

20 invasion force
grad students
art students
women students
law students

25 minority students
bus station
police station
space station
television station

30 train station
weather station
gas station
subway station
power station

35 research station
reading room
hotel room
computer room
dorm room

40 living room
wiggle room
chat room
dance company
finance company

45 parent company
adult life
animal life
sex life
love life

50 shelf life
water fountain
water availability
water glass
water heater

55 water hole

31

water lilies
water vapor
water temperature
water rights

60 water pressure
blood vessel
blood type
blood pressure
blood bank

65 blood test
blood flow
air temperature
air space
air service

70 air flow
air travel
air mattress
air fare
heart attack

75 heart monitor
heart disease
heart pounding
heart rate
death wish

80 death penalty
death sentence
death toll
death camp
death certificate

85 death squads
life events
life expectancy
life sciences
life savings

90 life span
life skills
life support
life style
life jacket

95 time zone
time interval
time period
time machine
time limit� �

Listing 5: The 99 Noun Compounds

9.3. Corpus-Parsing Algorithm

COCA and GloWbE are both very large data sets on the order of 0.5 billion and 2 billion
words, so efficiency was important in guiding the algorithm design.

32

The main idea is to build a generic corpus tracer, which takes in some values
(including a function), and at each step of the trace, executes the function with the right
parameters.

The functions that were passed to the tracer were designed to calculate frequencies
for specific contexts. There were four contexts (one each for D,A, QH, QM).

A window of fixed size is maintained as the tracer steps through the corpus in order
to allow for exactly one corpus traversal, and in order to save space.

9.4. Potential as a Module

Other students at Princeton University may desire to use the COCA and GloWbE corpuses
as well, now that they have been made available to all students. The code used in this
project, after a little clean-up, should serve as a starting point for a Python module made
available by the University alongside the corpora.

10. Citations

References

[COCA] Davies, M. (2008-). The Corpus of Contemporary American English: 450 million
words, 1990-present. Available online at http://corpus.byu.edu/coca/.

[GloWbE] Davies, M. (2013-). Corpus of Global Web-Based English: 1.9 billion words from
speakers in 20 countries. Available online at http://corpus.byu.edu/glowbe/.

[Fellbaum1998] Fellbaum, C. (1998, ed.) WordNet: An Electronic Lexical Database.
Cambridge, MA: MIT Press.

[Fyshe2013] Fyshe, A., Talukdar, P., Murphy, B., and Mitchell, T. (2013). Documents and
Dependencies: an Exploration of Vector Space Models for Semantic Composition.
CONLL, pp. 84-93.

[Harris1954] Harris, Z. S. (1954). Distributional structure. Word, 10(23), pp. 146-162.

[Huang2012] Huang, E. H., Socher, R., Manning, C. D., and Ng, A. (2012). Improving
word representations via global context and multiple word prototypes. Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers -
Volume 1, pp. 873-882.

[Nakov2013] Nakov, P. I., and Hearst, M. A. (2013). Semantic interpretation of noun
compounds using verbal and other paraphrases. ACM Transactions on Speech and
Language Processing, 10(3), pp. 1-51.

[Sahlgren2006] Sahlgren, M. (2006). The Word-Space Model: Using distributional analysis
to represent syntagmatic and paradigmatic relations between words in high-dimensional
vector spaces (Doctoral dissertation). Stockholm University, Department of Lingustics,
Computational Linguistics, Stockholm, Sweden.

33

http://corpus.byu.edu/coca/
http://corpus.byu.edu/glowbe/

[Schnoebelen2010] Schnoebelen, T., and Kuperman, V. (2010). Using Amazon Mechanical
Turk for linguistic research. Psihologija, 43(4), pp. 441-464.

[Turney2010] Turney, P. D. and Pantel, P. (2010). From Frequency to Meaning: Vector
Space Models of Semantics. Journal of Artificial Intelligence Research, 37, pp. 141-188.

[Turney2012] Turney, P. D. (2012). Domain and Function: A Dual-Space Model of Se-
mantic Relations and Compositions. Journal of Artificial Intelligence Research, 44, pp.
533-585.

[VanDeCruys2013] Van de Cruys, T., Poibeau, T., and Korhonen, A. (2013). A Tensor-
based Factorization Model of Semantic Compositionality. Proceedings of NAACL-HLT,
(June), pp. 1142-1151.

34

	Introduction
	Philosophy of Meaning
	Definitions
	Paper Objective
	Motivation
	The Relation of Similarity to Meaning
	Outline

	Building the Model
	The Quad-Space Model: An Overview
	Domain Space D
	Action Space A
	Qualifier-Head Space QH
	Qualifier-Modifier Space QM
	Processing the Word-Context Matrices
	Similarity Structure Functions
	Similarity Composition Functions
	Putting Structure and Composition Together

	Model Evaluation
	Set of Noun Compound Pairs
	Building the Mechanical Turk Dataset
	Describing the Mechanical Turk Dataset
	Building the Fyshe Vector Space
	Testing Procedure

	Results
	Results

	Future Work
	Improving the Model: Parameter Learning
	Improving the Mechanical Turk Test Set
	More Experiments

	Acknowledgements
	Appendix A: Word-Context Matrix Processing Steps
	Pointwise Positive Mutual Information
	Singular Value Decomposition and Rank-k Approximation

	Appendix B: Describing the Corpora
	Corpus of Contemporary American English (COCA)
	Corpus of Global Web-Based English (GloWbE)

	Appendix C: Implementation Details and Future Usage
	Libraries Used
	List of Noun Compounds Used
	Corpus-Parsing Algorithm
	Potential as a Module

	Citations

