An Efficient General Algorithm for Interactive Clustering Kiran Vodrahalli

knv2109

Contents
1 Introduction to Interactive Split-Merge Clustering 1
1.1 Two Generic Inefficient Interactive Clustering Algorithms 2
1.2 Inefficient Aspects of the Generic Algorithms 3
2 Efficient Interactive Clustering 3
2.1 The Algorithm e 4
2.2 The Sampling Oracle 4
2.2.1 Reduction to Sampling Clusters 4
2.2.2 «a-Consistency Algorithm and its Sample Complexity 6
2.2.3 Updating the Sampler with Constraints 6
2.3 Calculating Probabilities by Memorizing Queries 7
2.3.1 Assumptions for Efficient Computation 7
2.3.2 The Validity Function 7
2.4 Sampling Algorithm 9
2.5 Implications of the Results. 9
2.5.1 d-Dimensional Rectangles 10
3 Conclusion and Future Work 10
3.1 Implementing and Empirically Evaluating the Algorithm 10
3.2 Extension to Data-Conditioned Concept Classes 11
3.3 Applications to Evaluating Generative Models 11
4 Appendix A: Algorithms 12

1 Introduction to Interactive Split-Merge Clustering

In their original work, Balcan & Blum (2008) introduced the theoretical study of the interactive
clustering problem via split-merge feedback. The central idea is as follows: We can denote a
“clustering” as a set of hypotheses {ci1,---,c;} from hypothesis class C such that when we apply
the set of maps to some dataset X = {x;}!", the hypotheses partition X into disjoint sets. The goal
is to identify a set of hypotheses such that we can achieve this goal by making a minimal number
of split-merge queries to a user. In particular, one thing which differentiates this setting from other
clustering settings is that we are looking for a kind of worst-case guarantee: We wish to make no
assumptions about the frequencies of the various types of queries we will receive. This approach
is distinct from Bayesian setting where typically strong (and Gaussian) assumptions are made on
the data, as is typical in Gaussian mixture modeling. We instead specify two kinds of feedback
which the algorithm receives after outputting a candidate clustering (a query). A split feedback
specifies a hypothesis cluster in the algorithm’s outputted clustering which needs to be split into
one or more clusters, but does not specify how to split the offending cluster. A merge feedback
specifies two hypothesis clusters in the clustering which should be merged together into a single
cluster. Note that by definition, merging is a pure operation in the sense that the two hypotheses
selected to merge must be in the same target cluster. Typically, algorithms in this setting involve

An Efficient General Algorithm for Interactive Clustering Kiran Vodrahalli
knv2109

specifying a way to initialize clusters and how to react when receiving a split request between two
hypotheses.

Since it is trivial to cluster in this model using only m queries (start with each point in its own
cluster and receive merge requests), we are only interested in algorithms which depend sublinearly
on m (hopefully, logarithmically). In general, we hope to find algorithms which cluster with a num-
ber of queries of order O(poly(k,log |C|,logm)). Using this model, it is possible to design clustering
algorithms for specific hypothesis classes (e.g., intervals, disjunctions) which take advantage of the
specific structure of the hypothesis class to get good algorithms.

1.1 Two Generic Inefficient Interactive Clustering Algorithms

However, we would like to design more general algorithms for interactive clustering oblivious to
the specific concept class we are dealing with. One approach is to work explicitly over the version
space of clusterings, and with each feedback response to a query, reduce the size of the version space
by some fraction. In particular, this approach is intimately related to the halving algorithm and
is common in interactive learning theory (for instance, the splitting index approach by Dasgupta
(2005) is similar in general spirit). In particular, if we can guarantee that we can reduce the version
space by a fixed fraction each iteration, no matter what the result of the query was, we will be able to
obtain a query-efficient algorithm, providing an upper bound to the query complexity of interactive
clustering for any hypothesis class for clusters. The first algorithm following this approach was
given in Balcan & Blum (2008). Before giving the algorithm, we define an important notion:

Definition 1.1. a-consistent.

A set S of points is a-consistent for some a € (0, 1) with respect to a concept class C and a dataset
of points X if for an a-fraction of all clusterings of concepts (c1,--- ,¢x) € CVS in the version space,
it is true that S C ¢;(X) for some i € [k].

This notion is critical to defining to ensuring we make progress as use feedback to prune the
version space. Algorithm 2 implements this strategy and yields a query complexity O(k3log|C|),

where k is the number of clusters. We can see this fact since to reduce to the case where |V| =1,

we need T iterations of the while loop where we are only guaranteed to remove a -5 fraction

kQ
of the version space each round. Solving (1 — k%)T ICVS| = 1 yields T = %, noting that
08 w21
ICVS| = |C|*~!. Seeing that log™* k§i1 = O(k?), we see the query complexity is O(k3log|C]).
However, we can improve this bound to O(klog|C|) using a modified, simpler algorithm due to
Awasthi & Zadeh (2010), given in Algorithm 3. To succinctly describe the algorithm, we need the

following definition:

Definition 1.2. Consistent Cluster Set.
For some set of points s C 5, the consistent cluster set

CCS(s) == {{c1,"- ,ex} € CV5{e1, -+, e} is consistent with s}

In the case of Algorithm 3, we are guaranteed to halve the version space each time no matter
what the feedback is. Thus, the query complexity is O(log |CV¥]) = O(klog|C|).

An Efficient General Algorithm for Interactive Clustering Kiran Vodrahalli
knv2109

1.2 Inefficient Aspects of the Generic Algorithms

Despite the good query complexity given by the generic algorithm, there are many issues which
prevent it from being used in practice. They are

(a) Requiring an instantiation of the version space.
(b) Requiring a potentially large number of clusters per clustering.

It turns out that the second restriction is inescapable in the general case for merge-split queries:
There exist hypothesis classes such that algorithms which produce a polynomial number of clusters
are insufficient to succeed with only polynomially many queries. In particular, the hypothesis class
of parity functions over the Boolean hypercube is a failure case, due to an uncertainty principle
argument derived from Boolean Fourier analysis.

Thus, for now, we restrict ourselves to improving the first issue in the merge-split setting. The
version space is typically exponentially large, and thus infeasible to represent in full memory. We
want to be able to execute one of the above algorithms (Algorithm 2 or 3) without having to
represent the version space in full. This necessity results in two requirements if we use Algorithm
2:

(a) We must be able to check the a-consistency of a set with respect to a version space V efficiently
without actually maintaining a full representation of V.

(b) We must be able to update our representation of V to V' so that in the future, the a-
consistency check is updated to be with respect to V', again without having to actually
iterate over the full version space.

Similarly, if we choose to go with Algorithm 3, we have two slightly different requirements:

(a) We must be able to optimize over sets of points s in the domain constrained by the size of the
V-consistent cluster set with respect to s. In particular, we must be able to find the largest
set of points s which obeys this constraint. This requirement again amounts to being able to
check consistency with respect to the version space efficiently.

(b) Again, we must be able to update our representation of V to V' so that consistency checks
are also updated.

We can choose to make either algorithm efficient: The algorithm which will overall be more
efficient depends on how much harder optimization over consistency constraints is compared to
just checking consistency constraints. As constrained optimization seems difficult, we will focus on
making Algorithm 2 efficient.

2 Efficient Interactive Clustering

In this section, we efficiently implement a relatively general purpose interactive concept-specification
algorithm, subject to some constraints on the hypothesis classes we consider.

An Efficient General Algorithm for Interactive Clustering Kiran Vodrahalli
knv2109

2.1 The Algorithm

We will provide an alternative implementation of Balcan & Blum (2008)’s algorithm which is
somewhat practical. The main insight is to use a sampling oracle which can be used to estimate
a-consistency. See Algorithm 1. Correctness follows from the proof of Balcan & Blum (2008), as
does query complexity O(k3dlogm). We choose € = %, 0= k_mqu(c]l()ligm = k42}2012ém' We require
€= o(k,%) so that with high probability we get a-consistency with o > k% as in Balcan & Blum
(2008). We also require the chosen d§, which by a union bound ensures probability of success 0.9999
over the whole algorithm (the denominator is the number of times we must run the sampler with
parameters J,€). We can always run the algorithm repeatedly to boost the probability of success
arbitrarily high.

The computational complexity of the algorithm is O (k:3dlog(m) . (m k- @ log (%) +k- Tupdate)>,
where Tiumple is the time it takes to sample and Typdate is the time it takes to update the cluster-
sampler.

2.2 The Sampling Oracle

First, we want to determine whether or not a set S is a-consistent, or at least to determine a
lower bound on the true a bounded away from 0. We then need an approach to retrieve such
a-consistent S from the dataset of points P in an efficient manner. Finally, we need to be able
to update the state of the version space, upon which the property of a-consistency depends, after
receiving feedback.

2.2.1 Reduction to Sampling Clusters

In order to check a-consistency over the version space of clusterings, it suffices to sample from a
distribution over C, the concept class of clusters.

Lemma 2.1. a-consistency over clusters = at least a-consistency over k-clusterings.

Proof. The set of clusterings which would not be consistent must consist of clusterings contain-
ing clusters drawn from exclusively the 1 — « fraction of non-consistent clusters; this implies (-
consistency over clusterings where 8 = 1 — (1 — a)¥ > a, where k is the number of clusters in a
clustering.

If we want to ensure that we have 1/k?-consistency over k-clusterings, then we need to solve
B =1/k%

1
1—(1—a)k:ﬁ

1\ V/k
et (1)

An Efficient General Algorithm for Interactive Clustering Kiran Vodrahalli

knv2109

Algorithm 1 Efficient Generic Clustering

1: procedure EFFICIENTCLUSTER(X, cluster-sampler,¢€,d) > X := input dataset of m points,

27:
28:
29:

cluster-sampler := sampling oracle for C, € := error tolerance, § := probability of failure
Initialize feedback set F' := {start}.
while |F| > 0 do

Initialize buckets By, --- , By := {}.
Initialize output cluster list L = [].
for each point x € X in arbitrary order do
for i in [1,--- ,k] do
Sample }2 log(%) clusters from cluster-sampler
if B;U{x} consistent with at least ;5 + € of sampled clusters then B; := B; U {x}
if B, is consistent with at most (1 — k% — e) clusters then
Append B; to L.
Delete B; from the list of buckets.
Append {} to the end of the list of buckets.
end if
break
end if
end for
end for
Receive feedback set F':= F,(L) from user on cluster list L.
for feedback f € F' do
if f = merge(c;,c;) then
Let R := set of clusters inconsistent with ¢; U ¢;.
else if f = split(c;) then
Let R := set of clusters consistent with c;.
end if
Update cluster-sampler so clusters in R are sampled with probability O.
end for

end while
return L as the clustering.

30: end procedure

An Efficient General Algorithm for Interactive Clustering Kiran Vodrahalli
knv2109

2.2.2 -Consistency Algorithm and its Sample Complexity

Now, given a distribution over concept clusters conditioned on the merge-split query results we
have seen thus far, as well as the data, we can check whether a set of points (a candidate cluster c)
is a-consistent with respect to the version space by iterating the following procedure (’)(ei2 log($))
times:

(a) Initialize a count variable to 0.
(b) Sample a cluster ¢ uniformly from the current distribution over clusters.
(c) Check if the cluster is consistent with c. If it is, increment the count variable.

After all iterations, decide if ¢ is a-consistent by checking if the count variable divided by the number
of iterations is larger than «. If it is larger, output yes, otherwise output no. With probability at
least 1 — ¢ the answer will be correct.

Lemma 2.2. Sampling lemma.
We require (’)(e%log(%)) samples from a discrete distribution to determine the frequency of an
element of the support with error < e with probability > 1 — 0.

Proof. Let Y be the random variable corresponding to % >, 1[cluster ¢ consistent with ¢]. Then,

IP’{\Y V> e} < g~ 2né

by Hoeffding’s inequality for sums of independent Bernoulli random variables. Setting the RHS to
0 gives the desired result. O

The efficiency of this step could be improved if there were an approach to bias the distribution
P {c:c e C} over the concept class of clusters so that more weight is placed on consistent clusters
with respect to a given choice of hypothesis cluster.

2.2.3 Updating the Sampler with Constraints

We now know how to sample given a distribution over clusters in the concept class. However, how
do we actually construct the distribution, and how do we update it upon seeing new constraints?
We can update the sampling distribution over clusters once we receive feedback from the user in
the following fashion:

P {Efeedback‘cy X} P {C|X}

> (1)

P {C’Efeedbacka X} =

where X is the data, Efeedback 18 merge-split feedback which imposes a constraint set, Z is the new
normalization constant summing over the numerator for all possible c.

The first main challenge is to determine whether calculating P { Efeedback|c, X } and the normal-
ization constant is tractable. The second is to figure out how to efficiently update the distribution
after receiving more feedback. The third obstacle is to actually define an algorithm for sampling.

An Efficient General Algorithm for Interactive Clustering Kiran Vodrahalli
knv2109

2.3 Calculating Probabilities by Memorizing Queries
2.3.1 Assumptions for Efficient Computation

Using merge-split feedback, we can determine whether or not a certain set is a-consistent. If we
additionally impose constraints on the concept class so that

(a) C is efficiently optimizable, in the sense that we can efficiently find the smallest such concept
in C such that it contains or does not contain some query set (Q C X. In particular, we want

to find
|

¢:QCc,ceC

(b) C is efficiently intersectable, in the sense that we can calculate intersections between sets rel-
atively quickly. This property will be used to define a function which can efficiently calculate
whether a proposed cluster is valid.

We will shortly see that Typdate, the time it takes to update the cluster-sampler, depends
only upon these two steps.

One way to make C optimizable is to think in terms of added constraints upon the kinds of
hypothesis classes we want to deal with.

Let us now define a function which can tell us whether a candidate concept (cluster) is valid.
The idea will be to replace the P { Efeedback|c, X } term from before with a validity function.

2.3.2 The Validity Function

We continue to work in the merge-split setting. Our assumption will be that in the course of
our algorithm, we will submit a list of potential clusters and recieve merge-split feedback over the
clusters.

Definition 2.3. Validity measure.
Suppose that @ is one of the clusters in our merge-split query whether a set of points @) is contained
in a cluster of the true clustering. Then, optimize over concepts to find the “smallest” concept
cluster containing (), call this cluster ¢q.

Define the validity measure ., as a function of a concept cluster ¢ to be

. g Nel
1o(Eg, ¢) 1= =%
[&a]

We define the validity measure in this way because it has some nice properties which give
us information about whether a concept is valid or not without having to maintain any list over
the version space. Notably, converting the validity function into a determiniation of validity or
invalidity of any concept/cluster ¢ depends on the result of the split-merge query applied to a
particular query point ¢g.

Lemma 2.4. Properties of the validity function.
Let c* be a relevant concept in the true clustering. Suppose we receive feedback g relating to set
Q, where ag can be split or merge feedback. There are two cases:

An Efficient General Algorithm for Interactive Clustering Kiran Vodrahalli
knv2109

(a) aq is merge-type feedback: Then, ¢ C c¢* and py(ég,c) € (0,1) implies that c is invalid,
while (1,(Eq, ¢) € {0,1} does not rule out ¢ as a valid cluster.

(b) aq is split-type feedback: Then, é¢q ¢ ¢* and we have that p,(ég,c) € [0,1) implies that ¢
does not rule out ¢ as a valid cluster, while p,(¢g,c) = 1 implies ¢ is invalid.

Proof. If ag is merge feedback, then @) is contained inside a true cluster c*. Since ¢g is a concept
in C, it also must be contained inside ¢* (or is equal to ¢*). Thus, the validity measure p,(¢qQ,c)
for arbitrary c is 0 when ¢ does not intersect ¢g (and thus we get no information and cannot rule
c out), is 1 only when ¢g C ¢ (and thus we cannot rule out that it is the correct cluster, since
we know ¢¢ is contained inside the correct cluster). Otherwise, we know that ¢ is not the correct
cluster, since any cluster with non-trivial but incomplete intersection cannot be the correct cluster,
as ¢g C c*.

If aq is split feedback, then () contains parts of several of the clusters in the true clustering.
Thus, so does ¢q, since @ C ég. Thus, p,(ég,c) for arbitrary ¢ is 0 when there is no relation
and is fractional when there is a partial intersection. Both of these cases imply nothing about the
validity of ¢, since both cases are acceptable for some true cluster in the clustering. However, if
t(€g,c) = 1, we can rule ¢ out since any cluster which contains parts of several clusters is not
pure, and is thus not a true cluster in the clustering.]

Therefore, we can define an indicator function which tells us whether or not any concept is valid
given a merge-split query.

Definition 2.5. Validity indicator function.

Given query cluster @, let ¢g be the result of the optimization and ¢ be a input concept which we
would like to determine is valid or not. Let ag € {merge, split} denote the response of a merge-split
query with respect to (). Then, define

Vmerge(éQv C) = L2MU(6Q7 C) - 1J

Vsplit(éQ)C) = [1- Nv(éQv ¢)]

and let Vo, (¢q, ¢) be the validity indicator function. We can always relax this definition by removing
the floor function.

Notably, we need to be able to update this validity function over many queries in an easy way
which only involves solving an optimization problem at each new query. Ideally, we would be able
to avoid storing too much data in order to compute the function. We can simply sum:

Definition 2.6. Validity indicator function for N queries.
Let {éQz}z]\i | be the result of the optimizations for N proposed clusters {@Q;}¥,. Let {oni}fv: , be
the merge-split feedback for each proposed cluster. Then, define the validity indicator function for

input concept ¢ to be
1
V(e) == {N ZVaQi (eQi,c)J
i=1

An Efficient General Algorithm for Interactive Clustering Kiran Vodrahalli
knv2109

If any of the the functions resulted in an invalid query, then the input to the floor function will
be less than 1, and thus taking the floor will result in zero. In this formulation, it is necessary to
store {(¢g,, aQi)}ij\i , in order to calculate this function.

Therefore, we can now calculate

P {Efeedback‘c, X} P {C|X}
A
V(e (g aq) il)P {dlX) (2)

Zcec V(C’ {(éin O‘Qz‘)}i\iﬁtp {C|X}

Here, we will take P {c|X} = 1 for any set of points ¢ C X, where |X| = m. Thus, we allow
improper cluster queries: This choice is fine since in the end, by realizable assumption we have a
true clustering with individual clusters in C. Thus, the final probability distribution we need to
sample from and update is given by

P {C‘Efeedbacka X} =

V(e {(égi Q) }iL,)
ZCQX V(C’ {(éQz y OQ;) }z]il)

Note that this distribution is uniform over the remaining valid clusters. Also note that the
geometry of the concept class is not being used to make the sampling algorithm efficient: We
are treating the task of actually sampling as a procedure over all possible clusters, though our
constraints will eventually ensure we end up only sampling clusters from the concept class.

P {C’Efeedbacka X} =

3)

2.4 Sampling Algorithm

We now consider Tyample, the time it takes to actually sample given the probability distribution
over clusters. The difficulty of sampling in our setting is due to the fact that we need to calculate
the normalization constant over a large discrete set of ones and zeros, as well as come up with
an algorithm to sample from the distribution. Kim et al. (2016) directly solves this problem by
using the Gumbel-max trick for sampling and formulating the problem as an integer linear program
optimization problem. The method takes advantage of linear programming relaxations and branch-
and-bound search heuristics, which have been optimized over the years and built into the CPLEX
optimization language. This methodology is also capable of taking advantage of parallelism and
can reduce runtime.

We provide a translation from our sampling setting to the terminology of Kim et al. (2016).
Here, our finite set X is the set of possible clusters in X. Our w : ¥ — R7 is exactly V, the validity
indicator function.

2.5 Implications of the Results

Previously, the O(k%log|C|) query-complexity upper bound algorithm given by Balcan & Blum
(2008) was only interesting as an upper bound: It was previously not possible to implement such
an algorithm on any practical system. Thus, if one wanted a practical algorithm, it was necessary to
construct alternative algorithms which typically depended on specific properties of the hypothesis
class. We have identified a set of properties of concept classes which are considerably more general
than specific geometric properties. Thus, we can apply our efficient version of Balcan & Blum

An Efficient General Algorithm for Interactive Clustering Kiran Vodrahalli
knv2109

(2008)’s algorithm to get lower query complexity implementable algorithms in a variety of settings.
Here, we present some examples of applying our method to a specific hypothesis class.
For any particular hypothesis class, we need to present efficient methods for

(a) Finding the smallest hypothesis in the class containing a given set of points.

(b) Calculating the validity indicator function.

2.5.1 d-Dimensional Rectangles

Our example is for the d-dimensional rectangles concept class. Awasthi & Zadeh (2010) provide
an efficiently implementable algorithm which depends on the geometry of d-dimensional rectangles
and which has a query complexity of O((kdlogm)?).

Using Algorithm 1, we can learn a clustering of d-dimensional rectangles with query complexity
O(k®>dlogm), which is considerably better than the O((kdlogm)?) queries attained by Awasthi
& Zadeh (2010). Moreover, it is particularly easy to define the optimization and intersection
operations efficiently for d-dimensional rectangles.

(a) Optimization: Given a set of points @, our algorithm to find ég is to find the max and
min value in each of the d dimensions. This takes time at worst O(md). We then have a
representation of a d-dimensional rectangle with 2d real values, of the form [aj,bi] X - -+ X

[ad, bd] .

(b) Intersection: We can calculate |ég N¢| = Hle |[ai, b;] N [w;, z]|, where a,b denote intervals
of ¢g and w, z denote intervals of c¢. Then, |[a;, b;] N [w;, z]| = 1[d; > b, w; < b (by — w;) +
1[z; < bi,a; < z] (z; — a;). Overall, we have

1 [dz > bi,wi < bl] (bl — wi) +1 [Zi < bi,ai < ZZ'] (ZZ' — ai)
bl' — Q4

o (Eqsc) = H

=1

This operation takes time O(d).

3 Conclusion and Future Work

In this work, we developed an efficient version of the interactive clustering algorithm of Balcan
& Blum (2008) by using sampling to replace the version space. We develop a framework and
conditions for which the algorithm can be made efficient, and demonstrate that for the concept
class of d-dimensional rectangles, we achieve a merge-split query complexity bound better than
that of Awasthi & Zadeh (2010) with a computationally tractable algorithm.

3.1 Implementing and Empirically Evaluating the Algorithm

It remains to actually implement the algorithm and test its effectiveness empirically. We will do
this for several practical tasks, including the problem of evaluating generative adversarial networks
(GANs) mentioned below.

10

An Efficient General Algorithm for Interactive Clustering Kiran Vodrahalli
knv2109

3.2 Extension to Data-Conditioned Concept Classes

In practice, we may want to try to cluster objects like images or text documents. Geometric concept
classes like rectangles and other common learning theoretic concept classes may not measure up as
good measures of clusters for these kinds of objects. How can we fix this problem?

Let us consider concept classes for images. One approach might be to take several layers of a
pre-trained convolutional neural network, and to then have a linear final layer which would output
a 1 if the input image was in the cluster, and a 0 otherwise. Here, the linear final layer would
constitute the parametrization of the concept class. The optimization part of the problem is easy:
In order to find a concept that matches a cluster of points @, simply apply supervised learning:
Label every point in @ with a 1, and all other points 0 — then train the last layer with gradient
descent.

However, it is considerably more difficult to identify the method for finding intersections of two
concepts. One might consider trying to invert the network, but it is not clear how one would simply
and efficiently calculate the overlap. We leave this task for future work.

3.3 Applications to Evaluating Generative Models

One interesting idea which comes to mind is framing the problem of interactive clustering as a
method for sanity-checking the outputs of generative models (for instance, GANSs) to see if they
indeed have a diverse distribution which is not merely memorized from the data. In general, testing
these methods often requires spot-checking and human evaluation — a perfect place for an interactive
method to come in, which can help automate the labor of a human. This application is particularly
suited to merge-split queries since one is not necessarily able to provide useful labels directly without
seeing all of the data (one may not be able to know what the classes are in the beginning, just
whether or not certain images should be grouped together). In fact, interactive methods have a
place/application for any kind of learning algorithm whose results need to be checked by humans.
I believe that interactive learning algorithms could in fact be more principled in some cases
than just having a human go over the results, since a human may not necessarily realize all the
implications of making certain judgements.

To make this concrete, let us return to the GAN example. Say we have a dataset of images
upon which we train some GANs. We can then sample from the GANs to look at the output
distribution. We would like to compare the distribution of the training data and the distribution of
the learned model to see if 1) the output distribution in some way “generalizes” the training data
distribution and 2) if the distribution is diverse. Since typically the training data distribution has
some structure (for instance, perhaps the data is only of faces, or of rooms), which the human can
typically easily recognize, one approach to comparing the distributions which makes sense is some
kind of clustering (perhaps hierarchical in some settings). Then, we would reduce the problem to
essentially comparing clusters. In the case of hierarchical clustering, we would get extra information
which we could use to compare: We would be able to compare the distributions at each level of
the hierarchy to see if they made sense at every level. Hierarchical clustering would not necessarily
make sense for every data distribution naturally, but for certain settings, it seems it would make
a lot of sense. Notably, it is difficult for humans to examine the low-resolution images which are
typically used in these problems — this is the benefit of using an interactive algorithm. The idea
is essentially to use the interactive algorithm and the inherent structure of the chosen clustering
hypothesis class in order to impose consistency on the human’s spot checks.

11

An Efficient General Algorithm for Interactive Clustering Kiran Vodrahalli
knv2109

Notably, this kind of methodology can augment current approaches. The method of Arora &
Zhang (2017) involves birthday paradox tests: Assuming that there are only so many kinds of faces
in the world, one can estimate the probability that one would see the same face twice in a uniform
distribution over faces. One can compare this “birthday paradox” estimate with the number of
collisions one witnesses in practice on the generated dataset of images by the GAN. Since this
method is somewhat crude and requires a human to actually check, interactive clustering could be
a great alternative.

4 Appendix A: Algorithms

Algorithm 2 Generic Clustering (Inefficient)
1: procedure CLUSTER(X) > X := input dataset of m points
2 version space V :=CVS > CVS := the set of all k-clusterings on X
3 while |[V| > 1 do

4 Initialize buckets By, -+, By := {}.

5: Initialize output cluster list L = [].

6

7

8

9

for each point x € X in arbitrary order do
foriin[1,--- k| do
if B; U{x} is at least #—consistent with V then B, := B; U {z}
: if B; is at most (1 — k—g)—consistent with V then
10: Append B; to L.

11: Delete B; from the list of buckets.

12: Append {} to the end of the list of buckets.
13: end if

14: break

15: end if

16: end for

17: end for

18: Output cluster list L.

19: Receive feedback F' from user.

20: if F' = merge(c;,c;) then

21: Remove from V' all clusterings inconsistent with ¢; U ¢;.
22: else if ' = split(¢;) then

23: Remove from V' all clusterings consistent with c¢;.

24: end if

25: end while

26: return V as the clustering.

27: end procedure

12

An Efficient General Algorithm for Interactive Clustering Kiran Vodrahalli

knv2109

Algorithm 3 Generic Clustering (Also Inefficient)

1:
2
3
4:
5
6
7

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

procedure CLUSTER(X)

version space V :
while |V| > 1 do

=cVs

Initialize output cluster list L = [].
Initialize ¢ = 1.
while clusters in L do not cover X do

¢i = argmax |z|.

xCX\L
|CCS(z)[> 3|V

Append ¢; to L.

Update i =4 + 1.
end while
Output cluster list L.
Receive feedback F' from user.
if F' = merge(c;,c;) then

> X := input dataset of m points
> CV9 := the set of all k-clusterings on X

Remove from V' all clusterings inconsistent with ¢; U ¢;.

else if ' = split(¢;) then

Remove from V all clusterings consistent with ¢;.

end if

end while
return V as the clustering.

20: end procedure

13

An Efficient General Algorithm for Interactive Clustering Kiran Vodrahalli
knv2109

References

Sanjeev Arora and Yi Zhang. Do gans actually learn the distribution? an empirical study. 2017.
URL https://arxiv.org/abs/1706.08224. arXiv preprint.

Pranjal Awasthi and Reza Bosagh Zadeh. Supervised clustering. Advances in Neural Information
Processing Systems, 2010.

Maria Florina Balcan and Avrim Blum. Clustering with interactive feedback. ALT, 2008.

Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. Advances in Neural
Information Processing Systems, pp. 235242, 2005.

Carolyn Kim, Ashish Sabharwal, and Stefano Ermon. Exact sampling with integer linear programs
and random perturbations. Proceedings of AAAIL 2016.

14

https://arxiv.org/abs/1706.08224

	Introduction to Interactive Split-Merge Clustering
	Two Generic Inefficient Interactive Clustering Algorithms
	Inefficient Aspects of the Generic Algorithms

	Efficient Interactive Clustering
	The Algorithm
	The Sampling Oracle
	Reduction to Sampling Clusters
	-Consistency Algorithm and its Sample Complexity
	Updating the Sampler with Constraints

	Calculating Probabilities by Memorizing Queries
	Assumptions for Efficient Computation
	The Validity Function

	Sampling Algorithm
	Implications of the Results
	d-Dimensional Rectangles

	Conclusion and Future Work
	Implementing and Empirically Evaluating the Algorithm
	Extension to Data-Conditioned Concept Classes
	Applications to Evaluating Generative Models

	Appendix A: Algorithms

