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Abstract
We introduce a new lens through which to ana-
lyze time-series brain data, emphasizing the im-
portance of sparse, low-dimensional joint rep-
resentations of MEG and EEG data which retain
predictive power and generative modeling capa-
bilities. Our main contribution is empirical val-
idation suggesting that multimodal sparse CCA
is able to achieve a low-dimensional (e.g. 20,
40-dim) representation of time series brain data
which retains predictive and generative power.

We create featurizations of MEG data with
sparse CCA and test the retained informativity
of the low-dimensional space by learning a lin-
ear model between convolutional neural network
image features and frequency features for MEG.
The predictive power of this brain decoding task
indicates that the low-dimensional space retains a
surprising amount of information about the con-
tent of thoughts and generalizes across subjects.
We also validate our methods using EEG repre-
sentations of fMRI data. By using spatial infor-
mation encoded by paired fMRI data with sparse
CCA (sCCA), we verify that sCCA joint rep-
resentations have predictive power by training
SVMs to distinguish between states of attention
and standard states, achieving a highest F1 score
of 0.533 with the sCCA representation.

1. Introduction
1.1. Motivation

Three primary non-invasive forms of data are collected
to study the human brain: functional magnetic resonance
imaging (fMRI), electroencephalography (EEG), and mag-
netoencephalography (MEG). fMRI is perhaps the most
popular approach, due to its high spatial resolution, though
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it is limited in temporal resolution. This helps explain why
most experiments which use fMRI do not model its time
series properties and instead focus on analyzing snapshots
(Mitchell et al., 2008). On the other hand, both EEG and
MEG have high temporal resolution and are thus sensitive
to changes over time.

Two interesting questions arise if we want to better under-
stand how temporal patterns in brain activity correlate with
stimuli from the outside world. First, we can ask to what
extent is it possible to use additional information derived
from the spatially resolved fMRI data to build a predictive
model of a target stimulus, across different forms of ex-
ternal audio or visual stimuli. Second, we would like to
explore the possibility of building a generative time series
model of temporal data given an external stimulus: For in-
stance, an image of an object. That is, given the image,
can we generate a time series signal of brain activity or at
least, a representation of the time-series signal? Further-
more, can we reverse our model so that we can decode the
time-series input to reproduce the image seen?

This paper tackles these two questions with the addi-
tional requirement of solving these problems in a low-
dimensional space derived using sparse methods, and
demonstrates that both may be solved reasonably convinc-
ingly with sparse CCA, a technique for combining multi-
modal time series data.

Few people have investigated the task of building a genera-
tive model for non-fMRI neuroimaging data. It is possible
to use fMRI as a time series; however, this is more a se-
quence of a small number of values over a long period of
time (temporal resolution is quite low). Also, the only ap-
proaches which attack this problem attempt to match a time
series of images with a matching time series of fMRI snap-
shots. Thus, their perspective is still that of matching a sin-
gle fMRI snapshot to a stationary image. Our approach is
rather to match a stationary image to a time-series of brain
activity, encoding the assumption that there are generator
patterns in the image which induce some periodicity in the
brain signal.



Sparse time series representations of brain data

Figure 1. Summary of data analysis and generative modelling procedures employed in paper

1.2. Datasets

We investigate two datasets in this work, namely the MEG-
fMRI “Object” dataset (Cichy et al., 2014) and the EEG-
fMRI “Oddball” dataset (Walz et al., 2013). Both are paired
with the presentation of some external stimuli.

1.2.1. MEG-FMRI

In the Object dataset, both fMRI and MEG data are col-
lected while subjects look at 92 different images, each of an
object with various classifications (human vs. non-human,
natural vs. man-made, and so on). MEG recordings are
taken at 306 different points on the scalp for 1300 ms (from
100ms before to 1200ms after the image is presented) for
20 different subjects.

1.2.2. EEG-FMRI

Our primary dataset is the Auditory and Visual Oddball
EEG-fMRI dataset (Walz et al., 2013), available for down-
load at https://openfmri.org/dataset/ds000116. The exper-
iment is set up as follows: 17 healthy subjects performed
separate but analogous auditory and visual oddball tasks
(interleaved) while simultaneous EEG-fMRI was recorded.
There were 3 runs each of separate auditory and visual
tasks. Each run consisted of 125 total stimuli (each of du-
ration 200 ms): 20% were target stimuli (requiring a button
response) and 80% were standard stimuli (to be ignored).
The first two stimuli in the time course are constrained to
be standard stimuli, and the inter-trial interval is assumed
to be uniformly distributed over 2− 3 seconds.

The fMRI data is an EPI sequence with 170 TRs per run,
with 2 sec TR (time between scans) and 25 ms TE (echo
time). There are 32 slices, and no slice gap. The spatial
resolution is 3mm × 3mm × 4mm. For more details on
the preprocessing steps performed for fMRI data, refer to
(Walz et al., 2013).

The EEG data was collected at a 1000 Hz sampling rate
across 49 channels. The start of the scanning was triggered
by the fMRI scan start. The EEG clock was synced with the
scanner clock on each TR. We use the gradient-free EEG
data provided.

1.3. Previous Work

1.3.1. FUSING MODES OF BRAIN DATA

In the field of exploiting multimodal neuroimaging data,
data fusion is defined as the use of supervised or unsuper-
vised machine learning algorithms to combine multimodal
datasets.

A review of the most widely used methods for data fu-
sion is given in (Dahne et al., 2015). These are either
late fusion methods, where information from one modal-
ity is not used to extract components from another, and
early fusion, in which data from both modalities are de-
composed together. Late fusion methods include both su-
pervised approaches, (either using an external target sig-
nal such as stimulus type or response time) or asymmetric
fusion where features from one modality are used as la-
bels/regressors to extract factors from another modality),
as well as unsupervised techniques relying on data stats,
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such as PCA or ICA.

Two common forms of early fusion include joint ICA (in
which features from multiple modalities are simply con-
catenated) and CCA. In CCA, we find the transformations
for each modality that maximise the correlation between
the time courses of the extracted components This method
relaxes independent component assumption of joint ICA,
and does not constrain component activation patterns to be
the same for both modalities.

1.3.2. SPARSITY AND LOW-DIMENSIONAL
REPRESENTATION OF EEG AND FMRI

The literature itself is rather sparse on the application
of sparse methods to multimodal time series brain data.
(Deligianni et al., 2014) apply sparse-CCA with random-
ized Lasso to fMRI-connectome and EEG-connectome for
resting-state data (i.e., with no supervised task) to identify
the connections which provide most signal. They analyze
the distance between precision matrices of the Hilbert en-
velopes for fMRI and EEG. Assuming brain activity pat-
terns are described by a Gaussian multidimensional sta-
tionary process, the covariance matrix fully characterizes
the statistical dependencies among the underlying signals.

1.3.3. FMRI-IMAGE DECODING

In the past, the Gallant lab at Berkeley has produced a fixed
fMRI representation (Naselaris et al., 2009), and more re-
cently, has been able to generate a video time series given
an fMRI input and also has a voxel prediction model for
fMRI based on a movie input (Nishimoto et al., 2011). In
the 2009 paper, they only produce a fixed time prediction
for an image. In the 2011 paper, they produce a time series
given a time series of images (i.e. a video).

1.3.4. OBJECT DATASET

(Cichy et al., 2014) use MEG and fMRI data to analyze the
hierarchy of the visual pathway in the brain applied to ob-
ject recognition. They use MEG to localize image process-
ing in the brain through time, and fMRI to spatially local-
ize the voxels which are involved in the processing. They
validate performance with plots of predictive power based
on MEG signal over time, and noting by eye that peaks
correspond to neuroscientifically-known time points in the
visual process. In more recent unpublished work, Cichy
uses convolutional neural networks to featurize object im-
ages and then applies Representational Similarity Analysis
(RSA) to conclude that the stages of the visual recognition
pathway in the brain somewhat correspond to layers of the
convolutional network.

1.3.5. ODDBALL DATASET

(Walz et al., 2013) use the Oddball dataset to train a lin-
ear classifier to maximally discriminate standard and target
stimuli. They create an EEG regressor out of the mean clas-
sifier output (convolved with hemodynamic response func-
tion) and use the EEG regressor, combined with other stim-
ulus and response related regressors, to fit a linear model to
fMRI data, and comment on the correlation based on the
coefficients. Also, they manually looked at fMRI images at
TRs that show a high degree of correlation with the regres-
sors, to form qualitive conclusions on how well the data
agrees with known neuroscientific models. with previous
work.

2. Material and Methods
2.0.1. CCA AND SCCA

In traditional canonical correlation analysis, we have two
sets of measurements X ∈ Rn×p, Y ∈ Rn×q collected on
the same set of underlying phenomena, where n is the num-
ber of observations and p, q are the number of measurement
channels (features) for X and Y respectively.

We posit that the features that contain pertinent informa-
tion about the underlying phenomena in the two datasets
are strongly correlated, since they are measurements on the
same underlying phenomenon. Thus we want to find u, v
that maximizes cor(Xu, Y v). If X,Y are mean-centered
and scaled, we have the following problem:

max
u∈Rp,v∈Rq

uTXTY v (1)

subject to uTXTXu ≤ 1 and vTY TY v ≤ 1. u, v
are called canonical vectors. Subsequent pairs of canoni-
cal vectors maximize the same objective function with the
added constraint that they are uncorrelated to the previous
pairs.

We can induce sparsity in the canonical vectors directly by
using sCCA, a penalized version of traditional CCA (Wit-
ten et al., 2009).

2.1. MEG Decoding and Generation

We now investigate the quality of low-dimensional rep-
resentations sparse methods create for paired MEG-fMRI
time-series data (from (Cichy et al., 2014)). Recall that the
experiment the data was collected from involved subjects
looking at 92 different images for short periods of time.
Separate trials were used to collect fMRI versions of the
data and MEG versions of the data.

Our goal is to demonstrate that a low-dimensional rep-
resentation utilizing both the fMRI and MEG data can
achieve comparable or better predictive performance than
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other representations. Therefore, we use two representa-
tions of the MEG data:

1. Fourier Transform Coefficients (dimension 306 ∗ 64):
In this case, we do not use the fMRI data. Since our
featurization is built of 64 Fourier coefficients for each
of the 306 MEG recording locations on the scalp, pre-
dicting this FFT featurization from an image is equiv-
alent to generating MEG time-series data.

2. Sparse CCA Shared Feature Space with Wavelet MEG
and fMRI T-maps: We construct a 20-dimensional
shared feature space using the sCCA algorithm over
MEG and fMRI paired over time.

We use ridge regression to learn a linear map from the im-
age data to the low-dimensional representation. We then
evaluate the quality of this map by predicting which MEG
featurization corresponds to a given image from a set of 92
unlabeled MEG featurizations.

2.1.1. FEATURIZING IMAGES

We pre-processed the image representations (X) by scaling
each feature vector by 1

‖·‖2 . We also scaled the vectors rep-
resenting the 92 responses for one dimension of the MEG
feature vector.

In order to represent the images, we try a few different
featurizations. First, the image itself (which is a 175 ×
175 × 3 color image) is a valid featurization and a base-
line. Then, we examine a lower dimensional represen-
tation of the image derived from simply using PCA. Fi-
nally, we use a pre-trained convolutional neural network
(CNN) (Jia et al., 2014) to produce activations upon send-
ing our object images through the network. We then take a
subset of these activations and join them together to give
a low-dimensional featurization of the image (∼ 3000-
dimensional). Note that it is necessary to choose such a
low-dimensionality to represent the image so that fitting
our model takes place in a reasonable amount of time. Fu-
ture work may involve using higher-dimensional represen-
tations of the images.

2.1.2. FEATURIZING MEG DATA

Fast Fourier Transform In order to determine the way
MEG time series data encodes visual and semantic infor-
mation about an object, we first introduce a hypothesis: In
order to compare an static image to a time series, we must
first extract parameters of the time series that describe its
behavior over time. For instance, this might relate to the pe-
riodicity of the data.One approach to encoding this kind of
information in a featurization is to examine the frequency
values of the time series. As with the EEG data, we use FFT
to get coefficients for each frequency class. We evaluate

coefficients at 64 frequencies, between 1Hz and 64Hz, to
obtain a low-dimensional representation of the MEG data.

Wavelets A more principled approach to frequency fea-
turization, that also retains some temporal information, is
wavelets. We run DWT decomposition on each 1300ms
MEG time series, again using the Daubechies family of fil-
ters, to obtain a 195-dimensional feature vector comprising
a set of time series with information in different frequency
bands.

Sparse Multiple CCA Next, to ‘fuse’ the featurized
MEG with the fMRI data, we apply sparse CCA to the
wavelet featurization of the MEG data paired and fMRI
T-maps to produce a 20-dimensional space for each data
modality.

Sparse CCA, as aforementioned in 3.0.1, can be used to
combine two sets of measurements, namely MEG and
fMRI, on the same set of underlying phenomena. However,
we also want to use data from multiple human subjects.
One way to extend CCA to handle data from multiple trials
and subjects is to treat the data from a different patient as
yet another set of measurements. For this purpose, we can
use sparse multiple CCA, an extension of sparse CCA to
the case of L > 2 data sets X1, ..., XL with features on a
single set of samples (Witten & Tibshirani, 2009).

It seems sound to perform sparse multiple CCA on bi-
modal data (such as EEG-fMRI or MEG-fMRI) from dif-
ferent subjects, as long as the subjects are observing the
same underlying phenomena. While this does not apply
well to the Oddball dataset, which we discuss later in sec-
tion 3.3.3, in the Object dataset, every subject observe the
same 92 images under the same experimental conditions.
Thus it is reasonable to think that CCA will be able to
recover the projection that maximizes the correlation be-
tween the MEG and fMRI data modalities, as well as ac-
count for minor inter-subject differences.

Therefore, we performed sparse multiple CCA on the
paired MEG and fMRI T-maps from K = 3 different sub-
jects.

That is, given the set of data matrices Ω =
X(1), · · · , X(K), Y (1), · · · , Y (K), where X(i) is the fea-
turized MEG from subject i and Y (i) is the fMRI T-maps
from subject i all in response to the same 92 image stim-
uli, we find sparse w1, ..., w2K (2K = |Ω| = 6 ) such that∑
Mi,Mj∈Ω; i<j w

T
i M

T
i Mjwj is large. As before, we refer

to these w′is as canonical components or activations.

Note that in the above formulation of the problem Mi ∈
Rn×pi (n = 92) and wi ∈ Rpi , so this gives us one canon-
ical component per data matrix. However, by an iterative
algorithm detailed in (Witten & Tibshirani, 2009), we can
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Figure 2. CCA components (“activations”) for the featurized
MEG of subjects 1 to 3. The Y axis is the 20 canonical com-
ponents and the X axis is the Wavelet transform features.

successively obtain multiple—20 in our case—canonical
components for each data matrix.

The MEG canonical components for Subjects 1 - 3 are vi-
sualized in Figure 2. First, we can see that the MEG ac-
tivations are truly sparse. They do not appear to be very
similar across subjects, from visual inspection and by ex-
amining the matrix norm of the pairwise differences. While
we had expected canonical components to be more sim-
ilar than different because the subjects are experiencing
the same image stimuli after all, inter-subject differences
in response (such as response time and intensity) may ac-
count for the seemingly large difference in canonical com-
ponents. In order to more deeply evaluate how ‘different’
these MEG activations are across subjects, we will need
to develop more rigorous measures of subspace similarity,
but for now we will just use these canonical components to
obtain features. Specifically, we project the MEG features
from Wavelet transform unto their canonical components
and use the resulting projections in ridge regression.

2.1.3. RIDGE REGRESSION

There are several ways we can try to fit the relationship
between the image featurization and the MEG data featur-
ization. We choose ridge regression for its low complex-

ity. Letting Y be the featurized MEG data of dimension
m = 64 ∗ 306 in the FFT case and m = 20 in the sCCA
case, and x be the featurized image input data of dimension
p = 2923, we desire to learn C such that Y ≈ Cx for each
of the n = 92 possible x. Thus, Y = Rm be the MEG di-
mension, C ∈ Rm×p, and x ∈ Rp. This problem becomes
ridge regression m times over, where each ridge regression
is to learn row Ci ∈ Rp of the matrix C for i ∈ [m]. We let
ŷi ∈ Rn be the values of Yi for each of the n objects, and
X ∈ Rn×p be a concatenation of the p-dimensional fea-
turizations of each of the n object images. Then, the ridge
regression problem is given by

argminCi
‖ŷi −XCi‖22 + λ‖Ci‖22 (2)

for some hyperparameter λ, which has closed form solution
Ci =

(
XTX + λI

)−1
XT ŷi. We solve for each row and

concatenate them as

C =


−−−C1 −−−
−−−C2 −−−

...
−−−Cm −−−


Therefore, we will have a linear map C from X to Y , and
given a new image input z, we can featurize to get f(z) and
then apply Ỹ = Cf(z) to approximate the feature vector
for MEG activity. Depending on the featurization of MEG
activity (FFT or sCCA), we can use the featurization to re-
create the time-series MEG data itself, given the original
image z.

Incidentally, this approach is also reversible via convex op-
timization. Suppose we are given a new MEG sample w.
We can featurize it using g(w), and then solve the follow-
ing convex optimization problem:

argminθ‖g(w)− Cθ‖22 (3)

Assuming that f has an inverse f−1 or an approximation to
an inverse, we can recover the image the subject was look-
ing at via f−1(θ), in essence performing brain decoding of
time-series MEG data. The idea for this approach is due
to (Mitchell et al., 2008), where the authors applied simi-
lar approaches to text data and fMRI data (not time-series).
(Naselaris et al., 2009) also applied a similar approach to
fixed images and fixed fMRI data. The novelty here is ex-
tending the approach to time-series MEG data.

In order to actually perform the ridge regression, we ran
Matlab code in parallel on Fujitsu RX200 S8 servers
with dual, eight-core 2.8GHz Intel Xeon E52680 v2 pro-
cessors with 256GB RAM running the Springdale distri-
bution of Linux. We implemented ridge regression so
that it was easily parallelizable by re-writing the solution(
XTX + λI

)−1
XT ŷi as V

(
Σ2 + λI

)−1
V T ŷi, utilizing
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the singular value decomposition X = UΣV T where U
and V have orthonormal columns and Σ is diagonal, which
only needs to be calculated once. Notably, we avoid having
to recalcuate difficult inverses. This implementation is also
more stable for smaller values of λ. The speedup from this
algorithmic change is dramatic: Finding C took 2 hours
with the standard Matlab implementation ridge, and just
over one second with our implementation for an approxi-
mate 5500× speedup. This speedup was essential to the
calculation of many of our results in a reasonable amount
of time.

We also had to choose a value for the λ-parameter involved
in ridge regression: We tested 100 different λ values loga-
rithmically evenly spaced across [10−8, 108]. We report the
performance for all λ-values.

After learning theC matrix, we are given a featurized MEG
vector y∗ with unknown label. Then for each xi, i ∈ [n],
we can approximate y∗ with Cxi. Ideally, the correct class
i∗ has d(Cxi∗ , y

∗) is the smallest over all {xi}ni=1 for some
distance measure d. We use the negative cosine distance for
d. Formally, the predicted class is

argmaxi
〈Cxi, y∗〉
‖Cxi‖2‖y∗‖2

(4)

Ranking the xi (each i is a class) by cosine distance allows
us to assign a rank ∈ [n] to the the correct class i∗ as a
measure of quality of the learned matrix C. Therefore, the
best rank is 0 (no other image-predictions are closer to the
true MEG featurization) and the worst rank is 91 (all other
images are closer). Note that random chance would give i∗

a rank of n/2 = 45.

For both the FFT and sCCA featurizations, we examine two
forms of generalization: subject generalization and image
generalization. For the former, we test how well the C ma-
trix learned on one set of individuals generalizes to a dif-
ferent individual. For the latter, we test how well C learned
on a subset of 92 images generalizes to an out-of-set im-
age. To test subject generalization for the FFT featuriza-
tion, we learned a matrix C12 where the MEG frequency
responses for subject 1 and subject 2 was averaged. Then,
we predicted the MEG response for subject 3 and evalu-
ated performance. In the case of sCCA, we averaged over
the first three subjects and tested on the fourth. To test im-
age generalization for the FFT representation of the MEG
data, we randomly sampled 5 distinct object classes in [n].
For each left-out image l, we learned a matrix C−l where
no training samples from image l were seen. Due to the
small sample size (n = 92) and the low-dimensionality
of our image feature embedding, we did not expect great
generalization over images. Since the sCCA representation
was much more low-dimensional (only 20 dimensions), we
were able to learn C−l for all 92 possible left-out images.

2.2. EEG-fMRI fusion

In this section, we show how sparse CCA can be used for
fusion of EEG and fMRI data modalities and produce po-
tentially interpretable brain activation components.

In order to investigate the efficacy of combining fMRI and
EEG data, we define a prediction task as follows: Detect
whether a signal at a given time point is a target signal
or a non-target signal. Our goal is to demonstrate that
with a sparse, low-dimensional representation of both the
fMRI and EEG data, we can achieve comparable predic-
tive performance as in the setting where we do not use
the sparse low-dimensional representation. Since we have
paired EEG-fMRI data over time, we use the Canonical
Correlations Analysis (CCA) algorithm to map the dual-
input into a low dimensional embedding space. In order
to use sparsity, we use a variant of CCA known as sparse
Canonical Correlations Analysis (sCCA). We use a pop-
ular discriminative classifier, the Support Vector Machine
(SVM) to train using the low-dimensional representation to
detect whether or not there was a target stimulus at a given
point in time. We perform experiments for both the audio
stimuli and the visual stimuli.

2.2.1. DATA CLEANING

We examine the data from a single experiment for one sub-
ject which consisted of 125 audio stimuli over a 340 second
duration. After excluding stimuli for which the subject re-
sponse was incorrect, we select segments of the EEG time
series and the fMRI data that correspond to each stimuli
and treat each of these as an example. More specifically,
each example is −100 to 900 ms of EEG time locked to
one stimulus, and 3 consecutive TRs of fMRI, where the
first TR is from the time slice coinciding with the onset of
the stimulus.

We want to know if we can extract enough information
from these snippets of EEG and fMRI to determine if the
stimulus that occurred was standard or target.

2.2.2. FREQUENCY TRANSFORM

To explore the effectiveness of frequency-space represen-
tations of the EEG time series, we also looked at first fea-
turizing EEG using Fourier Transform and Wavelets trans-
form before applying CCA.

We performed the Fast Fourier Transform (FFT) to extract
coefficients from 1000ms segments of the EEG recordings,
time-locked to the onset of each stimulus. We retained the
first 64 coefficients, from 1Hz to 64Hz. This comprises the
majority of brain activity (most relevant are gamma waves
generated during conscious perception, typically at 40Hz)
while filtering out high frequency artifacts.
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We also looked at featurization using the Discrete Wavelet
Transform (DWT) which allows us to keep both frequency
and temporal information in the EEG. Multilevel wavelet
decomposition was run using Daubechies 4-tap wavelet fil-
ters, to produce of set of time series with information from
the delta (0-4Hz), theta(4-8Hz), alpha (8-16Hz), beta (16-
32Hz) and gamma (32-64Hz) frequency bands, along with
a low-frequency approximation of the EEG signal. This
featurization has been widely used in literature for repre-
senting EEG, for example (Yu et al., 2010) and (Tumari
et al., 2013). This set of multiresolution time series is con-
catenated to produce a 157-dimensional feature vector.

3. Results
3.1. MEG-fMRI Ridge Regression Performance

3.1.1. REGRESSION RESULTS AND DISCUSSION FOR
FFT REPRESENTATION

First we present the performance of the FFT featurization
of in Figure 3. We present training and subject generaliza-
tion results for image 5, and average over four randomly
chosen images to produce the image generalization graph.
For small λ, the linear regression is perfect on the training
set, and even for very large lambda, the rank of the cor-
rect image drops to no worse than second place. In other
words, we attained perfect accuracy in predicting which
image was connected with a given MEG frequency feature
vector on the training data. This result could potentially be
due to overfitting. Even though we use the cosine distance,
‖x − y‖22 = ‖x‖22 + ‖y‖22 − 2〈x, y〉. Since ‖y‖22 = 1 for
all y and ridge regression makes ‖x‖22 = c, some constant,
we have that minimizing l2 distance is equivalent to maxi-
mizing cosine distance, and thus we are effectively training
for the same objective, explaining why overfitting despite
using a different training metric can happen.

However, regarding the portion of Figure 3 dealing with
subject generalization, we see that for large lambda the
rank was at lowest (and best) 31. This means that 31 of
91 other images were closer to the true MEG featurization,
and thus the correct answer ranked in the top 35%, which
is somewhat better than average. Thus we can claim some
generalization across different brains.

The case for image generalization is considerably less con-
vincing. The third image of Figure 3 demonstrates that the
rank was below 60 for all λ; in other words, doing worse
than average.

3.1.2. REGRESSION RESULTS AND DISCUSSION FOR
SCCA MULTIMODAL REPRESENTATION

We present the performance for the sCCA of the wavelet-
MEG and T-map-fMRI data in Figures 4 and 5. We present

Figure 3. FFT Featurization Performance

training and subject generalization results for image 5. For
the image generalization results, we exhibit an average over
all left-out images as well as the performance for image 5,
13, 78, and 77, which were selected as representative of
very-low rank, good-rank, and bad-rank respectively.

For training, performance was perfect, as with the FFT rep-
resenation. The same argument for potential overfitting ap-
plies. In Figure 4, the first image demonstrates that subject
generalization has much better performance than the FFT
representation: In fact, performance is perfect. The second
image of Figure 4 demonstrates that on average, image gen-
eralization is better than for the FFT representation, nearly
attaining random performance with low λ. The improve-
ment upon the FFT representation is still considerable, with
the sCCA representation gaining nearly 13% in rank.

However, Figure 5 demonstrates that there is more to the
story for image generalization. Images 5 and 13 have a top
rank of 9 and 1 respectively, meaning that the linear maps
C−5 and C−13 learned without seeing images 5 and 13 do
an excellent job of generating a 20-dimensional MEG rep-
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resentation for these images. Image 78 achieves a rank less
than 30, which is also quite good. Image 77 is an exam-
ple of one of the images which does not generalize under
the learned C−77. Roughly half of the images have a rank
less than 50, and 10 images have rank ≤ 10. There are also
some images which perform with very low rank scores. We
summarize the distribution of ranks in Figure 6.

Figure 4. sCCA Featurization Performance

Now we attempt to find a pattern in the images which
achieved generalization. We consider the ten images which
got ranks ≤ 10. In Figure 7 we exhibit each of the images
and its classification. Regarding classifications, we notice
that the majority of the top images were inanimate and non-
human. Looking at the images themselves, a large number
of them tend to be circular in shape.

The better subject and image generalization of the 20-
dimensional sCCA representation of combined MEG and
fMRI data suggests that multimodal, low-dimensional rep-
resentations derived from sparse methods retain predictive
power in the MEG setting, in addition to the EEG setting.

3.2. Interpretability of EEG-fMRI canonical vectors

To investigate the effect of the number of canonical vectors
used to project the data, we compute the 20-dimensional as
well as the 40-dimensional CCA space for the paired EEG-
fMRI.

The canonical vector for fMRI from the pair of canonical
vectors with the highest correlation (40-dimensional CCA)
is visualized in Figures 8 and 9, after minimal smoothing
with a Gaussian kernel (radial with σ=0.65).

The blue points indicate negative coefficients in the canoni-
cal vector while the red points indicate positive coefficients.
The transparency of the points are scaled according to the
magnitude of the coefficients. Thus we can view the more
intensely colored regions as highly ‘activated’ regions that
were found to be most correlated with EEG activity. No-
tably, even though sCCA does not enforce any form of spa-
tial regularization, the canonical vector activations clearly
exhibit some spatial clustering. This could suggest that the
canonical vectors are indeed picking out voxels in a way
that is consistent with the regions of brain function (rather
than in completely random locations); thus we can hope
that the canonical vectors lend themselves reasonably to
neuroscientific interpretation.

In Figure 8, the intensely colored region at the back of the
brain corresponds to the some of the strong correlates in
fMRI that were found in (Walz et al., 2013). In Figure
10, the highlighted regions, which are symmetric, appear
to correspond to the visual cortex. We also note that the
activations for the 2nd highest correlation canonical vector
looks similar for visual and audio stimuli (Figures 9 and
11).

Another observation of interest is that the locations of the
activations appear similar across the TRs, while the color or
transparency of the activated voxels do differ slightly. This
is again good sign that suggests that the canonical vectors
are picking out functionally meaningful brain regions and
tracking their development over time. While this is not our
objective, the particular activated voxels that change over
the TRs should be of interest to neuroscientists who might
find a connection with brain function.

3.2.1. OTHER BENCHMARKS

Our hypothesis is that CCA gives the most ‘informa-
tive’ low-dimensional projection of the EEG time series
data. Therefore, we benchmark against other projection
schemes, such as PCA and Random Projection.

Our random projection matrix was generated using a ran-
dom Gaussian matrix with zero mean and variance 1/

√
40,

based on suggestion in (Indyk & Motwani, 1998), where
40 is the chosen dimension of the projection space.
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Figure 5. sCCA Featurization: Image Generalization

Figure 6. Histogram of Rank Values for Image Generalization

3.2.2. EEG-FMRI CLASSIFICATION RESULTS AND
DISCUSSION

We evaluate the quality of our sparse representations by
assessing their performance in classification of target and
standard stimuli. SVM is our method of choice for per-
forming these binary classifications, as it is widely used in
the literature for classifying EEG time series (Zhong et al.;
Lin et al., 2008)

We performed SVM binary classification of the examples
and report the 10-fold cross validation accuracy (out of 1)
and F1 scores in Table 1 and Table 2, which contain the
results for an Audio stimuli run and a Visual stimuli run
respectively.
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Figure 7. sCCA Featurization: Top Rank Images. (Left to right) 5: human bodypart, 13: human face, 33: nonhuman bodypart, 47:
nonhuman face, 55, 62: natural inanimate, 74, 80, 89, 90: artificial inanimate

(a) TR1 (b) TR2 (c) TR3 (d) TR1 (e) TR2 (f) TR3

Figure 8. fMRI activations corresponding to the highest correlation canonical vector (correlation = 0.982) [Audio stimuli]

Accuracy F1

EEG in original space (34000-dim) 0.708 0.343
CCA projection of EEG
EEG in sCCA space (20-dim) 0.683 0.387
EEG in sCCA space (40-dim ) 0.758 0.533
EEG in CCA space, no sparsity constraint (40-dim) 0.625 0.162
EEG concatenated with fMRI
EEG + fMRI in sCCA space (40-dim ) 0.583 0.358
EEG + fMRI in sCCA space (80-dim) 0.625 0.388
Frequency space transformations of EEG
EEG Fast Fourier Transform (64-dim) 0.691 0.235
EEG Wavelets smooth approximation (2346-dim) 0.675 0.456
EEG Wavelets hierarchical approximation (5338-dim) 0.733 0.446
EEG FFT in sCCA space (40-dim) 0.650 0.268
EEG Wavelets smooth approx. in sCCA space (40-dim) 0.567 0.416
EEG Wavelets hier. approx. in sCCA space (40-dim) 0.692 0.345
Other benchmarks
EEG in PCA space (40-dim) 0.641 0.460
EEG in random projection space (40-dim) 0.650 0.289

Table 1. Classification accuracies for SVM on various projections
of the data [Audio Stimuli]

1. Original space vs. CCA space:

Best Accuracy and F1 was for the projection of EEG
onto 40 CCA vectors.

2. EEG in CCA space vs. EEG + fMRI in CCA space:

Including the fMRI projections did not improve the
results. This suggests that just using the projection
of the EEG into the CCA is sufficient to encode the
most relevant information about target vs. standard
stimuli from the fMRI, so the projection of the fMRI
data into the CCA space does not contain additional
information that is useful for classification.

3. Dimensionality reduction by FFT, PCA, non-sparse
CCA:

All performed worse than dimensionality reduction
by CCA, suggesting that sparse CCA may indeed be
more effective that these more popular methods of di-
mensionality reduction.

Results from the Visual Stimuli trial are similar to that from
the Audio Stimuli trial though slightly more ambiguous.
Here, it is not as clear that sCCA is the best performer,
though it still had the highest accuracy and the 3rd highest
F1 score. The FFT and PCA representations did better here.
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(a) TR1 (b) TR2 (c) TR3 (d) TR1 (e) TR2 (f) TR3

Figure 9. fMRI activations corresponding to the 2nd highest correlation canonical vector (correlation= 0.980) [Audio stimuli]

(a) TR1 (b) TR2 (c) TR3 (d) TR1 (e) TR2 (f) TR3

Figure 10. fMRI activations corresponding to the highest correlation canonical vector (correlation= 0.966) [Visual stimuli]

Accuracy F1

EEG in original space (34000-dim) 0.725 0.369
CCA projection of EEG
EEG in sCCA space (20-dim) 0.801 0.166
EEG in sCCA space (40-dim ) 0.742 0.432
EEG in CCA space, no sparsity constraint (40-dim) 0.658 0.337
EEG concatenated with fMRI
EEG + fMRI in sCCA space (40-dim ) 0.735 0.161
EEG + fMRI in sCCA space (80-dim) 0.608 0.210
Other benchmarks
EEG in PCA space (40-dim) 0.700 0.476
EEG in random projection space (40-dim) 0.600 0.223

Table 2. Classification accuracies for SVM on various projections
of the data [Visual Stimuli]

3.2.3. ANALYZING MULTIPLE TRIALS AND SUBJECTS
FOR EEG-FMRI

In the above experiments, we performed CCA on the data
for a single trial at a time, because we found there to be
significant differences in the distribution of the EEG time
series between trials. This could be due to measurement
artifacts or other trial-specific noise factors. In addition, for
the Oddball dataset, each trial has its own unique sequence
of stimuli, making it harder to justify combining the data
from different trials.

We have used sparse CCA to combine two sets of measure-
ments, namely EEG and fMRI, on the same set of underly-

ing phenomena. While it seemed sound to perform sparse
multiple CCA on bi-modal data from different subjects, as
long as the subjects are observing the same underlying phe-
nomena, this does not apply well to the Oddball dataset,
where every trial from every subject has its own sequence
of stimuli as well as noise characteristics. Our attempt to
directly apply sparse multiple CCA to the EEG-fMRI data
resulted in canonical components with very low correla-
tions. More work is needed to understand how to apply
sparse CCA on experimental data where the experimental
stimuli differs from trial to trial.

4. Conclusions
The goal of this paper was to establish the possibility and
utility of sparse, low-dimensional, multimodal representa-
tions and generative models of time-series brain data which
retain information, as verified by the predictive power of
the models over various tests. We were able to achieve
sparsification of the neuroimaging data, a significant im-
provement over many existing methods for multimodal
data analysis which do not take sufficient advantage of
sparse methods. Therefore our work is part of a larger
effort to better utilize principled machine learning meth-
ods in neuroscience. We have also tested our procedure on
two real datasets with classification tasks that are tailored
to each dataset, rather than simulated datasets. In doing
so, we have tackled the difficulties in neuroimaging data
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(a) TR1 (b) TR2 (c) TR3 (d) TR1 (e) TR2 (f) TR3

Figure 11. fMRI activations corresponding to the 2nd highest correlation canonical vector (correlation= 0.950) [Visual stimuli]

analysis that arise due to noise, as well as inter-subject and
inter-trial differences.

The next task at hand is to verify the soundness of these
approaches on other sets of MEG or EEG data gathered
under similar conditions.

For the Object task, we would like to explore further featur-
izations of the images: Using different convolutional net-
work architectures and different layers could prove interest-
ing. Another interesting line of inquiry might be to inves-
tigate mapping the convolutional network features them-
selves into the same shared space as the MEG and fMRI
T-maps. It might then be possible to see directly which
low-dimensional features of the MEG representation are
most correlated with different layers of the convolutional
network. We could also examine other regression mod-
els, particularly nonlinear ones. For instance, we could use
Gaussian Process regression instead of ridge regression, or
try to fit a deep neural network.

Further work remains to be done at the algorithmic level as
well. Sparse CCA was relatively slow to run. Coming up
with a parallel implementation or a faster implementation
of sCCA is desirable in order to speed up experiments so
that more data can be utilized more quickly.

We would also like to find ways to better interpret the fMRI
activations from sCCA, based on previously established
functional regions of the brain in the neuroscience litera-
ture.
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