
Solving Word Analogies with Online
Convex Optimization

Kiran Vodrahalli

Princeton University

May 22, 2015

1. Introduction

1.1. The Analogy Task

Quantification of the meaning of language is one of the illusive goals of natural
language processing. Since the general (and vague) task of "understanding a body
of text" is too difficult, we consider a simpler task that still captures some of the
difficulty of semantic comprehension: word analogies. For instance, "man" is to
"king" is as "woman" is to "queen". A king is a man made royal and a queen is
the female analogue. In general, we can write an analogy between four words as
w1 : w2 :: w3 : w4.

1.2. Semantic Vectors

The semantic vector approach hypothesizes that the meaning of words can be
expressed as vectors in Rk, typically for k 2 [102, 103]. The origin of this idea
is from the late 1990s when word-context matrices were defined in the field
of information retrieval. The goal is to exploit the distributional hypothesis
of meaning, which roughly says that words which have similar co-occurrence
patterns in a corpus have similar meaning. For instance, the words "dog" and
"cat" might appear in a lot of similar contexts: "The owner petted the dog/cat.",
"The owner fed the dog/cat.", and so on. These popular pets are both domestic
mammals of similar size and are in a rough sense similar, at least compared to
whales or cars.

The original approach was to build a word-context matrix for a corpus: rows
are words, columns are "contexts", essentially settings in which the words appear
in the corpus. The co-occurrence frequencies go in the entries, and are usually
normalized, smoothed, and transformed. Typically some dimension reduction
process (for instance, singular value decomposition (SVD)) is applied to this matrix,

1



and the vectors from the resulting process are termed semantic vectors. Simple
linear algebraic operations are then applied to these vectors to solve linguistic
problems. As an example, the cosine distance between two vectors is often applied
to tell how similar they are. k-means clustering is also often used to find groups
of words which are similar. There is a large literature on the application of
word-context matrices to topic modeling, word sense disambiguation, and other
tasks. More information about vector space models is presented in detail in the
comprehensive survey by Turney and Pantel [Turney2010].

Another approach to creating semantic vectors came about from Bengio’s study
of neural networks intended to learn a language model of a corpus. Words in a
fixed-size vocabulary V are represented as one-hot vectors and are fed as inputs
into a neural net. An intermediate layer C represents each of the words with a
small number of units, which are then fully connected to a hidden layer H. H
finally produces a softmax output layer of size |V|, where each unit represents the
probability that the word correponding to it occurs next in the corpus [Bengio2003].
More recently, Mikolov et. al. developed a much simpler and easier to train log-
linear model (known as the skip-gram model) the sole goal of which is to learn
semantic vector representations. A central idea in this approach is to throw out
the complexity of a fully-connected neural net with nonlinearities, and instead use
a barebones structure to learn the vectors [Mikolov2013]. Somewhat surprisingly,
this method (known as word2vec) works a lot better than other word vector
representations in the word analogy task. A better model known as GloVe was
introduced the following year by Pennington et. al. [Pennington2014]. The loss
which GloVe is trained on bears resemblance to some loss functions we will see
later on. However, the results were entirely empirical for all of these approaches.

We briefly describe how to apply semantic vectors to solve word analogies.
Recall that we are given w1 : w2, and w3, and must find w4 where these words
obey w1 : w2 :: w3 : w4. A simple approach is to subtract vectors: v3 � v1 + v2 to
produce v4, which is then closest to the vector for word w̃, which is guessed as
the answer to the query.

1.3. A Theoretical Foundation for Semantic Vector Approaches
Very recently, Arora et. al. authored a paper which provides a rigorous explanation
of what these neural network-trained word vectors are actually doing when we
attempt to solve the analogy task [Arora2015]. First, we represent our notion of
an analogy mathematically. For the "man:king :: woman:queen" example, we have

P{c|king}
P{c|man} ⇡ P{c|queen}

P{c|woman} (1)

2



This formulation is reasonably expressed as an objective that should be small:

Â
c

✓

log
✓

P{c|king}
P{c|man}

◆

� log
✓

P{c|queen}
P{c|woman}

◆◆2
(2)

where taking logarithms does not affect the relationship encoded - it is merely
convenient to relate our measure to that of a standard procedure in building
word-context matrices, applying pointwise mutual information (PMI) to every
element in the matrix. Then we proceed to define a high-dimensional embedding
of words into a vector space. Suppose we define the vector vw for word w as
being indexed by all contexts c in which it appears, where vw(c) = log

⇣

P{c|w}
P{c}

⌘

is PMI(w, c). Therefore, in general for the a : b :: c : d analogy:

Â
c

✓

log
✓

P{c|a}
P{c|b}

◆

� log
✓

P{c|c}
P{c|d}

◆◆2
= Â

c
(va(c)� vb(c)� vc(c) + vd(c))

2

= kva � vb � vc + vdk2
2

(3)

Note that taking logarithms of the probability quotients allows us to express
our objective with simple vector addition and subtraction. In order to predict d
optimally, we find

d̂ = argminjkva � vb � vc + vjk2
2

The equality in [3] only holds for the high-dimensional embedding we chose.
However, the dimension of the vectors in word2vec is 300 - much smaller than
the number of contexts c. Arora et al. propose a model for low dimensional
embeddings. For the simple case where the contexts are just single words, consider
the PMI matrix M where Mij = PMI(wi, wj) ⇡ vwi · vwj . The idea is that we
want to express word vectors as a low-rank factorization of M (low-rank to allow
low-dimensional word vectors). It turns out that this factorization is useful if the
word vectors produced from the factorization are isotropic, and if M is close to
positive semidefinite. We can then make an approximation using the dot products
of the word vectors. It turns out that

argminj

n

kva � vb � vc + vjk2
2

o

⇡ argminj

n

Ew

h

kva · vw � vb · vw � vc · vw + vj · vwk2
2

io

⇡ argminj

(

Â
w

✓

log
✓

P{w|a}
P{w|b}

◆

� log
✓

P{w|c}
P{w|j}

◆◆2
)

(4)

3



by the definition of M - replace each dot product with PMI. Thus Arora et al.
give an explanation of why the vector addition approach gives good performance
for low-dimensional word vectors as well. However, we must note that Arora’s
approach requires that we assume a generative model over the corpus so that the
resultant word vectors after factorization are isotropic, M has low rank and is
almost positive semidefinite.

2. A Supervised Approach to Solving Analogies

The first aspect of all the prior approaches that we must note is that they are
all unsupervised and rely on distributional assumptions about language. These
approaches make a lot of sense - one might argue that to understand language
without interfacing with the outside world, the only hope one can have is to infer
meaning from real usage. However, it is interesting to see if a simple task like
solving word analogies can be learned in the supervised setting.

Some prior work has been done in this arena. Typically, the authors are focused
on learning the relation between the two word pairs and present quadruples
(w1, w2, w3, w4) to a supervised algorithm (typically an SVM) [Turney2013]. If the
supervised approach involves word vectors, the word vectors are created in an
unsupervised manner (namely after applying SVD on a smoothed word-context
matrix over some corpus). To the author’s knowledge, there has not been any
prior work focused on learning the semantic vectors in a supervised fashion. Either
the vectors are derived from some word-context matrix or they are produced with
respect to some corpus through application of the distributional hypothesis. This
paper will attempt to address that gap.

2.1. Formal Problem Description

We want to learn semantic vectors that solve the analogy task with a simple
linear algebraic computation in a supervised manner, without any corpus. More
particularly, we will demonstrate a method for learning these vectors with provable
guarantees as to their performance on the analogy task. Our input set X consists
of triples (w1, w2, w3), simulating the query w1 : w2 :: w3 :?. The output set
Y consists of units w4, the correct answer to the query. Our goal will be to
find the optimal matrix A 2 Rk⇥n such that for some appropriate loss function,
loss(A, (w1, w2, w3), w4)  loss(A⇤, (w1, w2, w3), w4) + e, where A⇤ is the optimal
A and 0 < e. The columns of A are n k-dimensional vectors with l2 norm of 1,
where n is the size of the vocabulary. k is the dimension of each vector, which we
can pick a priori. Therefore, A belong to a convex set K. We want to be able to

4



take advantage of convex optimization approaches and the regret bounds from
gradient descent and its ilk, so we will require that the loss function be convex.

A brief outline for the rest of the section: First we will define our loss function.
Then we will discuss the method of solving the word analogy from the vectors,
which will arise naturally from the definition of the loss function.

2.2. The Convex Loss Function
First we define a vector xj 2 Rn, recall that n is the size of the vocabulary. Each
unit in xj represents a word. Consider word analogy task a : b :: c :?. Let ia, ib, ic
be the indices of a, b, c respectively in xj. We also assume that j 6= ia, ib, ic so that
we can encode the input with {�1, 0, 1} exclusively. Then, xj(ia) = �1, xj(ib) =
1, xj(ic) = 1, xj(j) = 1, and the rest of the values are 0.

Now recall that A’s columns are the semantic vectors for each word in the
vocabulary (all with l2 norm 1). Then, Axj = �va + vb + vc + vj. Note that this
expression is very similar to the expression we had in [3]. Let y denote the index
of d in x, the word that correctly completes a : b :: c : d.

We define an initial loss function inspired by the multiclass loss function
given in [Kakade2008], which is a generalization of the notion of margin to the
multiclass setting.:

Definition 2.1. A loss function.

loss (A, (w1, w2, w3), w4) = max
j 6=y,i1,i2,i3

h⇣

Z � kAxyk2
2

⌘

+ kAxjk2
2

i

+
(5)

where [x]+ denotes max(x, 0) and Z is a constant that represents the desired
margin.

This definition explicitly encourages large kAxyk2
2 in addition to promoting

low kAxjk2
2 for all other j. Z is analagous to the 1 in the multiclass loss of

[Kakade2008].
However, Definition 2.1 is unfortunately not convex. Therefore, we tweak the

definition to arrive at our convex loss function:

Definition 2.2. Convex loss function.

loss (A, (w1, w2, w3), w4) = max
j 6=y,i1,i2,i3

kAxjk2
2 (6)

First we note that since all norms are convex and taking max of a convex
function is convex, the function we have defined is in fact convex. Now we explain
the rationale.

5



Previously, the method that Arora et. al. and previous authors used was to
find argminj

⇥

kva � vb � vc + vjk2
2
⇤

= argmaxj
⇥

vj · (vc + vb � va)
⇤

. The idea here
is that the larger the dot product, the larger cos(q) and a smaller q, where q is the
angle between the two terms of the dot product. A small q means that the two
vectors are very close together.

Our method is to find argminj
�

vj ·�(vc + vb � va)
 

: We want the smallest
cos(f), where f is the angle between the two terms of this dot product. The
smaller the cosine, the larger f is, and the further away from vj the negative
of (vc + vb � va) is (therefore, (vc + vb � va) is close to vj). We visualize the
difference between the methods in Figure 1.

Lemma 2.3. argminj
�

vj ·�(vc + vb � va)
 

= argmaxj
�

kAxjk2
2
 

Proof. We have

kAxjk2
2 = k � va + vb + vc + vjk2

2

= k � va + vb + vck2
2 + kvjk2

2 + 2
�

vj · (�va + vb + vc)
�

(7)

Since kvjk2
2 = 1, maximizing over the given quantity is equivalent to maximizing

�

vj · (�va + vb + vc)
�

over j. Then,

argmaxj
�

vj ·�(va � vb � vc)
�

= argminj
�

vj · (va � vb � vc)
�

(8)

Note that va has a negative coefficient while the rest of the word vectors have
a positive coefficient: This assignment corresponds exactly to the way we encoded
(w1, w2, w3) into xj.

The loss function is larger when any kAxjk2
2 is large, if j 6= y. In the query

function, we ignore i1, i2, i3 in our search for the argmax, so it is no problem that
we ignored them as incorrect possibilites for j to penalize in the training objective.

Figure 1: Illustration of Similarity Metric

6



Thus, performing gradient descent over this loss will cause A to adapt so that
kAxjk2

2 is maximum when j = y, since to minimize loss, all other j must have
kAxjk2

2 small. This result is exactly what we want according to Lemma 2.3, since
y is the correct output given w1, w2, w3.

2.3. AdaGrad Algorithm
In order to learn A, we use the AdaGrad algorithm [Duchi2011], which has
sublinear regret, is efficient in practice, and is practical to implement. From
now on, it will be convenient to express the matrix A as a vector a, where
A(z, w) = a(n ⇤ z + w). Note that we recover column w of A by iterating z from 0
to k � 1 for fixed w. In the OCO setting, we denote the tth guess as at. We denote
our loss function as ft(at), where we rewrite Definition 2.2 as

ft(at) = max
j 6=yt

(

k�1

Â
z=0

�

�va,t(z) + vb,t(z) + vc,t(z) + vj(z)
�2
)

(9)

yt 2 [n] is the index of the correct answer to the analogy at time t and j 2 [n] is
the variable we take the max over. The vector notation is from Section 2.2 with t
denoting the training instance. Precisely, we have

va,t(z) = a(n ⇤ z + i1,t)

vb,t(z) = a(n ⇤ z + i2,t)

vc,t(z) = a(n ⇤ z + i3,t)

vj(z) = a(n ⇤ z + j)

(10)

Now we calculate the gradient of ft. Denote j⇤t as the argmax of the loss function.

r ft(at)(z, w) =

8

>

>

<

>

>

:

0 if w 62 {i1,t, i2,t, i3,t, j⇤t }
�2

⇣

�va,t(z) + vb,t(z) + vc,t(z) + vj⇤t (z)
⌘

if w = i1,t

2
⇣

�va,t(z) + vb,t(z) + vc,t(z) + vj⇤t (z)
⌘

if w 2 {i2,t, i3,t, j⇤t }
(11)

We use rt as shorthand for r ft(at) for describing the pseudocode of AdaGrad,
as displayed in Algorithm 1.

Note that we still have to define an explicit projection algorithm onto K for
step 7.

Now we define an upper bound on •-norm diameter, which will be used in
the regret bound.

7



Algorithm 1 AdaGrad (Diagonal)
1: Input : parameters h, d > 0
2: Randomly initialize a1 2 K.
3: Initialize diagonal matrix Gt 2 R(k·n)⇥(k·n) to dI.
4: for t = 1 to T do
5: For all i 2 [k · n] update

Gt(i, i) = Gt(i, i) +rt(i)2

6:

bt = at � hG� 1
2

t �rt

7: Update

at+1 =
G1/2

t

’
K

(bt)

8: end for
9: Define ā = 1

T ÂT
t=1 at.

10: Define A(i, j) = ā(n ⇤ i + j) for i 2 [0, k � 1] and j 2 [0, n � 1].
11: return A

Definition 2.4. D• � supt{kat � a⇤k•}

From Corollary 1 in [Duchi2011], AdaGrad bounds the regret R(T):

Theorem 2.5. AdaGrad regret bound choosing h = D•/
p

2

R(T) 
p

2D•

k·n
Â
i=1

q

GT(i, i) (12)

Then we evaluate D• to find that

Lemma 2.6. D• = 2

Proof. First consider that |at(i)|  1 for all i 2 [k · d], t 2 [T] since if any element
were larger, it would contradict the l2 norm of every column of A being bounded
by 1. Therefore, katk•  1 for all t and the difference at any coordinate i is at
most 1 � (�1) = 2.

8



2.4. Projection onto K
In step 7 of Algorithm 1, we take an argmin over the elements of K to find the
closest point in K to bt with respect to G1/2

t . This optimization is expressed as

G1/2
t

’
K

(bt) = argminat+12K

n

kbt � at+1k2
G1/2

t

o

= argminat+12K

(

q

(bt � at+1)>G1/2
t (bt � at+1)

2
)

= argminat+12K

nD

(bt � at+1)
>, G1/2

t (bt � at+1)
Eo

= argminat+12K

n

kG1/4
t (bt � at) k2

2

o

since G1/2
t has a root.

(13)

which is the result we wrote in Algorithm 1. Recall that the definition of K is
simply that kA(·, j)k2 = 1 for all columns j. Therefore, we think of projection
onto K as projecting each of the column vectors onto a distorted unit ball. We
will denote the relevant entries of Gt for a given column of A by G>

t . We will
denote the relevant portion of at by ât, and the relevant portion of a vector xt

to be x̂t. We will call these "relevant entries" k-slices. If G>
t

1/4
= Ik⇥k, then the

projection algorithm for each k-slice would be the same as Euclidean projection
onto the unit k-ball (scale each vector to its norm). Then notice that by substituting
x̂t+1 = G>

t
1/4

ât+1 and letting x̂⇤t+1 = argminx̂kG>
t

1/4
b̂t � x̂k2

2, then

â⇤t+1 = G>
t
�1/4

x̂⇤t+1

Thus we have reduced the problem to projection onto the ellipsoid, after which we
scale back to the optimal point on the unit ball for that k-slice. After we perform
these n projections, we reconcatenate the slices to form at+1 2 Rkn.

2.5. Sample Complexity

Now we would like to bound the sample complexity required to learn the hypoth-
esis class containing A 2 Rk⇥n such that each column vector kvjk2 = kA(⇤, j)k2 =
1. This bound is important for practical reasons when choosing k, so that learning
can actually occur based on the size of our training set.

The VC-dimension of A is bounded above by k ⇥ n, and lower bounded by
min(k, n) (it may be better than the upper bound since we add the additional
column vector l2 norm restriction). Then, the Fundamental Theorem of Statistical

9



Learning tells us the sample complexity mA(e, d) is bounded by

Q
✓

min(k, n)
e2 log

✓

1
ed

◆◆

 mA(e, d)  Q
✓

kn
e2 log

✓

1
ed

◆◆

(14)

However, we can do better by applying Theorem 9.3 from [Hazan2015] to
AdaGrad. Our sample complexity is given by

Theorem 2.7.

T = O
✓

1
e2 log

✓

1
d

◆

+ Te (AdaGrad)

◆

(15)

where Te (AdaGrad) satisfies R(Te(AdaGrad))
Te(AdaGrad)  e, which overall gives the agnostic

learning guarantee we desire for generalization error for probability of error e with
probability 1 � d.

From now on, let T⇤ = Te (AdaGrad). As discussed in [Duchi2011], AdaGrad
has lower regret than normal gradient descent on sparse data. The problem we
frame is considerably sparse: few updates are made per iteration with respect to
the size of at (only 4

n columns in A are updated), and moreover, all |at(i)| < 1.
So gradients are based on less-than-1 valued features and are sparse, thus the
gradient terms in the AdaGrad regret bound are considerably smaller than

p
T⇤.

Now, we express this property rigorously by upper bounding Eg [T⇤]. We now
bound the expected value of the regret given in Theorem 2.5.

Lemma 2.8.

Et,i

"

p
2D•

kn

Â
i=1

q

GT⇤(i, i)

#

= O
✓

k
q

E [T⇤]
◆

(16)

Proof. First, recall that GT⇤(i, i) = r1(i)2 +r2(i)2 + · · ·+rT⇤(i)2. Each |rt(i)| 
8, which we can see from Equation 11 (|a(i, j)|  1), so the gradients are bounded.
Then, assuming that words from the vocabulary appear in the training data
uniformly, we have that P{rt(i) 6= 0} = 4

n , since only k of n columns are updated
each step. Thus a loose upper bound on the expected value of a single gradient is

10



Et,i [rt(i)]  8 · 4
n + 0 ·

⇣

1 � 4
n

⌘

= 32
n . Therefore,

Et,i

"

p
2D•

kn

Â
i=1

q

GT⇤(i, i)

#

= 2
p

2
kn

Â
i=1

Et,i



q

GT⇤(i, i)
�

 2
p

2
kn

Â
i=1

q

Et,i [GT⇤(i, i)] by Jensen’s Inequality

 2
p

2kn

s

✓

32
n

◆2
Ei,t [T⇤] = O

✓

k
q

Ei,t [T⇤]
◆

(17)

Therefore, we can now upper bound E [T⇤] and the sample complexity T:

Corollary 2.9.

E [T] = O
✓

1
e2

✓

log
✓

1
d

◆

+ k2
◆◆

(18)

Proof. We have k
p

E[T⇤]
E[T⇤]  e and therefore k2

e2  E [T⇤]. Thus, plugging in to
Theorem 2.7, we get the result.

Remark 2.10. If we pay attention to constants, then we can note that the number of
vectors present in the loss function affects the constant in the bound: Reducing the
number of vectors or the loss function itself could potentially affect the constants
in a beneficial way.

We have essentially achieved a reduction from kn to k2, which is a good
improvement if we choose k small. However, it is still difficult to get a large
number of analogies. We will address this problem in the next section.

3. Applying Theory to Data

Now that we have defined a good convex loss function and an OCO algorithm
to learn the vectors efficiently, we would like to implement this algorithm and
evaluate how well it performs. We would also like to compare the results of these
word vectors to those produced by methods similar to Arora et al [Arora2015].

11



3.1. Choosing k

We would like to choose a k so that our sample complexity is not too excessive:
though it is an upper bound, we would like the bound to be at least somewhat
reasonable. Choosing d = 0.01 and e = 0.1 yields T ⇡ 100

�

7 + k2�, which is order
103 for k � 3. This value of k seems too small to be interesting.

However, this sample complexity is still too large to programmatically generate
analogies (available datasets have only ⇡ 400 analogies! Even applying thesaurus
substitution techniques to increase the size of the dataset, we still cannot do better
than 103 without serious additional work). To this end, we instead test our analogy
method on an antonym task, and save applying this algorithm to analogies for
future work.

It turns out that antonyms are much easier to generate, and we can get to order
105 easily. Choosing k = 30 gives us sample complexity of order 105; therefore,
we should choose k = 30.

However, the projection step takes O(nk3) time, since projection onto a k-
dimensional hyperellipsoid is approximately O(k3), and we do n such projections
per training instance. To ensure the algorithm runs in manageable time, we choose
k = 5: Reducing k by a factor of 6 therefore reduces the problem’s time complexity
by a factor of approximately 200. In the given code, the projection step for a single
instance takes about 25 seconds, so it would be a problem if we had to train on
105 antonyms, just because of the complexity of the projection step. Happily, the
sample complexity is reduced by a lot: Choosing d = 0.01 and e = 0.1 yields
T ⇡ 100 · (7 + 25) ⇡ 103 samples, which translates to about 7 hours of training
time.

3.2. Reduction from Analogies to Antonyms

We describe a reduction from the analogy problem to the antonym problem.
The antonym problem is simply to given a word, find the word with opposite
meaning. Some examples include "light" and "dark", "good" and "bad", "tasty"
and "tasteless". Antonyms are defined given a thesaurus, so this relationship is
well-defined. Now consider the analogy problem: suppose w1 and w2 have an
antonym relationship: That is, w1 is an antonym of w2 which implies the opposite
direction. Then, our query is w3, the word we want to find the antonym for. The
correct answer is given by w4. Since w1 : w2 are in an antonym relationship,
w3 : w4 should be in an antonym relationship. Thus we will train the word vectors
to have an algebraic structure encoding antonymy.

12



3.3. Generating Antonym Training and Testing Data

We use WordNet [Fellbaum1998] to generate the antonyms. First we use the
vocabulary set from [Arora2015], and remove words that the Python module
enchant does not recognize. Then we use WordNet from the nltk module to
find a meaning of the word. Then we lemmatize that word sense (i.e., remove
tense, number if it is a noun, and so on). The lemmas give several synonyms
to the word. For each of these synonyms, we find a set of antonyms (which are
encoded in WordNet). We pair every (synonym, antonym) pair with a different
pair. Thus w1, w3 are synonyms and w2, w4 are the antonyms of w1 and w3 respec-
tively. Then we apply some of the dataset augmentation tricks from [Turney2013]:
Namely, along with (w1, w2, w3, w4), we add (w2, w1, w4, w3), (w3, w4, w1, w2) and
(w4, w3, w2, w1), which are all invariant semantically for analogies. By not adding
instances like (w1, w2, w4, w3), we preserve the direction of the antonymy, though
it is debatable that antonyms have analgous directions. For instance, while ("good",
"bad") and ("black", "white") are opposites, it does not imply that "black" is "good"
and "white" is "bad". In Western culture it is true that "white" tends to be associ-
ated with "good", but in Eastern culture, the opposite is true. Nevertheless, we
maintain the structure as we would for analogies.

We generate 3 ⇥ 105 distinct pairs, 20 of which can be seen in Figure 2. It is
possible to generate up to 20 ⇥ 106, but this generation takes a long time and is
not necessary given our sample complexity bound. We also save the vocabulary
set of words in these synonym-antonym pairs. We then take a subset of the data
(2000 distinct pairs) and split the data into 50% training (1000 pairs) and 50%
testing (1000 pairs) for an initial test.

4. Results

Here we state the various tests we perform and the results of these tests. Before
delving into the results, we take note that we trained only on 1000 pieces of data:
Furthermore, these 1000 data may not touch every vocabulary word in the matrix,
which may account for some of the results.

4.1. Training and Testing Error

After training A, we evaluate two kinds of accuracy on both the training and
testing data. First, we evaluate the fraction of correct responses in each set,
keeping in mind that random guessing gives 1

n performance. Then, we evaluate
the top-5, top-10, and top-20 metrics for both training and testing data. A top-k
metric just means that we look at the k top answers produced by the queries and

13



Figure 2: Some Antonym Pairs

check to see if the right answer is present. If it is, we consider the answer "correct".
The first metric is just the top-1 metric.

We note some observations about the testing: While very slow, the distances
between At and At+1 decreased, starting out around 2.42 and decreasing towards
2.0. We see this visualized in Figure 3.

Shown in Figure 4 are the top-k metrics for word vectors trained on the first 50
pairs and in Figure 5 are the top-k metrics for word vectors trained on the first
1000 pairs. Both are tested on the second 1000 pairs.

Perhaps surprisingly, the vectors trained after 1000 iterations performed worse
than the vectors trained after 50 iterations.

14



Figure 3: Distance Between Updates Over 1000 Iterations

Figure 4: Performance of Word Vectors Trained after 50 Iterations

15



Figure 5: Performance of Word Vectors Trained after 1000 Iterations

4.2. Visualization with t-SNE

We would also like to visualize our word vectors in a more qualitative way to see
if there is interesting structure.

t-SNE projection is a method of projecting words in higher dimensional space
down to R2, so that they can be plotted and visualized [van der Maaten2008].
The basic idea is that we define a distribution over pairwise distances between
vectors in the high dimensional space, as well as a distribution over pairwise
distances for vectors in R2. The object of t-SNE is to minimize the Kullback-
Leibler divergence between these two distributions, where the KL-divergence is
an asymmetric pseudometric that satisfies DKL (PkQ) � 0 for any distributions
P ,Q. It is essentially the expectation of the difference in log probabilties and is
defined directly as

DKL (PkQ) = Â
i
P(i)ln

✓P(i)
Q(i)

◆

(19)

Another interesting interpretation of the KL-divergence is as the Bregman distance
over the simplex.

t-SNE projection has become popular as a means of visualizing high-dimensional
spaces over the past several years, and most of the newer papers involving word
vectors cited in the references use this approach to make plots. Here, we plot the
vectors trained after 50 iterations. Then, we plot the vectors trained after 1000
iterations (each iteration is a (w1, w2, w3, w4) pair). The point of the t-SNE plot is
to see whether there is an visual similarity between the word vectors apparent just
from projection into 2 dimensions. A secondary objective is to compare training
after 50 pairs (Figure 6) and training after 1000 pairs (Figure 7) from a visual
perspective. These plots are only interpretable as comparisons in visual similarity.

16



Figure 6: t-SNE Plot of the Word Vectors Trained after 50 Iterations

Interestingly, they appear to have similar structure, with the 1000-trained vectors
less clustered together. It almost appears as though the vectors are starting to
become separated into two clumps, an idea which would make sense if A is trying
to separate a group of antonyms from the first group. It could merely be that
the word pairs we tested on were not near the diving line, and that this problem
would be resolved given more training.

17



Figure 7: t-SNE Plot of the Word Vectors Trained after 1000 Iterations

4.3. Testing the Word Vectors from [Arora2015]

Instead of using our learned A, we use the word vectors from [Arora2015] with
the appropriate query (evaluating based on the closeness of two vectors, rather
than closeness of a vector and the negative of the other vector) to evaluate the
same statistics given in the previous section. We then compare the 4 statistics to
see which performed better on the antonym task.

Because the training methods of the two sets of word vectors are vastly differ-
ent, it is hard to isolate a basis for comparison between the two word vector sets.
Therefore, we decide to simply compare based on what we have, for now. We
use the vectors trained on 1000 pairs from the supervised approach and compare
them to Arora’s unsupervised vectors on 3979 pairs for which each word in the
pair has a vector in both models. We evaluate the top-1, top-5, top-10, and top-20
metrics for both of these semantic vector sets on this pair set in Figure 8.

We plot all Arora’s word vectors which match with the ones produced in this
paper using t-SNE in Figure 9. This plot is noticeably different from Figure 6 and
Figure 7: There is organization that is circle-like, with several vectors clumped
together in the center with an external, uniformly distributing ring of points en-
circling it, which suggests the vectors from [Arora2015] are uniformly distributed

18



Figure 8: Performance on top-k Metrics

throughout the space in a way that the vectors trained from the method presented
in this paper are not. Interestingly, here also there is a clear demarcation between
two groups of vectors. However, the reason why is not at all clear. We can however
explain the uniformity by pointing to the isotropic word vector assumption in
[Arora2015].

Regarding performance, Arora et. al’s vectors outperformed the vectors from
this paper by a couple of orders of magnitude (see Figure 8). Again, we stress
that it would be interesting to train our vectors on a lot more data: This desire is
difficult to attain due to the time complexity of the code.

19



Figure 9: t-SNE Plot of the Word Vectors from [Arora2015]

20



5. Discussion

The first explanation that arises for the bad performance is simple: Not enough
training data. The established bounds may be too loose if we rely on O(·) notation
to exclude constant factors, which may suggest larger amounts of data required
to truly learn word vectors that work well. To corroborate this notion, we point to
the fact that the vectors performed better on the test data compared to the training
data, which suggests the algorithm has not yet learned.

The task itself may also have been questionable, as we can see from the
performance of the word vectors from [Arora2015]. However, it is also possible
that the notion of an antonym may have been too general for Arora et. al’s model,
which is based on co-occurrence. Some kinds of antonymy may simply never have
been experienced in the corpus the vectors were trained upon. Nevertheless, the
vectors from [Arora2015] performed better on all top-k scores (though we must
keep in mind they were trained on far more data).

6. Future Work

The high-level idea presented in this paper is that for a given NLP task (word
analogy), we can learn semantic vectors with respect to some convex loss function
based on the NLP task in a easily provable manner without relying on distri-
butional assumptions. This mindset shifts the difficulty of the problem to first
defining a convex loss, and then obtaining good training data of size proportional
to the sample complexity dependent on our loss function. Ideally, we would like
to learn given only a corpus - this approach is unsupervised and more difficult
to make rigorous. We now present other avenues of inquiry related to both
approaches.

6.1. Improving Time Complexity of the Supervised Algorithm

Since projection onto a hyperellipsoid is slow, optimizing for speed of the projec-
tion operation would improve training time, allowing for more training instances
in a smaller amount of time. Alternatively, investigating projection-free techniques
may prove fruitful. In general, the code should be optimized so that more training
can be done: The critical aspect where the supervised appraoch potentially wins
is being able to train on a huge amount of data. If this training takes too much
time, the result will be poor performance.

21



6.2. Training Data Selection and Volume

We suspect that the primary reason the results are not good is due to lack of
training data and lack of vocabulary usage.

One problem we identified with the training method and results was poten-
tially the selection of training data: Ideally, the training data should be uniformly
distributed over the words, and include overlap across pairs: That is, multiple
pairs should share a word. The reasoning behind this setup is that if an algorithm
is intended to learn associations between words, these associations must be pre-
sented to the algorithm in the training data, or there is no way for them to be
learned! A potential problem with the training data in experimental work is that
it could have been concentrated around only a few vocabulary words.

Secondly, (and playing off the previous section), we would like to increase the
amount of data the algorithm is trained on from 1000 to ideally around at least
50000 � 100000, after which we would reanalyze results.

6.3. Clustering Properties of the Antonym Word Vectors

Another metric for evaluating the word vectors is to attempt to apply k-means
clustering to the word vectors to see if there are meaningful groups of vectors
that encoding meaning. Since these vectors are not based on co-occurrence data,
it does not seem that likely that there would be a large number of clusters. We
hypothesize that there would be k = 2 clusters, with only one word of each
word-antonym pair inside each cluster.

For the word analogy case, the results may be more interesting. It is hard to
say how the lack of co-occurrence data would hurt visual representations.

6.4. Creating an Analogy Dataset

In this paper, we only applied the theory to the question of finding an antonym
given a word. We would like to apply the theory to the full analogy task the word
vectors were designed for. The main obstacle to proceeding is the lack of a large
dataset of analogies. It may be necessary to investigate various online ontologies
of words akin to WordNet to see what relations are possible to generate via code.
An analogy dataset would consist of several of these programmatically-generated
relation-based pairs of word pairs. Antonyms are just a particularly easy example
of these relations, since the relation is bidirectional. Some other examples of
relations include "is a," "used for," "motivated by," as well as grammatical relations.
Verbs seem to characterize these relations to a large degree. ConceptNet has a
database of several of these relation pairs. A simple extension of the method

22

http://conceptnet5.media.mit.edu/


we used to generate antonyms with WordNet could be applied to these concept
relations instead.

It is also important to note that any analogy set we generate programmatically
may be inherently less interesting than the analogies that arise from unsupervised
approaches to solving this task, since these relations are programmable based
on defined datasets rather than learned spontaneously from natural language.
However, keep in mind that this approach may have advantages in terms of specif-
ically defined relationships which have defined algebraic structure, particularly
grammatical ones.

Therefore, we would like also like to find a semisupervised approach that
combines online convex optimization and unsupervised learning to build word
vectors. The unsupervised portion of the task would focus on proposing analogy
pairs with provable error bars, while the supervised portion would access these
proposals in an online fashion and refine the word vector representations to
decrease the error bars. A lot more work needs to be done to find a method for
which this approach would be theoretically justifiable.

6.5. Learning Composition and Applying Loss Functions

In this paper, we learned vector representations for single words. We also defined
a simple linear algebraic function to solve word analogy problems. There are two
possible extensions we can make to this problem in terms of function learning.

First, it may be useful to learn representations of different size chunks of
language, like sentences or paragraphs for other tasks. The analogy task is
simple in itself compared to the broad spectrum of NLP tasks. Therefore, it may
be interesting to apply a supervised convex optimization approach to learning
functions for combining word vectors into, for instance, sentence or paragraph
vectors. Note that the word vectors need not be built with the approach outlined
in this paper: Therefore, care must be taken to take the assumptions encoded by
the word vectors into account when designing an algorithm to learn composition
functions.

Second, we would like to extend the relationship between convex loss and
linguistic task beyond the instances analyzed in this paper. Consider other simple
NLP tasks. For each task, we would define a separate loss function, which is
associated with a query function (analagous to Theorem 2.3 with word analogy)
that solves the task. We would like to formulate what these query/loss functions
should be (as [Arora2015] did for word analogy). Then we can potentially apply
convex optimization to learn the word vectors that optimally solve the associated
linguistic problem.

Together, these approaches might be used to encode relationships useful to

23



NLP between multisets of words. The first extension builds multi-word represen-
tations, and the second extension focuses on using representations to eventually
define a meaningful convex loss and query function to solve the task. Assuming
that we have enough of the relevant data and that we are able to find the convex
loss functions, the pattern defined in this paper might be a starting point for
techniques to rigorously solve more difficult and complicated problems in natural
language processing.

7. Acknowledgements

This work was produced as a final project for COS 511, Theoretical Machine
Learning as taught at Princeton University in Spring 2015. We would like to thank
Professor Elad Hazan, who was a great help in formulating the initial question
and in giving pointers to relevant papers. We would also like to thank Professor
Arora and his group for access to the word vectors produced by [Arora2015].

8. Appendix: Code

All of the code is written in Python. We include a link to the Github containing
all code used in the assignment: https://github.com/kiranvodrahalli/cos511.

24

http://www.cs.princeton.edu/courses/archive/spring15/cos511/
http://www.cs.princeton.edu/courses/archive/spring15/cos511/
https://github.com/kiranvodrahalli/cos511


References

[Arora2015] Arora, S., Li, Y., Liang, Y., Ma, T. and Risteski, A. Random Walks on
Context Spaces: Towards an Explanation of the Mysteries of Semantic Word
Embeddings. (2015). At <http://arxiv.org/abs/1502.0352>.

[Bengio2003] Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C. A Neural Probab-
listic Language Model. Journal of Machine Learning Research. 3, 1137 � 1155.
(2003).

[Duchi2011] Duchi, J., Hazan, E. and Singer, Y. Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization. Journal of Machine Learning
Research. 12, 2121 � 2159. (2011).

[Fellbaum1998] Fellbaum, C. (1998, ed.) WordNet: An Electronic Lexical Database.
Cambridge, MA: MIT Press.

[Hazan2015] Hazan, E. Introduction to Online Convex Optimization. At
<http://ocobook.cs.princeton.edu/OCObook.pdf>.

[Kakade2008] Kakade, S. M., Shalev-Shwartz, S., and Tewari, A. Efficient Bandit
Algorithms for Online Multiclass Prediction. Procedures of the 25th International
Conference of Machine Learning. 60637. 440 � 447. (2008).

[Mikolov2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Effi-
cient Estimation of Word Representations in Vector Space. (2013). At
<http://arxiv.org/abs/1301.3781>.

[Pennington2014] Pennington, J., Socher, R. and Manning, C.D. GloVe: Global
Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing. (2014).

[Turney2010] Turney, P.D. and Pantel, P. From Frequency to Meaning: Vector
Space Models of Semantics. Journal of Artificial Intelligence Research. 37, 141 �
188. (2010).

[Turney2013] Turney, P.D. Distributional Semantics Beyond Words: Supervised
Learning of Analogy and Paraphrase. Transactions for the Association of Com-
putational Linguistics. 1, 353 � 366. (2013).

[van der Maaten2008] van der Maaten, L. and Hinton, G. Ed. Bengio, Y. Visual-
ising Data using t-SNE. Journal of Machine Learning Research. 9, 2579 � 2605.
(2008).

25

http://arxiv.org/abs/1502.0352
http://ocobook.cs.princeton.edu/OCObook.pdf
http://arxiv.org/abs/1301.3781

	Introduction
	The Analogy Task
	Semantic Vectors
	A Theoretical Foundation for Semantic Vector Approaches

	A Supervised Approach to Solving Analogies
	Formal Problem Description
	The Convex Loss Function
	AdaGrad Algorithm
	Projection onto K
	Sample Complexity

	Applying Theory to Data
	Choosing k
	Reduction from Analogies to Antonyms
	Generating Antonym Training and Testing Data

	Results
	Training and Testing Error
	Visualization with t-SNE
	Testing the Word Vectors from Arora

	Discussion
	Future Work
	Improving Time Complexity of the Supervised Algorithm
	Training Data Selection and Volume
	Clustering Properties of the Antonym Word Vectors
	Creating an Analogy Dataset
	Learning Composition and Applying Loss Functions

	Acknowledgements
	Appendix: Code

