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1 Introduction

The recently-introduced assembly framework of Papadimitriou and Vempala
[2018] is an attempt at describing low-level operations of groups of neurons
which are (a) biologically plausible, in the sense that there are actual experi-
ments have validated these operations happen in real brains and which (b) are
computationally feasible, both in the sense that they are robust operations and
in the sense that they can be strung together to form simple programs which
compute non-trivial calculations a real brain may be likely to calculate.

In this report, we initiate the study of whether it is possible to implement
algorithms for robust statistics in the assembly framework, and in the process,
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develop a rudimentary framework for handling linear algebraic operations purely
with assembly machinery. One potential limitation of the assembly framework
is that we assume that neurons are binary — either active or non-active —
and thus assemblies themselves are represented as binary, sparse vectors. In
this work, we make some progress in building a set of assembly primitives for
handling real-valued input. As a bonus, we can interpret this framework in
the context of how humans (actively reasoning, not subconsciously reasoning
in their minds) may use assemblies to carry out mathematical operations and
reason about linear algebra (though there are some pretty unrealistic things
in our model). We also note that there is perhaps something a little strange
about this problem: We already essentially have vector representations (though
they are binary and sparse) in terms of assemblies; why can we not just use
the sparse vector structure already existing to perform basic operations, rather
than treating assemblies as blackboxes for concepts which adhere to a predefined
assembly programming language? We try to resolve some of this tension by
examining both approaches.

To determine whether the assembly framework can compute robust statis-
tics, we examine the best existing algorithms for calculating robust statistics
(biasing towards simple algorithms) and attempt to implement them in our lin-
ear algebraic assembly framework. To reduce the scope, we focus on robust
mean estimation for a restricted class of distributions. The best algorithms for
solving this problem can be expressed as semidefinite programs (SDPs) [Kothari
and Steurer, 2017], and it is known [Kale, 2007] that we can efficiently approx-
imately solve SDPs with the multiplicative weights (MW) algorithm. The MW
algorithm has the additional advantage of being relatively simple to implement.
Thus, we focus our goal as developing an assembly implementation of the linear
algebra operations used by the MW algorithm.

Some caveats: It is perhaps a little crazy to think that the brain is actively
solving SDPs for SOS algorithms in order to do robust mean estimation — for
now, we defer the question of how crazy this is and see how far we can take the
idea. The second question that comes up is that while the brain is robust to some
forms of perception, it may not be robust in the adversarial sense that robust
statistics takes as its definition. Therefore, we should investigate the ability of
actual humans to do “robust estimation”, and craft a definition of robustness
compatible with experimental results. Then we can re-examine algorithms for
solving this (perhaps simpler) problem.

2 Background

2.1 Assemblies and their Primary Operations

Here we will summarize the main ideas of Papadimitriou and Vempala [2018].

Definition 1. Brain areas.
We assume the brain is divided into a finite number of separate areas. We
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assume that the synaptic connections between areas are part of the objects of
interest.

Definition 2. An assembly is a group of neurons of size k << n, where n is
the total number of neurons. In particular, the group of neurons at a given
time step t is selected by a recurrent random projection and cap operation: A
stimulus of k neurons fires in one area, and a random projection to another
area occurs, increasing the dimension of the input. We can think of the activity
of the neurons in the new space as a sum of the activity weights flowing in
from the first area. Then a k-winner-take-all operation occurs, selecting only
the top k active neurons to be active. This new set of neurons is fed back into
the input with the stimulus in a recurrent manner, and this process continues
for T timesteps, resulting in sequence of length T (A1, · · · , AT ). This resulting
process is an assembly, and we assume that the activity patterns over the At
form a firing pattern. Here, k = | ∪t At| is the size of the support for the
assembly A.

The first main set of technical results of Papadimitriou and Vempala [2018]
are bounds on the size of the support of assemblies under certain parameter
settings (mainly depending on k and the plasticity parameter of the synaptic
connections (how easily they update). Essentially, what is shown is that assem-
blies created using the projection procedure will never overtake the whole brain
— it is possible to distinctly separate out assemblies in the brain. They also give
a bound on the size of the intersection between the resulting projections after k-
cap given assemblies which initially overlap. Given an initial overlap, assemblies
will continue to overlap, thus preserving the overlap under random projections.
These technical results give a foundation for describing how assemblies can be
formed as distinct entities in the brain.

The next group of results concerns the use of assemblies as a programming
language. Papadimitriou and Vempala [2018] show that a certain group of
operations over n neurons are able to simulate O(

√
n)-space computations as a

Turing machine, which is an indication of the potential computational power of
this language. They do this under the assumption that (a) any newly created
assembly is a random set of k ∼

√
n neurons in its area, (b) assemblies can

interfere destructively only if they overlap in at least ε
√
n cells, and (c) synaptic

weights fade with time. They show that assumption (b) is mild enough that
new assemblies interfere is exponentially small in ε

√
n. In this paper, we will

be interested in the ability of this language to simulate efficient computations
of robust statistics. The subset of the language we will use is as follows:

1. project(x,A, y) : x
area(x)

→ y
A

. This creates an assembly y in area A

whose parent(y) = x. We make a note that we can make this operation
permanent in memory with permanent project.

2. merge(x, y,A, z) : x
area(x)

→ z
A
← y

area(y)
. This creates a new

assembly in area A who has two parents, x and y.
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3. fade(x) : This removes an assembly.

4. activate(x) : This activates assembly x for a few steps.

5. enable(A,B) : This allows synaptic connections to be formed between
areas A and B.

2.2 Computationally Efficient Robust Statistics

Now we introduce the notion of robust statistics.

Definition 3. Outlier Robust Mean Estimation with parameter ε.
Let x1, . . . , xn ∈ Rd. Our goal is to estimate mean µ under the assumption that
an adversary can perturb an ε-fraction of the data points.

This definition is extendable to estimating higher-order data moments. In
particular, people care about this sort of problem because many algorithms in
machine learning and statistics involve method-of-moment (MOM) approaches,
which estimate high-dimensional moments as a part of the algorithm [Kothari
and Steurer, 2017]. Kothari and Steurer [2017] give computationally inefficient
methods for robustly estimating such moments for a certain (large) class of
distributions, and via a modification of this distribution class, are able to convert
the previously inefficient methods into efficient ones. The main technique by
which they do this is the sum-of-squares (SOS) framework. The resulting quality
of mean estimation is of order O(ε1−1/d) for a large class of distributions, where
d is the parameter controlling the number of moments we end up using to
estimate robustly. The higher the d, the more computation we pay as well. As
d gets large, we see that we get close to the optimal rate of O(ε) for Gaussian
data distributions, and get smaller for the information theoretically optimal rate
of O(

√
ε) if we have a general data distribution. The algorithms in this paper

attain an essentially optimal robust estimatino rate while still being “tractable”,
though in a somewhat weak sense given that their algorithms run in time O(nd),
where n is the dimension of the mean being estimated.

2.2.1 Sum of Squares

The aforementioned “efficient” algorithms are SDPs derived from the sum-of-
squares framework. We explain the SOS framework here.

Definition 4. SOS framework.
Let A = {f1 ≥ 0, . . . , fm ≥ 0} be a collection of polynomial constraints. We
say that a degree−` sum-of-squares proof that p ≥ 0 given the constraints A
consists of polynomials {qS}S⊆[m], {rt}Tt=1 such that:

p =
∑
S⊆[m]

qS
∏
i∈S

fi +

T∑
t=1

r2t ,
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and for every subset S, deg(qS
∏
i∈S fi) ≤ ` and for all t deg(rt) ≤ `/2. We write

A `` {p ≥ 0} (read this as: A implies a degree−` SOS proof of the following
inequality).

SOS satisfies an interesting duality property: It turns out that one can iden-
tify the existence of a valid, constraint-satisfying degree-` pseudo-distribution (a
linear operator Ẽ called the pseudo-expectation puts this in context: We must

have Ẽµ[1] = 1 and `th pseudo-moment Ẽx∼µ[(1, x)⊗`/2(1, x)⊗`/2
T

] must be
PSD, where we view (1, x)⊗`/2 as a flattened vector, representing the require-
ment that the pseudo-expectation with respect to squared functions must be
non-negative) with a degree-` SOS proof. In particular, the pseudo-distribution
certifies the proof.

The consequence of this duality property is that we can optimize over pseudo-
distributions to find one that satisfies the SOS constraints (e.g., a feasible so-
lution). If we took ` = ∞, pseudo-distributions would always satisfy the PSD
constraint, and thus would always be actual distributions. It turns out that
there is no efficient separation oracle for the (convex set) of degree-` moment
tensors of an actual distribution, but there is an efficient separation oracle if
we relax to the (convex set) of degree-` pseudo-moments. This fact gives us an
algorithmic advantage: our algorithms can now run in time nO(`), where n is
the dimension of the space the polynomials are defined over.

In particular, it is possible to solve this feasibility problem with an SDP:
Recall the pseudo-moment matrix which we require to be PSD. The pseudo-
moment matrix’s PSDness forms our constraint over matrices. Then, the func-
tion which we care about is indeed linear in the entries of the matrix M =
(1, x)⊗`/2(1, x)⊗`/2

T
: We want to find weights W for each of these elements

(e.g., W ·M) such that this is always W ·M ≥ 0. Here we interpret · as an
inner product in the vector sense.

2.2.2 Robust Mean Estimation

Recall that we have a dataset of points D = {x1, · · · , xm}. Our goal is to come
up with a robust estimate of the mean µ of the distribution (robust if an ad-
versary can perturb an ε-fraction of the data points). Now, what is the exact
SOS algorithm we want to write down to solve robust mean estimation? We
describe it here. The basic idea is to come up with two sets of constraints: one
group implements a robust identifiability proof and the other implements a con-
straint on the moments of the distribution known as certifiable subgaussianity.
Together, these constraints form a polynomial system of inequalities in terms
of variables corresponding to a an alternative set of data points {x′1, · · · , x′m},
binary selection variables w1, · · · , wm (for the robust identifiability proof), and
variables associated with an SOS proof of certifiable subgaussianity inequalities
which we require to hold. The robust mean estimation algorithm will find a
feasible assignment to all of these variables subject to the constraints with an
SDP, as described above. Then, we use the assignment of the x′i to compute
our robust estimate: µ̂robust := 1

m

∑m
i=1 x

′
i.
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We will fill in some of the details now.

Definition 5. Robust identifiability proof.
Let X be a typical sample drawn from the original data distribution D. Let
Y be the data after corrupting an ε-fraction. Output a set of vectors X ′ =
{x′1, . . . , x′n} such that:

1. x′i = xi for 1− ε fraction of data

2. uniform distribution over over X ′ is contained in a specific class of distri-
butions C,

where in particular, we assume that D ∈ C.

A robust identifiability proof corresponds to the notion that it is information
theoretically possible to recover the correct parameter of interest from the cor-
rupted data. A proof of this sort of identifiability can be turned into an efficient
algorithm if we can get an SOS proof of identifiability. To ensure identifiability
in our setting, we will require some assumptions on the moments (that we will
shortly define). In particular, we will require these assumptions to be certifi-
able by SOS proof as well, so that we can proceed with the strategy outlined
previously.

The key condition upon the moments that we require is certifiable subgaus-
sianity:

Definition 6. (k, `)-certifiable subgaussianity (CSG).
Let D be a distribution over Rd with mean µ. D is (k, `)-CSG with parameter
c > 0 if for every positive integer k′ ≤ k

2 , there exists a degree-` SoS proof of:

∀u ∈ Sd−1 : E
x∼D

[
〈x− µ, u〉2k

′
]
≤
(
c · k′ E

x∼D

[
〈x− µ, u〉2

])k′
.

Note that many distributions satisfy this property: Poincaré and log concave
distributions are notable examples, in addition to distributions built from simple
constructions of other (k, `)-CSG distributions.

The strategy to show this definition makes sense is as follows: under distribution-
closeness requirement ‖X − Y ‖TV ≤ ε and certifiable subgaussianity, Kothari
and Steurer [2017] shows we can estimate moments well, and each step of the
proof is SOS certifiable (e.g., only uses inequalities and relationships that them-
selves have SOS proofs — this is what is meant by the fact that SOS is a proof
system: You can compose inequalities under the same set of original assump-
tions with certain rules). We will not discuss these details in this report.

The key thing to understand from this setup is exactly what the constraints
are (e.g., the SOS inequality versions of the robust identifiability proof and
certifiable subgaussianity). For convenience, we write the constraint sets here
(these are what go on the left-hand-side of all the SOS proofs):

Definition 7. Robust identifiability system.
Let AY,ε be the polynomial equations in R[w1, . . . , wn]. Then,
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1. w2
i = wi, for all i ∈ [n]

2.
∑n
i=1 wi = (1− ε)

3. wi(yi − x′i) = 0.

The first condition ensures that wi = 0, 1, the second allows for an ε-fraction to
be corrupted, and the third gives the corruption condition.

Definition 8. Certifiable subgaussianity system.
Let Bc,k,` be the set of polynomial equations: for all k′ ∈ [k/2]:

1

n

n∑
i=1

〈x′i, u〉2k
′
−

ck′ · 1

n

n∑
i=1

〈x′i, u〉2
k′

= −〈pk′ , (1, u)⊗`〉
(
‖u‖2 − 1

)
−
∥∥∥Qk′ · (1, u)⊗`/2

∥∥∥2 ,
where:

1. x′1, . . . , x
′
n ∈ Rd,

2. p1, . . . , pk/2 are vectors,

3. Q1, . . . , Qk/2 are matrices.

Note that here, u is a dummy variable which we are not actually solving for.
This is just an efficient way of writing out all the inequalities we require: To get
the list of all inequalities, we would expand out these equations and match terms
of u with each other. Note that this system of constraints is exactly the SOS
polynomial condition with respect to the certifiable subgaussianity constraint.

2.3 Simple Algorithms for Solving SDPs

Recall that our motivation is to implement robust mean estimation algorithms
in the assemblies framework. So far, we have seen that robust mean estimation
reduces to solving a certain SDP. We write the SDP as follows:

min 1

∀j ∈ [p] : Aj ·X ≥ bj
X � 0

(1)

where X corresponds to the degree-` moment variable in the SOS equation, and
the Aj , bj correspond to the various constraints imposed by our systems. We
don’t care about the objective since we just need a feasible solution.

It is possible to approximately solve SDPs with the multiplicative weights
update algorithm [Kale, 2007, Gupta, 2011]. The generic algorithm is given
below.

We will also need an oracle to find a feasible solution to a single constraint
of the form of the constraints in the SDP (e.g., we need to be able to implement
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Algorithm 1 Multiplicative Weights

1: Input: Finite set of p decisions to choose from.
2: Fix η < 1/2.

3: For each decision i ∈ [p], associate w
(0)
i = 1.

4: for t = 0, 1, · · · , T do
5: Choose decision according to the discrete weight distribution w(t).
6: Observe cost of all decisions m(t).
7: Update: w

(t+1)
i = w

(t)
i (1− ηm(t)

i )
8: end for
9: return 1

T

∑T
t=1 w

(t)

an algorithm which can find a PSD solution Y to a constraint M · X ≥ c, for
some constraint matrix M and some bound c (again, · is dot product treating
M,X as vectors). How do we pick the oracle? For SDPs, the answer is simple:
We merely need an oracle to check whether λmax(M) ≥ c, and if it is, to return
vvT , where v is the top eigenvector of M . Together with this oracle, we can use
multiplicative weights to solve the feasible SDP problem is as follows:

1. Identify an expert (decision) with each constraint of our SDP.

2. Each round, we produce a vector w(t) ∈ Rp which gives us a convex
combination over the constraints.

3. Use the oracle to find feasible solution X(t) for M =
∑p
i=1 w

(t)
i Ai and

c = w(t)T b. If not feasible, exit with certificate w(t) of non-feasibility.

4. Return cost m
(t)
i := λmax(Ai) − ci for all i and use the multiplicative

weights update on w. Iterate previous three steps for T rounds.

5. Return 1
T

∑T
t=1X

(t) as solution.

We set the cost this way since we think of positive values of λmax(Ai) − ci as
having over-satisfied that particular constraint. We are working with a distribu-
tion over the constraints, and are essentially trying to eventually zero in on the
hardest constraints, so we can focus on satisfying those constraints well [Gupta,
2011]. If the cost is negative, we failed that constraint and need to allocate more
weight to it in the next round.

To implement this algorithm for finding a feasible solution to an SDP, we
need the following operations:

1. Representation of inputs: real-valued scalars, vectors, matrices

2. Addition and subtraction (scalars, vectors)

3. Multiplication (scalars)

4. Top eigenvector/value computation of a matrix (for the oracle)
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5. Control flow of program (variable definitions, for loops, etc.)

6. Sampling from discrete distribution

Notably, these are relatively simple operations that we can hope to implement
with assemblies! In this report, we will leave out sampling (for future work) and
control flow (this already seems to be relatively established in Papadimitriou
and Vempala [2018]) and focus on the linear algebraic operations.

For the rest of this report, we will simply try to implement some of these
operations with assemblies, and understand that if we can implement all the
operations with assemblies, we can run multiplicative weights on the SDP de-
fined by the SOS system defined by the robust identifiability and certifiable
subgaussianity constraints.

3 Linear Algebra for Assemblies

We now present our framework for doing linear algebra with assemblies. Through-
out, we will think of assemblies as k-sparse binary vectors with the ability to
project and merge, as defined previously. First, we will figure out how to rep-
resent real-valued scalars and the operations of addition, subtraction, and mul-
tiplication using assemblies and the project operation.

3.1 Scalar Addition and Subtraction via Project

First we will do something slightly insane, and decide to identify a discretized set
of bounded real values (along with∞, ±1, and 0) each with its own assembly (k-
sparse binary vector). Then, we will connect these assemblies in an appropriate
way via project operations to simulate the discretized real number line as a
list. This number line will be exclusively non-negative, we will use the −1
assembly to deal with negative numbers. Concretely, suppose we will maintain
real numbers between [0, B] up to accuracy δ. Then we will have B/δ + 3

assemblies: for all i ∈ [B]: i · δ
Ri
, −1

R−1
, 0

R0
, and ∞

R∞
. We will create

these assemblies each in their own brain area (which will be quite small), and we
will create them permanently using project permanent from a (large) assembly
we will call r for “real numbers” which lives in area R ( r

R
). So to clarify, the

structure so far is we have an assembly r which will permanent-project to all our
real numbers. Specifically, we run permanent project(r,Ri, i · δ) and similarly
permanent project(r,R−1,−1), permanent project(r,R0, 0),

and permanent project(r,R∞,∞). Let us call these assemblies the “pla-
tonic concept of the real numbers”. To actually work with the real numbers,
we will need to make copies via a projection from the platonic concepts, and
we will work with them when actually manipulating specific numbers (given by
input, for instance).

We will now specify how to do addition. Subtraction will be essentially the
same algorithm, except we will have to do a little casework and use the −1

R
assembly.
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Basically, we will set up two projection chains for the { i · δ
i
}i∈[B] assem-

blies, one going forwards and one going backwards (think of these like linked
lists, where the links will occur due to synaptic projections. We will run for LF
permanent project(i · δ,Ri+1, (i+ 1) · δ for all i ∈ [0, · · · , B − 1] (forward list).

Similarly, we will run for LB : permanent project(i · δ,Ri−1, (i − 1) · δ for
all i ∈ [1, · · · , B] (backward list). Now we are ready to add.

Suppose we want to add a+ b. First we figure out which assemblies contain
the real values a and b and identify them with those assemblies. For now
assume a, b ≥ 0. First, we need to move to a copy brain areas C1, C2. Create
two pointer assemblies pa and pb in C1 who project to a and b initially: Do
project(pa, Ri, a = i · δ) and project(pb, Rj , b = j · δ). We will also store
copies a′, b′: Do

1. project(a,C2, a
′)

2. project(b, C2, b
′), and

3. project(a′, C1, pa),

4. project(b′, C1, pb).

This way, we’ll be able to remember which pointer is which! Next, calculate
min(a, b) and max(a, b). We do this as follows: Using both pointers, we will
trigger the synaptic connections along LB one time step at a time, first activating
the synaptic connection at pa, then activating it at pb. After you activate(pa),

check if 0
R0

is active or not. If it is first active when you trigger the a-chain,

stop — we know a is min and b is max. Otherwise, apply fade(pa). Then trigger

the assembly in the b-chain and check if 0
R0

is active or not. If it is we’re done

again; otherwise, apply fade(pb). Now we need to step with both pa and pb.
Before applying fade(pa), check the assembly it activated (call it x), and now
activate(x) – check the resulting assembly (y), and while it’s still active, do a
fade(pa) to remove the old connections. Finally, do project(pa, Rk, y = k · δ)
and we’ve updated the pointer. We do an exactly analogous thing for pB . Now,
assume one of the pointers has activated 0

R0
. WLOG let it be pa. Recover

a′ = parent(pa), and a = parent(a′), and re-initialize pa by doing activate(a)
(as described before). Do likewise for pb, except this time, use the LF list for b
instead of the LB list. We carry out the same process for pa (getting to 0), but
this time, each time we step towards 0 with pa, we step away from 0 with pB .
When we activate 0 with pa, we stop at pB , and after creating a new assembly
in C2 called a+b, do project(a+b, R`, a+b = ` ·δ). This allows us to calculate
sums of positive numbers. One note: If pb activates the synapse and nothing
else gets activated, then it means we need to build on our platonic concept some
more (e.g., extend the size of B). This is easy: We just permanent project as
before when we originally constructed the platonic concept of the reals.

For subtraction, we do something almost identical. The first key difference
is that a′ and b′ are defined a little bit differently depending on whether we do
a − b or b − a, assuming a, b ≥ 0. For whichever term is negative (WLOG say
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a), we also do project(−1, C2, a
′). Another difference is we instead calculate

min(|a|, |b|) and max(|a|, |b|) in the same way as for addition. After we figure

out which is larger, we check whether −1
R−1

is a parent of the larger absolute

value. If it is not a parent of the larger value, we do the same algorithm as
before except we start at the larger value (which is positive), and instead of

using LF as in positive addition, we just use LB . If −1
R−1

is a parent of the

larger absolute value, then we do the same thing, except at the end, we do a
merge of the output with −1

R−1
(incidentally, this is how we will represent

negative numbers).
We can now relax the condition that a, b ≥ 0, and assume we can have

negative values too (just check if they’re merged with −1
R−1

to see how to

treat them). The last remaining case, −a− b, is analogous to a+ b.
There are also some uninteresting edge cases with 0 and∞. In these special

cases, you do the obvious thing (0 + x = 0,∞+ x =∞).

3.2 Scalar Multiplication

Let us calculate a ∗ b. Again we identify them with the appropriate assemblies.
First we will quickly describe how to handle negative signs. Basically, just check
each of the inputs to see if it has a negative sign assembly downstream. If both
do, copy the inputs to an assembly which is not merged to a negative sign (or
just de-merge it). If both do not, do not do anything. If one does, de-merge it
but create a new temporary assembly which points to −1. After the rest of the
computation is finished, we will merge it at the end. From now on, we suppose
a, b > 0 (0 and ∞ are again trivial cases, as are 1 and −1).

The key idea for scalar multiplication is as an area estimate using the δ-net
on the non-negative reals. What we can do is estimate the number of tiles in the
cross product of LF and a copy of LF . For simplicity, we will call these LxF and
LyF , to denote and x-dimension and a y-dimension. If we can count the number
of tiles with assemblies, our estimate of the area will be #tiles · δ2. Therefore,
we will in particular identify the value of a ∗ b with #tiles · δ on LF , since each
term is already a factor of δ.

Thus there are two questions: (1) How do we count the number of tiles with
assemblies and (2) How do we find the right assembly to identify #tiles ·δ with?
Our method must answer both simultaneously: We have to count the tiles with
respect to LF from the very beginning, so that we can correctly identify the
assembly it maps to. The method will be analogous to the previous section.
We will again have two pointers tracing along different paths in different areas,
but now, one of the pointers will be on a “winding-square” path while the other
pointer will start at 0 on LF and keep moving forward. We will have to construct
the winding-square path as distinct from LF and LB . After it is constructed,
we will use almost the same strategy as for addition — it will be constructed
so that the winding square path will tabulate all tiles just as it reaches 0

R0
,

and thus, we can check if 0 is active to stop the other pointer at the #tiles-
assembly on LF . Thus we have reduced the problem to simplifying multiplying
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by one, system-wide number: δ. First we fill in the rest of the details of the
winding-square path.

3.2.1 Construction of the Winding-Square Path

Think of a square of dimensions a × b (subset of LxF × L
y
F ), with the bottom

left corner containing 0
R0

. The winding square path will start at (0, b), move

to (a, b), down to (a, b − δ), right to (0, b − δ), and so on, tracing out every
single assembly in the intersection until it reaches (0, 0), which corresponds to

0
R0

. We can get away with building exactly one of these squares, once at the

beginning along with LF and LB (projected to as usual from r). In building
this square, each vertical real-value that we store will have an orientation: We
basically will alternate horizontal copies of LxF and LxB from the boundary B
until we reach the 0 level. We only have copies of LB vertically from 0 until we
reach the boundary B, since on the y-axis, we are always heading down from B
to 0. In this way we build the whole grid.

3.2.2 Control Flow on Winding-Square Path

There is another detail before we are finished calculating the number of tiles (in
exactly the same way as for addition). Given that we only build one winding
square, when we calculate a∗b, we have to make sure to store special assemblies
for a and b (like a′ and b′, which do not change). This is because each time we
take a horizontal step (either forward or backward) on any of the levels of the
winding square, we need to check whether the resulting assembly which gets
activated is (WLOG) a, and in the vertical case, (WLOG) b. This is exactly
analogous to the terminal condition of checking whether we have hit 0 yet or not.
Basically, we need to be able to select the next assembly on the Ly axis after we
complete a row of the Lx axis. Therefore, we have a control flow statement like
“if activate(x) activates parent(a’), activate next turn on Ly synapse instead
of on the current Lx synapse”.

3.2.3 The 1/δ Factor

Now that we have number of tiles, we need to multiply it by δ to get to the
right assembly on LF . How can we do this? We think of δ as a system-wide
constant for now, and set aside a special procedure for multiplying by δ. How
do we do this? Since δ is known, we mark out the assembly which corresponds
to it — this is precisely the first non-zero assembly. Then, we also look at the
assembly corresponding to 1. We can easily count the number of δ-steps it takes
to get the the 1-assembly, this number is 1/δ. As we counted it out, we (by
using parallel pointers) were also able to identify the assembly corresponding
to 1/δ, which we have a dummy variable (1/δ-pointer) project to. We basically
want to divide #tiles by 1/δ.

How do we do this? Again, we use the parallel pointer trick we have been
using throughout. What we will do is again have two pointers, this time on LB
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and a copy of LB that we will call L′B . The idea is that the LB pointer will start
at 1 and go down to δ, and the other pointer (L′B) will start at #tiles, and move
much more quickly per step (L′B moves 1/δ tiles per step of the LB pointer).
When the LB pointer reaches δ-assembly (in the same manner as usual), the
L′B pointer also stops, and we have successfully divided by 1/δ. The resulting
assembly is then stored as usual in a new assembly pointing to the platonic
assembly.

The last remaining issue is to spell out how we move by 1/δ steps at a time.
The answer to this is yet another copy of LB , and our stored (1/δ)-pointer. Just
like in the calculation of the min(a, b) we saw in the addition section, we will
step in L′B as long as the (1/δ)-pointer does not trigger the 0-assembly. Once
it triggers the 0-assembly, we stop moving in L′B for that step, and re-set the
(1/δ)-pointer (by having previously stored a (1/δ)′-assembly).

3.3 Tensor Products via Merge

Tensor products are remarkably simple compared to the scalar operations in
assemblies. This is because we can use merge to create vectors easily (and
higher order tensor products). Recall that a tensor product of a, b ∈ Rn is just
an association with a ⊗ b, which is a collection of all possible aibj . Therefore,
just calculate all aibj in their own separate scalar assemblies, and then merge
them all in a new assembly (e.g., merge({aibj}i,j , C3 where C3 is some new area
of the brain). In this manner, we can do any kind of tensor product now that
we have scalar multiplication. Note that to represent a vector in Rn, you do
n merge operations of scalar assemblies. To do a d-order tensor (let’s say it’s
symmetric for simplicity) based on a vector in Rn, you need dn merges.

3.4 Top Eigenvector Computation

A simple, well-known algorithm to compute the top eigenvector of a matrix A
is the power method: Take a random vector x on the unit sphere and keep mul-
tiplying the matrix by the vector over and over again: Akx. For k large enough,
Akx will converge to the top eigenvector. One can do a simple matrix-vector
multiplication to get the top eigenvalue. Thus, we only need to be able to imple-
ment matrix multiplication with our setup. Fortunately, this is now easy since
we have all the necessary tools. Inner products are just sums of products of two
vectors (so just do the elementwise products of two vectors a, b as a new vector
by doing scalar multiplication in each dimension, and then adding them all up
gradually (like a foldl operation from functional programming), accumulating
the sum in a given assembly and then continually adding to it). Matrix-vector
multiplication is just the tensor product of a bunch of inner products (which
map to scalars), so we use merge to create the new tensor. Throughout all
these procedures, we are sensible and discard any temporary assemblies which
we don’t need using operations like fade.
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4 Conclusion and Future Work

In this work, we identified an interesting question of whether or not it is possible
to compute robust statistics like the mean under an ε-adversarial corruption of
the data using the primitives of the assembly model of the brain due to Pa-
padimitriou and Vempala [2018]. We gave the background on assemblies and
robust statistics, and identified multiplicative weights as a simple, underlying
core algorithm for calculating a robust mean. We then came up with a rudimen-
tary framework for doing real-valued linear algebra with assemblies, which we
hope will be useful in successive works which try to figure out how to implement
various other algorithms in the assembly framework.

The key aspect we left out in this work is an assemblies implementation of
sampling. We leave this to future work to complete the story on robust SDP
implementations in the assemblies framework. It would also be interesting to
calculate exactly how many operations end up happening in just building the
SDP — it is not super easy to tell from the equation constraints, but should
be possible to check – roughly it is of the order n2` different constraints if the
data comes from Rn. Then we need to store all the matrices, which is another
factor of n2 for each of these terms. This ends up being a huge number of
terms. It would be nice to figure out other ways to use the intrinsic vector-
space properties of k-sparse binary vectors to represent vector and other tensor
data. The difficulty is both in the fact that these vectors are sparse and that they
are binary. Additionally, we want to be able to use other operations not defined
in Papadimitriou and Vempala [2018] more freely, perhaps for instance taking
advantage of the fact that we have real-valued weights in synapses for more than
just proving things about the dynamics of the projection process (e.g., actually
use in the framework as well — but, it seems very unrealistic to think we can
program individual weights to specific values). Finally it makes a lot of sense
to try to better characterize what the dynamic patterns in the assemblies look
like (rather than just using a core support as in Papadimitriou and Vempala
[2018], we could potentially encode more information in the dynamics of a single
assembly).

Another missing point is the fact that the properties of merge have not
yet been studied, and yet we used it to define tensor products in this paper.
More theoretical understanding of how merge is carried out is necessary going
forward.

Another thing to check is how realistic it is to be able to solve SOS programs
with the MW approach, given that it is not as precise as interior point meth-
ods. How do these errors trade off with the ε1−1/d rate achieved by the SOS
algorithm, assuming it is solved to precision? The discretization of the brain is
another worrisome issue.

It would also be interesting to see if anything remotely like this setup is
what happens in practice when someone is trying to learn linear algebra in
real life. It seems a little plausible, but there are lots of incredibly unrealistic
aspects of the computation model defined in this report. In a similar vein,
it would be interesting to figure out if humans are even capable of calculating
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high-dimensional means of any kind (for instance, perhaps humans can calculate
robust means of images, if shown a bunch of images in a row from a distribution
centered around a certain image).

Finally, we would like to finish by noting the broad research program that
opens up when we consider trying to implement various existing algorithms
in the assembly framework. In the past, “neurally plausible” algorithms have
traditionally referred to algorithms implementable by neural networks [Arora
et al., 2015]. While assemblies are certainly somewhat related to deep networks
(the random projection and cap are similar in flavor to one layer of a deep net),
they also provide a more formal framework for reasoning about what is going on
at the neuronal level, and are which perhaps have more experimental evidence
for at least some of their operations. In particular, it will be interesting to find
algorithms which are implementable naturally by assemblies, which do not rely
on kludgy formulations and huge numbers of assemblies to work (in particular,
it will be helpful to keep in mind the expected number of assemblies existing in
various parts of the human brain to see if they are reasonable).
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