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Abstract

The goal of this paper is to introduce regret-based analyses of the stochastic block
model. We apply the framework of regret and a recent paper on the online learning
of eigenvectors and extend the results to finding communities of a sequence of graphs,
each graph drawn from a distribution where the community is exactly recoverable. We
pay particular attention to the case where the communities for each graph shift over
time and derive some properties of this setting in terms of regret bounds.
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1 Introduction

As previous papers have tackled the fundamental information theoretic and computa-
tional limits for exact and partial recovery in the stochastic block model setting, we
are interested in approaches for identifying the limits in the online setting: Namely,
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what kind of regret bounds can we get on the number of correctly classified nodes in
the graph? This setting models graphs whose communities change over time, as is the
case in a wide variety of settings, including social networks, neurons in the brain and
others. Another important feature of the model is that we have to make a prediction
before seeing the new graph, based on our history. Models with good regret ensure
that average regret goes to zero, and the algorithm learns as it proceeds.

We are motivated also by the notion of robustness of algorithms. (MPW15) ex-
plains that “algorithms based on semidefinite programming are robust in ways that any
algorithm meeting the information-theoretic threshold for community detection cannot
be.” Their analysis demonstrates that given a graph G, represented as a matrix B,
which passes through an adversarial channel (this is known as the semirandom block
model), the threshold for community detection changes from that of the stochastic
block model. The adversary they consider is somewhat mild, a middle ground between
average case and worst case analysis. We would like to approach adversarial guaran-
tees on community recovery in graphs from the online regret point of view. In the
most general case, with no restrictions on the kinds of graphs which may be seen, we
designate this setting the online adversarial block model.

In this paper, we will impose various restrictions on the graphs which nature hands
the learner, some of which are familiar from the stochastic block model and semirandom
block model settings.

2 Background

2.1 Stochastic Block Model

How does one model clusters in a network? One famous and popular approach is the
stochastic block model, which has been the subject of a lot of scrutiny recently.

Definition 2.1. The stochastic block model with 2 communities given by SBM(n, p, q)
is a distribution on graphs where each of the n nodes is assigned a community 0 or 1,
and where the probablity of edges existing between nodes in the same community is p
and q across communities.

We will be concerned with the exact and partial recovery settings, as well as the
setting where the parameters of the block model are not known. We take k = 2
communities for simplicity of exposition. The exact recovery setting deals with the
case where complete reconstruction of the communities is information theoretically
possible, and the partial recovery setting deals with the case where greater than 50%
of the communities can be recovered. In a recent paper by (ABH14), the threshold for
2 communities for exact recovery was found. It was generalized in later works, namely
(AS15a; AS15b).

2.2 Online Learning and Regret

Our goal in this paper is to detect communities in an online fashion, adversarially.
Online learning introduces the notion of regret. There are a sequence of guesses the
algorithm must make about the value of some quantity. After the algorithm makes a

2



guess, the true answer is revealed and the algorithm experiences some loss. Then the
algorithm updates their guess for the next round. The goal is to perform as closely as
possible to the optimal value to guess repeatedly. Formally,

Definition 2.2. Regret. Let {x1, · · · , xT } be a sequence of guesses that a learner
makes. At each step, the learner experiences a loss ft(xt). Let x∗ be the optimal
choice in hindsight if the learner were only able to play a single value. The regret of
the sequence is defined to be

Regret(T ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗) (1)

We often consider average regret, in which case divide the given quantity by T . A
regret function is good if the average regret vanishes.

In the setting of our paper, we will define loss functions based on some notion of
optimal separation. For instance, in the online learning of eigenvectors ((GHM15)):
The “value” we guess at each iteration is an eigenvector xt, and we experience a loss
after a matrix At is revealed, according to the quadratic form −xTt Atxt. In particular,
(GHM15) were able to prove the following theorem regarding the regret of learning an
eigenvector online.

Definition 2.3. Eigenvector Regret.
For a sequence of matrices {At}Tt=1, a learner plays a unit norm vector xt before seeing
the next matrix and experiences a loss. Then, the regret is

Regret(T ) = max
‖x‖2=1

T∑
t=1

xTAtx−
T∑
t=1

xTt Atxt

= λmax

(
T∑
t=1

At

)
−

T∑
t=1

xTt Atxt

(2)

The main theorem (cf. Theorem 3 in (GHM15)) is given by

Theorem 2.4. (Garber, Hazan, Ma 2015).

Let c =
√

T
n max(1, ln(T/n)). Then for meta-algorithm A which attempts to learn

eigenvectors, we bound the expected regret for eigenvectors with

E[RegretA(T )] = O
(√

nT max(1, ln(T/n))
)

(3)

The algorithm A is well-known Follow the Perturbed Leader algorithm from the
online learning literature, which requires the ability to sample low-rank matrices over
symmetric n× n matrices, as well as an eigenvector oracle.

We will later attempt to apply this to the problem of online community learning.

3 The Adversarial Block Model Setting

In this section we present several ways of adapting the online setting to community
detection in graphs. Because we may relax the conditions on the graphs that we see,
we denote this broad class of models the Adversarial Block Model (ABM).
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Definition 3.1. Adversarial Block Model. (ABM)
Let {Gt}Tt=1 be a sequence of graphs, each equipped with a partition on its vertices
(At, Bt) where At, Bt ⊆ V (Gt) and At∪Bt = V (Gt), At∩Bt = ∅. We also fix |V (Gt)| =
n. We also must define a loss function ft such that ft(Gt) is some measure related to
the communities.

We now proceed to lay out more detailed settings of this general setting, and relate
this setting to the stochastic block model. There are four simple ways to select what
remains invariant across the graphs.

1. Community Invariance: Suppose each Gt ∼ SBM(n, p, q) and that (At, Bt) =

(At+1, Bt+1) for all t ∈ [T ]. We can choose the parameters p = α log(n)
n , q = β log(n)

n ,
α > β, which allows for exact recovery in each individual Gt given the graph, as
proven in (ABH14).

2. Parameter Invariance: We can choose many different parameters to remain invari-
ant. We will give several examples later in the paper of some potential parameters
of interest. For now, let us suppose that Gt ∼ SBM(n, p, q) (this implies fixed
α, β) and that the sizes of the communities |At| and |Bt remain fixed over t, but
that the actual set of nodes At, Bt do not remain fixed. This setting is possibly
the simplest version of the ABM where something novel is gained by considering
the online setting.

3. Phase Transition Invariance: This setting allows us to more loosely restrict α, β,
but still remain in the setting where exact recovery is possible. In other words,
we only require that for some function f : R × R → R, we have that f(α, β) is
restricted to certain subsets of R.

4. Non-Stochastic Parameter Invariance: Here, we allow different kinds of restric-
tions on the graphs Gt, which are not necessarily drawn from a block model. One
example is restricting the properties of the principal eigenvector of the adjacency
matrix of the graph.

We could also consider a case where we do not even allow the regime of the block
model parameters to remain the same, but that seems too hard.

The most important aspect of the online setting is the requirement on predicting
what the next graph will look like without seeing it beforehand. In the case where
the communites are all drawn from the same distribution, this aspect is trivial since
after seeing the first graph (and perhaps losing on the first step), we can just run the
O(n1+ε) algorithm given by (AS15a) and predict the same thing each time afterwards
to get perfect accuracy (also note that this is highly computationally efficient).

However, in the case where the communites change at each step, perhaps adversar-
ially though remaining in a setting where offline exact recovery is possible, we would
like to be able to get a regret guarantee on the performance of our guess. Note that
it is not possible to simply run the O(n1+ε) algorithm at each step, since we have to
submit our guess for the communities before seeing the next graph.

Another reason online algorithms with regret analysis for the SBM are interesting
is because the analysis can potentially hold for regimes of the stochastic block model
where the parameters are not completely known. Regret based analysis could also help
determine upper bounds on accuracy in the partial recovery setting.
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4 Defining the Optimization Task

In order to apply the ABH setting to the problem of recovering communities in graphs,
we need to specify the optimization problem we are trying to solve. We borrow the
setting from (ABH14): Our algorithm attempts to find two communities such that
(#between-community edges)− (#cross-community edges) is maximal. A community
vector x ∈ H = 1√

n
{−1, 1}n denotes which communities each of the n nodes belongs

to. Then, we define the matrix Bt for the graph Gt by

B
(ij)
t =


1 : (i, j) ∈ E(Gt)

0 : (i, i)

−1 : (i, j) 6∈ E(Gt)

The optimization program is given by

max
x∈H

xTBx (4)

In the same manner as (ABH14), we also give an SDP relaxation

max
X�0,Xii=1

Tr(BX) (5)

They prove that this convex relaxation in fact exactly solves the problem, when
certain conditions are imposed on the values of α, β:

Theorem 4.1. (Abbe, Bandeira, Hall 2014).
If (α− β)2 > 8(α+ β) + 8

3(α− β), with high probability the SDP has a unique solution
given by ggT , where g ∈ H whose entries correspond to the communities as defined
above.

The previous two equations form the basis for our two attempts at analyzing online
algorithms from the perspective of regret. Regret analysis using the first program
will be denoted spectral optimization, and analysis using the second program will be
denoted semidefinite optimization.

We can now describe two simple loss functions that could be used in online opti-
mization: fspec(Gt) = −xTBx and fsemi(Gt) = −Tr(BX).

5 Shifting Communities

In this section, we consider the parameter-invariant settings described before. Specif-
ically, we consider two kinds of parameters: Restrictions upon α, β and restrictions
upon the principal eigenvector of a matrix. Now, how can we approach solving the
optimization problem posed in the previous section in the online ABM setting, such
that we can apply previously-known theorems from the online optimization literature?
We list some possibilities:

1. The community detection problem is actually convex. Here we use a result from
(ABH14).
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2. We might then think to examine the regime in which the maximal eigenvec-
tor is already in {−1, 1}n, in which case we can directly apply the results from
(GHM15), and merely provide an explanation of what partial recovery-regret
means in terms of eigenvalues. For instance, the case where all non-diagonal vec-
tors are 1 is a case where this holds. Note that this reflects the case where the
graph is a complete graph, and thus there is only one community. However, this
is the only case where the eigenvector is a solution, and is thus uninteresting.

3. We might try restricting some non-stochastic parameters: For instance, requir-
ing the vector derived from taking the sign of each component of the maximal
eigenvector to solve the optimization problem opens up a new door. Here, we
additionally need to explain how to convert the notion of eigenvalue-regret into
optimization regret, after which we connect to partial recovery-regret. Here, we
run some numerical experiments to see what the degredation the signing of the
maximal eigenvector causes to xTAx, and could try to prove something about
the performance of this algorithm in the online setting. We try to establish an
empirical difference in xTAx as a function of n, the dimension of the space x
lives in. We also try to prove a result about what the performance of the sign
algorithm looks like on average.

4. Suppose the signed maximal eigenvector is not the perfect solution: We can still
analyze the performance of this algorithm with respect to regret.

5. We may also want to try to take existing spectral algorithms ((YP14)) and use
online eigenvector learning in order to bring them to the community detection
setting.

6. We can consider relaxing solutions to the problem to be defined over the unit
sphere, not {−1, 1}n. Then, we can give an interpretation of the maximal eigen-
vector as a solution to the community detection problem.

5.1 Online Semidefinite Program Optimization

First we note that the semidefinite program given in (ABH14) can be extended to
the online setting, in the same parameter regime given in the paper. We give explicit
regret bounds for solving the SDP using online convex optimization, making use of
convexity through Theorem 3 given in (ABH14) (previously stated above). We can
simply use standard online gradient descent to solve this problem, provided that all
graphs Gt are drawn from SBM(n, p, q) with p = α log(n)

n , q = β log(n)
n with (α − β)2 >

8(α + β) + 8
3(α − β) remaining invariant for all Gt. Recall that we define our loss

function to be ft(Xt) = −Tr(BtXt), which is a linear function if we think of Xt as a

vector. Therefore, the gradient is given by ∂−Tr(BtXt)
∂Xt

= −BT
t which can be seen by

simple calculation. Therefore, note that the gradient matrix has a 0-diagonal as well,
and thus the optimization does not affect the diagonal elements of Xt. Furthermore,
since the diagonal of Bt is always 0, the diagonal elements of Xt are not used in the
loss function. Therefore, we can satisfy the requirement Xii = 1 without any penalty
by setting them that way from the start.

The gradient update is given by

Xt+1 =
∏
S+n

Xt − ηt∇ft(Xt) (6)
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where we use projection onto the (convex) positive semidefinite cone S+n given by

∏
S+n

(X) = U


max(0, λ1) 0 · · · 0

0 max(0, λ2) · · · 0
...

...
. . .

...
0 0 · · · max(0, λn)

UT
where we have the spectral decomposition X = UΣUT and λ1 ≥ · · · ≥ λn are the
eigenvalues (see (HM11)). Then, since we know that this problem has a unique solution
from Theorem 4.1, we can restrict our convex set even further so that it is clearly
bounded. The only restriction we require is that all symmetric n × n matrices which
have ±1 on off-diagonals and 0-on diagonals are contained in the restricted convex set.
Therefore, there is some upper bound on the diameter of the convex set we project
onto D and since the gradient is linear, we also have that it is Lipschitz and there is
some bound G on the magnitude of the gradient. Since G = −BT , we can upper bound
it with G ≤ n2 − n. Therefore, we can apply the regret of online gradient descent to
this setting (Haz15):

Theorem 5.1. Regret of Online Gradient Descent.
With step sizes ηt = D

G
√
t

for t ∈ [T ], for all T ≥ 1 we have

Regret(T ) ≤ 3

2
GD
√
T = O(

√
T ) (7)

We remark that the analysis in this section is by no means optimal, and it is highly
possible better algorithms and regret bounds can be obtained. We just used online
gradient descent for simplicity, to illustrate the point.

5.2 Online Spectral Optimization

Remark 5.2. First, we note that the vein of this work strays from the recent ap-
proaches of Abbe and Sandon. The emphasis in the recent papers by those authors is
on the fact that the analysis was information-theoretic and algorithm agnostic. How-
ever, in this paper we return to a more algorithmic-approach centric analysis in order
to extend to online learning. Our whole approach is based on massaging the prob-
lem we have to the point where we can almost directly apply previous results from
online learning and regret bounds to our problem. This approach is almost certainly
sub-optimal, and should be approached from the point of view of giving new defini-
tions and perhaps a new thresholding function which serves the same purpose as the
CH-divergence in (AS15a).

Now we pivot away from the semidefinite optimization setting to the spectral set-
ting. Here, we still assume that each of the graphs the learner sees are in the exact
recovery setting, to ensure that the solution to the spectral optimization problem cor-
responds with communities.

Letting H = 1√
n
{−1, 1}n be the Boolean hypercube, we define the pseudoeigenvalue

of Bt to be
ρ = max

x∈H
xTBtx

and its accompanying vector xρ. Recall the definition of regret for eigenvectors from
the Background section, we now extend it to pseudoeigenvectors:
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Definition 5.3. Pseudoeigenvector Regret.
For a sequence of matrices {At}Tt=1, a learner plays a vector xt ∈ H before seeing the
next matrix and experiences a loss. Then, the regret is

Regret(T ) = max
x∈H

T∑
t=1

xTAtx−
T∑
t=1

xTt Atxt

= ρ

(
T∑
t=1

At

)
−

T∑
t=1

xTt Atxt

(8)

We now define an algorithm to approximate this quantity.

Definition 5.4. Approximate-ρ Algorithm.

1. Calculate x∗ = argmax‖x‖2=1x
TBtx (calculate principal eigenvector).

2. Calculate sgn(x∗), where sgn is the function sending real numbers to ±1 and
where sgn is applied elementwise.

3. Use sgn(x∗) as an approximation of xρ.

Note that (YP14) perform a similar trick on the top two eigenvectors in their
algorithm for community detection. We analyze this algorithm instead for simplicity.

The motivation behind this setup is essentially that we want to apply regret bounds
from (GHM15) to online eigenvector computation (hence step 1 of the algorithm). If
we can characterize the gap between sgn(x∗) and xρ, then we can potentially carry
over regret bounds on the eigenvalues to the quantity we want.

First, we empirically assess the approximate-ρ algorithm. Instead of comparing
directly to ρ, we examine a worst-case situation. We must have that ρ ≤ λmax since

H ⊂ Sn, the unit sphere. Therefore, the ratio sgn(x∗)T ·A·sgn(x∗)
λmax

≤ sgn(x∗)T ·A·sgn(x∗)
ρ

where A has 0-diagonal and ±1 elsewhere. Interestingly, Figure 1 appears to demon-
strate an asymptote lower-bounding this ratio, potentially allowing for a constant factor
conversion between the regrets:

c <
sgn(x∗)T ·A · sgn(x∗)

λmax
≤ sgn(x∗)T ·A · sgn(x∗)

ρ

We generated the graph in Figure 1 by writing code in Matlab to generate random
matrices and calculate their top eigenvectors and eigenvalues.

Therefore, we might suppose a lower bound for the principal eigenvector x∗ of the

form sgn(x∗)T ·A·sgn(x∗)
λmax

≥ 1− ε̂ for some ε̂ ∈ [0, 1] (certainly this will be true if we fix the
size of the matrix at n× n, it is unclear whether the asymptotics described in Figure
1 continue as n→∞).

We might generalize this assumption to a stronger conjecture:

Conjecture 1. Quality of Sgn(x).
For any x ∈ Sn, there exists some ε̂ > 0 such that

sgn(x)T ·A · sgn(x) > xTAx(1− ε̂) (9)

This equation amounts to a statement about sgn(x): Namely that the “quality” of the
vector x does not degrade by too much if fed through a sgn function. We can modify
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Figure 1: Empirical Average Ratio Between λmax and sgn(x∗)T · A· sgn(x∗)

the statement to be even stronger. If we sample x ∈ Sn randomly (and do not just use
the principal eigenvector x∗, as we did in our experiment), then

Ex[sgn(x)T ·A · sgn(x)] = Ex[xTAx] (10)

Assuming this conjecture, we can demonstrate an interesting statement about the
“regret” involved in our optimization problem:

E[ρ

(
T∑
t=1

At

)
−

T∑
t=1

sgn(xt)
T ·At · sgn(xt)] < E[λmax

(
T∑
t=1

At

)
−

T∑
t=1

sgn(xt)
T ·At · sgn(xt)]

< E[λmax

(
T∑
t=1

At

)
−

T∑
t=1

xTt Atxt]

= O
(√

nT max(1, ln(T/n))
)

by Theorem 2.4

(11)

This demonstrates that given the conjecture, the simple Approximate-ρ algorithm
applied to the modified Follow the Perturbed Leader algorithm from (GHM15)
should be able to online learn communities in the shifting-community setting relatively
well, in terms of regret.

Remark 5.5. Intuition behind the spectral regret bounds.
We have been giving regret bounds in terms of proxy-values instead the actual propor-
tion of correctly recovered nodes (i.e., nodes assigned to the correct community, as in
partial recovery). We take a few steps to remedy this dissonance in this note. First
recognize that an optimal answer to the optimization problem maxxt∈H x

T
t Btxt over

the Boolean hypercube H = 1√
n
{−1, 1}n exists, since the problem is a combinatorial

optimization problem and we are in the setting where the graph is recoverable. Sup-
pose the optimal value is y, and we are attempting to construct y with our variable z.
We can measure the difference between the vectors with the l2 norm. Each incorrect

choice of component for z costs us
(

2 1√
n

)2
= 4

n . Thus if there are k mistakes, we
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have ‖y − z‖22 = 4k
n . Then, if we consider z as the average of all the attempts of the

algorithm,

Regret(T ) = yT

(
T∑
t=1

At

)
y −

T∑
t=1

zTt Atzt

=
T∑
t=1

yTAty − zTt Atzt =
T∑
t=1

(‖y‖At − ‖zt‖At)

=

(
T∑
t=1

‖y‖At

)
−

(
T∑
t=1

‖zt‖At

) (12)

We also have ‖Ty −
∑T

t=1 zt‖22 = T 2‖y − z‖22 = T 2 4k
n . It remains for future work to

find a relationship expressing the difference of two induced norms with the l2 norm of
the difference.
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