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Abstract
Companies increasingly expose machine learning (ML)

models trained over sensitive user data to untrusted domains,
such as end-user devices and wide-access model stores. This
creates a need to control the data’s leakage through these
models. We present Sage, a differentially private (DP) ML
platform that bounds the cumulative leakage of training data
through models. Sage builds upon the rich literature on DP
ML algorithms and contributes pragmatic solutions to two of
the most pressing systems challenges of global DP: running
out of privacy budget and the privacy-utility tradeoff. To ad-
dress the former, we develop block composition, a new privacy
loss accounting method that leverages the growing database
regime of ML workloads to keep training models endlessly on
a sensitive data stream while enforcing a global DP guarantee
for the stream. To address the latter, we develop privacy-
adaptive training, a process that trains a model on grow-
ing amounts of data and/or with increasing privacy parame-
ters until, with high probability, the model meets developer-
configured quality criteria. Sage’s methods are designed to
integrate with TensorFlow-Extended, Google’s open-source
ML platform. They illustrate how a systems focus on charac-
teristics of ML workloads enables pragmatic solutions that
are not apparent when one focuses on individual algorithms,
as most DP ML literature does.

1 Introduction
Machine learning (ML) is changing the origin and makeup

of the code driving many of our applications, services, and
devices. Traditional code is written by programmers and en-
codes algorithms that express business logic, plus a bit of
configuration data. We keep sensitive data – such as pass-
words, keys, and user data – out of our code, because we
often ship this code to untrusted locations, such as end-user
devices and app stores. We mediate accesses to sensitive data
with access control. When we do include secrets in code, or
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when our code is responsible for leaking user information
to an unauthorized entity (e.g., through an incorrect access
control decision), it is considered a major vulnerability.

With ML, “code” – in the form of ML models – is learned
by an ML platform from a lot of training data. Learning
code enables large-scale personalization, as well as power-
ful new applications like autonomous cars. Often, the data
used for learning comes from users and is of personal na-
ture, including emails, searches, website visits, heartbeats,
and driving behavior. And although ML “code” is derived
from sensitive data, it is often handled as secret-free code.
ML platforms, such as Google’s Tensorflow-Extended (TFX),
routinely push models trained over sensitive data to servers all
around the world [5, 24, 34, 45] and sometimes to end-user
devices [53, 57] for faster predictions. Some companies also
push feature models – such as user embedding vectors and sta-
tistics of user activity – into model stores that are often times
widely accessible within the companies [24, 34, 50]. Such
exposure would be inconceivable in a traditional application.
Think of a word processor: it might push your documents to
your device for faster access, but it would be outrageous if it
pushed your documents to my (and everyone else’s) device!

There is perhaps a sense that because ML models aggregate
data from multiple users, they “obfuscate” individuals’ data
and warrant weaker protection than the data itself. However,
this perception is succumbing to growing evidence that ML
models can leak specifics about individual entries in their
training sets. Language models trained over users’ emails for
auto-complete have been shown to encode not only commonly
used phrases but also social security numbers and credit card
numbers that users may include in their communications [7].
Prediction APIs have been shown to be enable testing for
membership of a particular user or entry within a training
set [51]. Finally, it has long been established both theoreti-
cally and empirically that access to too many linear statistics
from a dataset – as an adversary might have due to periodic
releases of models, which often incorporate statistics used for
featurization – is fundamentally non-private [3, 12, 23, 26].

As companies continue to disseminate many versions of
models into untrusted domains, controlling the risk of data
exposure becomes critical. We present Sage, an ML plat-
form based on TFX that uses differential privacy (DP) [15]
to bound the cumulative exposure of individual entries in a
company’s sensitive data streams through all the models re-
leased from those streams. At a high level, DP randomizes a
computation over a dataset (e.g. training one model) to bound
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the leakage of individual entries in the dataset through the
output of the computation (the model). Each new DP com-
putation increases the bound over data leakage, and can be
seen as consuming part of a privacy budget that should not be
exceeded; Sage makes the process that generates all models
and statistics preserve a global DP guarantee.

Sage builds upon the rich literature on DP ML algorithms
(e.g., [2, 36, 59], see §2.3) and contributes pragmatic solu-
tions two of the most pressing systems challenges of global
DP: (1) running out of privacy budget and (2) the privacy-
utility tradeoff. Sage expects to be given training pipelines
explicitly programmed to individually satisfy a parameterized
DP guarantee. It acts as a new access control layer in TFX
that: mediates all accesses to the data by these DP training
pipelines; instantiates their DP parameters at runtime; and
accounts for the cumulative privacy loss from all pipelines
to enforce the global DP guarantee against the stream. At
the same time, Sage provides the developers with: control
over the quality of the models produced by the DP training
pipelines (thereby addressing challenge (2)); and the ability
to release models endlessly without running out of privacy
budget for the stream (thereby addressing challenge (1)).

The key to addressing both challenges is the realization
that ML workloads operate on growing databases, a model of
interaction that has been explored very little in DP, and only
with a purely theoretical and far from practical approach [11].
Most DP literature, largely focused on individual algorithms,
assumes either static databases (which do not incorporate
new data) or online streaming (where computations do not
revisit old data). In contrast, ML workloads – which consist of
many algorithms invoked periodically – operate on growing
databases. Across invocations of different training algorithms,
the workload both incorporates new data and reuses old data,
often times adaptively. It is in that adaptive reuse of old
data coupled with new data that our design of Sage finds the
opportunity to address the preceding two challenges in ways
that are practical and integrate well with TFX-like platforms.

To address the running out of privacy budget challenge,
we develop block composition, the first privacy accounting
method that both allows efficient training on growing databases
and avoids running out of privacy budget as long as the data-
base grows fast enough. Block composition splits the data
stream into blocks, for example by time (e.g., one day’s worth
of data goes into one block) or by users (e.g., each user’s
data goes into one block), depending on the unit of protection
(event- or user-level privacy). Block composition lets training
pipelines combine available blocks into larger datasets to train
models effectively, but accounts for the privacy loss of releas-
ing a model at the level of the specific blocks used to train
that model. When the privacy loss for a given block reaches
a pre-configured ceiling, the block is retired and will not be
used again. However, new blocks from the stream arrive with
zero privacy loss and can be used to train future models. Thus,
as long as the database adds new blocks fast enough relative
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Fig. 1. Typical Architecture of an ML Platform.

to the rate at which models arrive, Sage will never run out of
privacy budget for the stream. Finally, block composition al-
lows adaptivity in the choice of training computation, privacy
parameters, and blocks to execute on, thereby modeling the
most comprehensive form of adaptivity in DP literature.

To address the privacy-utility tradeoff we develop privacy-
adaptive training, a training procedure that controls the utility
of DP-trained models by repeatedly and adaptively training
them on growing data and/or DP parameters available from
the stream. Models retrain until, with high probability, they
meet programmer-specified quality criteria (e.g. an accuracy
target). Privacy-adaptive training uses block composition’s
support for adaptivity and integrates well with TFX’s design,
which includes a model validation stage in training pipelines.

2 Background
Our effort builds upon an opportunity we observe in to-

day’s companies: the rise of ML platforms, trusted infrastruc-
tures that provide key services for ML workloads in produc-
tion, plus strong library support for their development. They
can be thought of as operating systems for ML workloads.
Google has TensorFlow-Extended (TFX) [5]; Facebook has
FBLearner [24]; Uber has Michelangelo [34]; and Twitter
has DeepBird [33]. The opportunity is to incorporate DP into
these platforms as a new type of access control that constrains
data leakage through the models a company disseminates.
2.1 ML Platforms

Fig. 1 shows our view of an ML platform; it is based
on [5, 24, 34]. The platform has several components: Train-
ing Pipelines (one for each model pushed into production),
Serving Infrastructure, and a shared data store, which we call
the Growing Database because it accumulates data from the
company’s various streams. The access control policies on the
Growing Database are exercised through Stream-level ACLs
and are typically restrictive for sensitive streams.

The Training Pipeline trains a model on data from the
Growing Database and verifies that it meets specific quality
criteria before it is deployed for serving or shared with other
teams. It is launched periodically (e.g., daily) on datasets
containing samples from a representative time window (e.g.,
logs over the past month). It has three customizable mod-
ules: (1) Pre-processing loads the dataset from the Growing
Database, transforms it into a format suitable for training and
inference by applying feature transformation operators, and
splits the transformed dataset into a training set and a testing



set; (2) Training trains the model on a training set; and (3)
Validation evaluates one or more quality metrics – such as
accuracy for classification or mean squared error (MSE) for
regression – on the testing set. It checks that the metrics reach
specific quality targets to warrant the model’s push into serv-
ing. The targets can be fixed by developers or can be values
achieved by a previous model. If the model meets all quality
criteria, it is bundled with its feature transformation operators
(a.k.a. features) and pushed into the Serving Infrastructure.
The model+features bundle is what we call ML code.

The Serving Infrastructure manages the online aspects
of the model. It distributes the model+features to inference
servers around the world and to end-user devices and contin-
uously evaluates and partially updates it on new data. The
model+features bundle is also often pushed into a company-
wide Model and Feature Store, from where other teams within
the company can discover it and integrate into their own mod-
els. Twitter and Uber report sharing embedding models [50]
and tens of thousands of summary statistics [34] across teams
through their Feature Stores. To enable such wide sharing,
companies sometimes enforce more permissive access control
policies on the Model and Feature Store than on the raw data.

2.2 Threat Model
We are concerned with the increase in sensitive data ex-

posure that is caused by applying looser access controls to
data-carrying ML code –models+features– than are typically
applied to the data. This includes placing models+features in
company-wide Model and Feature Stores, where they can be
accessed by developers not authorized to access the raw data.
It includes pushing models+features, or their predictions, to
end-user devices and prediction servers that could be compro-
mised by hackers or oppressive governments. And it includes
opening the models+features to the world through prediction
APIs that can leak training data if queried sufficiently [51, 55].
Our goal is to “neutralize” the wider exposure of ML codes
by making the process of generating them DP across all mod-
els+features ever released from a sensitive stream.

We assume the following components are trusted and imple-
mented correctly: Growing Database; Stream-level ACLs; the
ML platform code running a Training Pipeline. We also trust
the developer that instantiates the modules in each pipeline
as long as the developer is authorized by Stream-level ACLs
to access the data stream(s) used by the pipeline. However,
we do not trust the wide-access Model and Feature Store or
the locations to which the serving infrastructure disseminates
the model+features or their predictions. Once a model/feature
is pushed to those components, it is considered released to
the untrusted domain and accessible to adversaries.

We focus on two classes of attacks against models and sta-
tistics (see Dwork [22]): (1) membership inference, in which
the adversary infers whether a particular entry is in the train-
ing set based on either white-box or black-box access to the

model, features, and/or predictions [3, 23, 26, 51]; and (2) re-
construction attacks, in which the adversary infers unknown
sensitive attributes about entries in the training set based on
similar white-box or black-box access [7, 12, 22].
2.3 Differential Privacy

DP is concerned with whether the output of a computation
over a dataset – such as training an ML model – can reveal
information about individual entries in the dataset. To prevent
such information leakage, randomness is introduced into the
computation to hide details of individual entries.

Definition 2.1 (Differential Privacy (DP) [20]). A random-
ized algorithm Q : D → V is (ϵ,δ )-DP if for any D,D ′

with |D ⊕ D ′ | ≤ 1 and for any S ⊆ V, we have: P(Q(D) ∈
S) ≤ eϵP(Q(D ′) ∈ S) + δ .

The ϵ > 0 and δ ∈ [0, 1] parameters quantify the strength
of the privacy guarantee: small values imply that one draw
from such an algorithm’s output gives little information about
whether it ran on D or D ′. The privacy budget ϵ upper bounds
an (ϵ,δ )-DP computation’s privacy loss with probability (1-δ ).
⊕ is a dataset distance (e.g. the symmetric difference [40]). If
|D ⊕ D ′ | ≤ 1, D and D ′ are neighboring datasets.

Multiple mechanisms exist to make a computation DP.
They add noise to the computation scaled by its sensitiv-
ity s, the maximum change in the computation’s output when
run on any two neighboring datasets. Adding noise from a
Laplace distribution with mean zero and scale s

ϵ (denoted
laplace(0, sϵ )) gives (ϵ, 0)-DP. Adding noise from a Gaussian

distribution scaled by s
ϵ

√
2 ln( 1.25δ ) gives (ϵ,δ )-DP.

DP is known to address the attacks in our threat model [7,
22, 27, 51]. At a high level, membership and reconstruction
attacks work by finding data points that make the observed
model more likely: if those points were in the training set, the
likelihood of the observed output increases. DP prevents these
attacks, as no specific data point can drastically increase the
likelihood of the model outputted by the training procedure.

DP literature is very rich and mature, including in ML.
DP versions exist for almost every popular ML algorithm,
including: stochastic gradient descent (SGD) [2, 59]; various
regressions [9, 31, 42, 54, 61]; collaborative filtering [39];
language models [38]; feature selection [10]; model selec-
tion [52]; evaluation [6]; and statistics, e.g. contingency ta-
bles [4], histograms [58]. The privacy module in TensorFlow
v2 implements several SGD-based algorithms [36].

A key strength of DP is its composition property, which in
its basic form, states that the process of running an (ϵ1,δ1)-
DP and an (ϵ2,δ2)-DP computation on the same dataset is
(ϵ1 + ϵ2,δ1 + δ2)-DP. Composition enables the development
of complex DP computations – such as DP Training Pipelines
– from piecemeal DP components, such as DP ML algorithms.
Composition also lets one account for (and bound) the privacy
loss resulting from a sequence of DP-computed outputs, such
as the release of multiple models+features.
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Fig. 2. Sage DP ML Platform. Highlights changes from non-DP version.

A distinction exists between user-level and event-level pri-
vacy. User-level privacy enforces DP on all data points con-
tributed by a user toward a computation. Event-level privacy
enforces DP on individual data points (e.g., individual clicks).
User-level privacy is more meaningful than event-level pri-
vacy, but much more challenging to sustain on streams. Al-
though Sage’s design can in theory be applied to user-level
privacy (§4.4), we focus most of the paper on event-level
privacy, which we deem practical enough to be deployed in
big companies. §7 discusses the limitations of this semantic.

3 Sage Architecture
The Sage training platform enforces a global (ϵд ,δд)-DP

semantic over all models+features that have been, or will ever
be, released from each sensitive data stream. The highlighted
portions in Fig. 2 show the changes Sage brings to a typical
ML platform. First, each Training Pipeline must be made to
individually satisfy (ϵ,δ )-DP for some privacy parameters
given by Sage at runtime (box (ϵ,δ )-DP Training Pipeline,
§3.1). The developer is responsible for making this switch to
DP, and while research is needed to ease DP programming,
this paper leaves that challenge aside.

Second, Sage introduces an additional layer of access con-
trol beyond traditional stream-level ACLs (box Sage Ac-
cess Control, §3.2). The new layer splits the data stream
into blocks and accounts for the privacy loss of releasing a
model+features bundle at the level of the specific blocks that
were used to train that bundle. In theory, blocks can be defined
by any insensitive attribute, with two attributes particularly
relevant here: time (e.g., one day’s worth of data goes into
one block) and user ID (e.g., a user’s data goes into the same
block). Defining blocks by time provides event-level privacy;
defining them by user ID accommodates user-level privacy.
Because of our focus on the former, the remainder of this

section assumes that blocks are defined by time; §4 discusses
sharding by user ID and other attributes.

When the privacy loss for a block reaches the (ϵд ,δд)
ceiling, the block is retired (blocks D1,D2,D7 are retired in
Fig. 2). However, new blocks arrive with a clean budget and
can be used to train future models: as long as the database
grows fast enough in new blocks, the system will never run
out of privacy budget for the stream. Perhaps surprisingly, this
privacy loss accounting method, which we call block compo-
sition, is the first practical approach to avoid running out of
privacy budget while enabling effective training of ML mod-
els on growing databases. §3.2 gives the intuition of block
composition while §4 formalizes it and proves it (ϵд ,δд)-DP.

Third, Sage provides developers with control over the qual-
ity of models produced by the DP Training Pipelines. Such
pipelines can produce less accurate models that fail to meet
their quality targets more often than without DP. They can
also push in production low-quality models whose validations
succeed by mere chance. Both situations lead to operational
headaches: the former gives more frequent notifications of
failed training, the latter gives dissatisfied users. The issue is
often referred to as the privacy-utility tradeoff of running un-
der a DP regime. Sage addresses this challenge by wrapping
the (ϵ,δ )-DP Training Pipeline into an iterative process that
reduces the effects of DP randomness on the quality of the
models and the semantic of their validation by invoking train-
ing pipelines repeatedly on increasing amounts of data and/or
privacy budgets (box Privacy-Adaptive Training, §3.3).

3.1 Example (ϵ,δ )-DP Training Pipeline
Sage expects each pipeline submitted by the ML developer

to satisfy a parameterized (ϵ,δ )-DP. Acknowledging that DP
programming abstractions warrant further research, List. 1
illustrates the changes a developer would have to make at
present to convert a non-DP training pipeline written for TFX
to a DP training pipeline suitable for Sage. Removed/replaced
code is stricken through and the added code is highlighted.
The pipeline processes New York City Yellow Cab data [43]
and trains a model to predict the duration of a ride.

To integrate with TFX (non-DP version), the developer
implements three TFX callbacks. (1) preprocessing_fn
uses the dataset to compute aggregate features and make
user-specified feature transformations. The model has three
features: the distance of the ride; the hour of the day; and an
aggregate feature representing the average speed of cab rides
each hour of the day. (2) trainer_fn specifies the model
that is to be trained: it configures the columns to be modeled,
defines hyperparameters, and specifies the dataset. The model
trains with a neural network regressor. (3) validator_fn
validates the model by comparing test set MSE to a constant.

To integrate with Sage (DP version), the developer: (a)
switches library calls to DP versions of the functions (which
ideally would be available in the ML platform) and (b) splits
the (ϵ,δ ) parameters, which are assigned by Sage at runtime,



1 def preprocessing_fn(inputs, epsilon):
2 dist_01 = tft.scale_to_0_1(inputs["distance"],0,100)
3 speed_01 = tft.scale_to_0_1(inputs["speed"],0,100)
4 hour_of_day_speed = group_by_mean
5 sage.dp_group_by_mean(
6 inputs["hour_of_day"], speed_01, 24, epsilon, 1.0)
7 return {"dist_scaled": dist_01,
8 "hour_of_day": inputs["hour_of_day"],
9 "hour_of_day_speed": hour_of_day_speed,

10 "duration": inputs["duration"]}
11
12 def trainer_fn(hparams, schema, epsilon, delta): [...]
13 feature_columns = [numeric_column("dist_scaled"),
14 numeric_column("hour_of_day_speed"),
15 categorical_column("hour_of_day", num_buckets=24)]
16 estimator = \
17 tf.estimator.DNNRegressorsage.DPDNNRegressor(
18 config=run_config,
19 feature_columns=feature_columns,
20 dnn_hidden_units=hparams.hidden_units,
21 privacy_budget=(epsilon, delta))
22 return tfx.executors.TrainingSpec(estimator,...)
23
24 def validator_fn(epsilon):
25 model_validator = \
26 tfx.components.ModelValidatorsage.DPModelValidator(
27 examples=examples_gen.outputs.output,
28 model=trainer.outputs.output,
29 metric_fn = _MSE_FN, target = _MSE_TARGET,
30 epsilon=epsilon, confidence=0.95, B=1)
31 return model_validator
32
33 def dp_group_by_mean(key_tensor, value_tensor, nkeys,
34 epsilon, value_range):
35 key_tensor = tf.dtypes.cast(key_tensor, tf.int64)
36 ones = tf.fill(tf.shape(key_tensor), 1.0)
37 dp_counts = group_by_sum(key_tensor, ones, nkeys)\
38 + laplace(0.0, 2/epsilon, nkeys)
39 dp_sums = group_by_sum(
40 key_tensor,value_tensor,nkeys)\
41 + laplace(0.0, value_range * 2/epsilon, nkeys)
42 return tf.gather(dp_sums/dp_counts, key_tensor)

List. 1. Example Training Pipeline. Shows non-DP TFX (stricken
through) and DP Sage (highlighted) versions. TFX API is simplified for
exposition.

Fig. 3. Characteristics of Data Interaction in ML.

across the DP function calls. (1) preprocessing_fn re-
places one call with a DP version that is implemented in Sage:
the mean speed per day uses Sage’s dp_group_by_mean.
This function (lines 32-40) computes the number of times
each key appears and the sum of the values associated with
each key. It makes both DP by adding draws from appropriately-
scaled Laplace distributions to each count. Each data point
has exactly one key value so the privacy budget usage com-
poses in parallel across keys [40]. The privacy budget is split
across the sum and count queries. We envision common func-
tions like this being available in the DP ML platform. (2)
trainer_fn switches the call to the non-private regres-
sor with the DP implementation, which in Sage is a simple
wrapper around TensorFlow’s DP SGD-based optimizer. (3)
validator_fn invokes Sage’s DP model validator (§3.3).

3.2 Sage Access Control
Sage uses the composition property of DP to rigorously ac-

count for (and bound) the cumulative leakage of data from sen-
sitive user streams across multiple releases of models+features
learned from these streams. Specifically, for each sensitive
stream, Sage maintains a pre-specified event-level (ϵд ,δд)-DP
guarantee across all uses of the stream. Unfortunately, tradi-
tional DP composition theory considers either static databases,
which leads to wasteful privacy accounting; or purely online
streaming, which is inefficient for many ML workloads, in-
cluding deep neural network training. We thus developed our
own composition theory, called block composition, which
leverages characteristics of ML workloads running on grow-
ing databases to permit both efficient privacy accounting and
efficient learning. §4 formalizes the new theory. This section
describes the limitations of existing DP composition for ML
and gives the intuition for block composition and how Sage
uses it as a new form of access control in ML platforms.
Data Interaction in ML on Growing Databases. Fig. 3
shows an example of a typical workload as seen by an ML
platform. Each training pipeline, or query in DP parlance, is
denoted Qi . We note two characteristics. First, a typical ML
workload consists of multiple training pipelines, training over
time on a continuously growing database, and on data sub-
sets of various sizes. For instance, Q2 may train a large deep
neural network requiring massive amounts of data to reach
good performances, while Q3 may train a linear model with
smaller data requirements, or even a simple statistic like the
mean of a feature over the past day. All pipelines are typically
updated or retrained periodically on new data, with old data
eventually being deemed irrelevant and ignored.

Second, the data given to a training pipeline – and for a DP
model its DP parameters – are typically chosen adaptively.
For example, the model trained in Q1 on data from D1,2 with
budget ϵ1 may give unsatisfactory performance. After a new
block D3 is collected, a developer may decide to retrain the
same model in queryQ2 on data from D1,2,3, and with a higher
DP budget ϵ2. Adaptivity can also happen indirectly through
the data. Suppose Q2 successfully trained a recommendation
model. Then, future data collected from the users (e.g. in D4)
may depend on the recommendations. Any subsequent query,
such as Q3, is potentially influenced by Q2’s output.

These characteristics imply three requirements for a com-
position theory suitable for ML. It must support:

R1 Queries on overlapping data subsets of diverse sizes.
R2 Adaptivity in the choice of: queries, DP parameters,

and data subsets the queries process.
R3 Endless execution on a growing database.

Limitations of Existing Composition Theory for ML. No
previous DP composition theory supports all three require-
ments. DP has mostly been studied for static databases, where
(adaptively chosen) queries are assumed to compute over the



entire database. Consequently, composition accounting is typ-
ically made at query level: each query consumes part of the
total available privacy budget for the database. Query-level ac-
counting has carried over even in extensions to DP theory that
handle streaming databases [19] and partitioned queries [40].
There are multiple ways to apply query-level accounting to
ML, but each trades off at least one of our requirements.

First, one can query overlapping data subsets (R1) adap-
tively across queries, the data used, and the DP parame-
ters [46] (R2) by accounting for composition at the query
level against the entire stream. Queries on Fig. 3 would thus
result in a total privacy loss of ϵ1 + ϵ2 + ϵ3 over the whole
stream. This approach wastes privacy budget and leads to the
problem of “running out of budget”. Once ϵд = ϵ1 + ϵ2 + ϵ3,
enforcing a global leakage bound of ϵд means that one must
stop using the stream after query Q3. This is true even though
(1) not all queries run on all the data and (2) there will be
new data coming into the system in the future (e.g., D5). This
violates requirement (R3) of endless execution on streams.

Second, one can restructure the queries to enable finer
granularity with query-level accounting. The data stream is
partitioned in blocks, as in Fig. 3. Each query is split into
multiple ones, each running with DP on an individual block.
The DP results are then aggregated, for instance by averaging
model updates as in federated learning [38]. Since each block
is a separate dataset, traditional composition can account for
privacy loss at the block level. This approach supports adaptiv-
ity (R2) and execution of the system on streams (R3) as new
data blocks incur no privacy loss from past queries. However,
it violates requirement (R1), resulting in unnecessarily noisy
learning [13, 14]. Consider computing a feature average. DP
requires adding noise once, after summing all values on the
combined blocks. But with independent queries over each
block, we must add the same amount of noise to the sum over
each block, yielding a more noisy total. Additionally, several
DP training algorithms [2, 38] fundamentally rely on sam-
pling small training batches from large datasets to amplify
privacy, which cannot be done without combining blocks.

Third, one can consume the data stream online using stream-
ing DP. A new data point is allocated to one of the waiting
queries, which consumes its entire privacy budget. Because
each point is used by one query and discarded, DP holds over
the entire stream. New data can be adaptively assigned to any
query (R2) and arrives with a fresh budget (R3). However,
queries cannot use past data or overlapping subsets, violating
R1 and rendering the approach impractical for large models.
Block Composition. Our new composition theory meets all
three requirements. It splits the data stream into disjoint blocks
(e.g., one day’s worth of data for event-level privacy), form-
ing a growing database on which queries can run on overlap-
ping and adaptively chosen sets of blocks (R1, R2). This lets
pipelines combine blocks with available privacy budgets to
assemble large datasets. Despite running overlapping queries,

we can still account for the privacy loss of each individual
blocks, where each query impacts the blocks it actually uses,
not the entire data stream. Unused blocks, including future
ones, incur no privacy loss. In Fig. 3, the first three blocks
each incur a privacy loss of ϵ1 + ϵ2 while the last block has
ϵ2 + ϵ3. The privacy loss of these three queries over the entire
data stream will only be the maximum of these two values.
Moreover, when the database grows (e.g. block D5 arrives),
the new blocks’ privacy loss is zero. The system can thus run
endlessly by training new models on new data (R3).
Sage Access Control. With block composition, Sage controls
data leakage from a stream by enforcing DP on its blocks. The
company configures a desirable (ϵд ,δд) global policy for each
sensitive stream. The Sage Access Control component tracks
the available privacy budget for each data block. It allows ac-
cess to a block until it runs out of budget, after which access to
the block will never be granted again. When the Sage Iterator
(described in §3.3) for a pipeline requests data, Sage Access
Control only offers blocks with available privacy budget. The
Iterator then determines the (ϵ,δ ) privacy parameters it will
use for its iteration and informs Sage Access Control, which
deducts (ϵ,δ ) from the available privacy budgets of those
blocks. Finally, the Iterator invokes the developer-supplied
DP Training Pipeline, trusting it to enforce the chosen (ϵ,δ )
privacy parameters. §4 proves that this access control policy
enforces (ϵд ,δд)-DP for the stream.

The preceding operation is a DP-informed retention pol-
icy, but one can use block composition to define other access
control policies. Suppose the company is willing to assume
that its developers (or user devices and prediction servers
in distinct geographies) will not collude to violate its cus-
tomers’ privacy. Then the company could enforce a separate
(ϵд ,δд) guarantee for each context (developer or geography)
by maintaining separate lists of per-block available budgets.

3.3 Privacy-Adaptive Training
Sage’s design adds reliability to the DP model training and

validation processes, which are rendered imprecise by the DP
randomness. We describe two novel techniques: (1) SLAed
validation, which accounts for the effect of randomness in
the validation process to ensure a high-probability guarantee
of correctness (akin to a quality service level agreement, or
SLA); and (2) privacy-adaptive training, which launches the
(ϵ,δ )-DP Training Pipeline adaptively on increasing amounts
of data from the stream, and/or with increased privacy param-
eters, until the validation succeeds. Privacy-adaptive training
thus leverages the adaptivity properties of block composition
to address DP’s privacy-utility tradeoff.
SLAed DP Validation. Fig. 2 shows the three possible out-
comes of SLAed validation: ACCEPT, REJECT/timeout, and
RETRY. If SLAed validation returns ACCEPT, then with high
probability (e.g. 95%) the model reached its configured qual-
ity targets for prediction on new data from the same distri-
bution. Under certain assumptions, it is also possible to give



1 class DPLossValidator(sage.DPModelValidator):
2 def validate(loss_fn, target, epsilon, conf, B):
3 if _ACCEPT_test(..., epsilon, (1-conf)/2, B):
4 return ACCEPT
5 if _REJECT_test(..., epsilon, (1-conf)/2, B):
6 return REJECT
7 return RETRY
8
9 def _ACCEPT_test(test_labels, dp_test_predictions,

10 loss_fn, target, epsilon, eta, B):
11 n_test = dp_test_predictions.size()
12 n_test_dp = n_test + laplace(2/epsilon)
13 n_test_dp_min = n_test_dp -\
14 2*log(3/(2*eta))/epsilon
15 dp_test_loss = clip_by_value(loss_fn(test_labels,
16 dp_test_predictions), 0, B)+laplace(2*B/epsilon)
17 corrected_dp_test_loss = dp_test_loss +
18 2*B*log(3/(2*eta))/epsilon
19 return bernstein_upper_bound(
20 corrected_dp_test_loss / n_test_dp_min,
21 n_test_dp_min, eta/3, B) <= target
22
23 def bernstein_upper_bound(loss, n, eta, B):
24 return loss+sqrt(2*B*loss*log(1/eta)/n)+\
25 4*log(1/eta)/n

List. 2. Implementation of sage.DPLossValidator.

statistical guarantees of correct negative assessment, in which
case SLAed validation returns REJECT. We refer the reader
to our extended technical report [32] for this discussion. Sage
also supports timing out a training procedure if it has run
for too long. Finally, if SLAed validation returns RETRY, it
signals that more data is needed for an assessment.

We have implemented SLAed validators for three classes
of metrics: loss metrics (e.g. MSE, log loss), accuracy, and
absolute errors of sum-based statistics such as mean and vari-
ance. The technical report [32] details the implementations
and proves their statistical and DP guarantees. Here, we give
the intuition and an example based on loss metrics. All valida-
tors follow the same logic. First, we compute a DP version of
the test quantity (e.g. MSE) on a testing set. Second, we com-
pute the worst-case impact of DP noise on that quantity for a
given confidence probability; we call this a correction for DP
impact. For example, if we add Laplace noise with parameter
1
ϵ to the sum of squared errors on n data points, assuming
that the loss is in [0, 1] we know that with probability (1 − η)
the sum is deflated by less than − 1

ϵ ln(
1
2η ), because a draw

from this Laplace distribution has just an η probability to be
more negative than this value. Third, we use known statistical
concentration inequalities, also made DP and corrected for
worst case noise impact, to upper bound with high probability
the loss on the entire distribution.
Example: Loss SLAed Validator. A loss function is a mea-
sure of erroneous predictions on a dataset (so lower is better).
Examples include: mean squared error for regression, log
loss for classification, and minus log likelihood for Bayesian
generative models. List. 2 shows our loss validator. The val-
idation function consists of two tests: ACCEPT (described
here) and REJECT (described in the technical report [32]).

Denote: the DP-trained model f dp; the loss function range
[0,B]; the target loss τloss . Lines 11-13 compute a DP esti-
mate of the number of samples in the test set, corrected for the

impact of DP noise to be a lower bound on the true value with
probability (1− η

3 ). Lines 14-17 compute a DP estimate of the
loss sum, corrected for DP impact to be an upper bound on
the true value with probability (1 − η

3 ). Lines 18-20 ACCEPT
the model if the upper bound is at most τloss . The bounds
are based on a standard concentration inequality (specifically,
Bernstein’s inequality), which holds under very general con-
ditions [49]. We show in [32] that the Loss ACCEPT Test
satisfies (ϵ, 0)-DP and enjoys the following guarantee:

Proposition 3.1 (Loss ACCEPT Test). With probability at
least (1 − η), the Accept test returns true only if the expected
loss of f dp is at most τloss .

Privacy-Adaptive Training. Sage attempts to improve the
quality of the model and its validation by supplying them
with more data or privacy budgets so the SLAed validator
can either ACCEPT or REJECT the model. Several ways exist
to improve a DP model’s quality. First, we can increase the
dataset’s size: at least in theory, it has been proven that one
can compensate for the loss in accuracy due to any (ϵ,δ )-DP
guarantee by increasing the training set size [29]. Second,
we can increase the privacy budget (ϵ,δ ) to decrease the
noise added to the computation: this must be done within the
available budgets of the blocks involved in the training and
not too aggressively, because wasting privacy budget on one
pipeline can prevent other pipelines from using those blocks.

Privacy-adaptive training searches for a configuration that
can be either ACCEPTed or REJECTed by the SLAed validator.
We have investigated several strategies for this search. Those
that conserve privacy budget have proven the most efficient.
Every time a new block is created, its budget is divided evenly
across the ML pipelines currently waiting in the system. Al-
located DP budget is reserved for the pipeline that received
it, but privacy-adaptive training will not use all of it right
away. It will try to ACCEPT using as little of the budget as
possible. When a pipeline is ACCEPTed, its remaining budget
is reallocated evenly across the models still waiting in Sage.

To conserve privacy budget, each pipeline will first train
and test using a small configurable budget (ϵ0,δ0), and a
minimum window size for the model’s training. On RETRY
from the validator, the pipeline will be retrained, making sure
to double either the privacy budget if enough allocation is
available to the Training Pipeline, or the number of samples
available to the Training Pipeline by accepting new data from
the stream. This doubling of resources ensures that when a
model is ACCEPTed, the sum of budgets used by all failed
iterations is at most equal to the budget used by the final,
accepted iteration. This final budget also overshoots the best
possible budget by at most two, since the model with half
this final budget had a RETRY. Overall, the resources used
by this DP budget search are thus at most four times the
budget of the final model. Evaluation §5.4 shows that this
conservative strategy improves performance when multiple
Training Pipelines contend for the same blocks.



(a) QueryCompose(A, b, r , (ϵi ,δi )ri=1):
1: for i in 1, . . . , r do ▷ (A depends on V b

1 , . . . , V b
i−1 in iter. i)

2: A gives neighboring datasets Di,0 & Di,1

3: A gives (ϵi , δi )-DP Qi
4: A receives V b

i = Qi (Di,b )
return V b = (V b

1 , . . . , V b
r )

(a) Traditional Query-level Accounting.

(b) BlockCompose(A, b, r , (ϵi ,δi )ri=1, (blocksi )ri=1):
1: A gives two neighboring block datasets D0 and D1

2: for i in 1, . . . , r do ▷ (A depends on V b
1 , . . . , V b

i−1 in iter. i)
3: A gives (ϵi , δi )-DP Qi
4: A receives V b

i = Qi (
⋃

j∈blocksi
Db
j )

return V b = (V b
1 , . . . , V b

r )

(b) Block Composition for Static Datasets. Change from query-level ac-
counting shown in yellow background.

(c) AdaptiveStreamBlockCompose(A, b, r , ϵд , δд , W):

1: A gives k , the index of the block with the adversarially chosen change
2: for i in 1, . . . , r do ▷ (A depends on V b

1 , . . . , V b
i−1 in iter. i)

3: if create new block l and l == k then
4: A gives neighboring blocks D0

k and D1
k

5: else if create new block l and l , k then
6: Db

l = D(W, V b
1 , . . . , V b

i−1)
7: A gives blocksi , (ϵi , δi ), and (ϵi , δi )-DP Qi
8: if

∧
j∈blocksi

AccessControljϵд ,δд (ϵ
j
1 , δ

j
1 , ..., ϵ

j
i , δ

j
i , 0, ...) then

9: A receives V b
i = Qi (

⋃
j∈blocksi

Db
j )

10: elseA receives no-op V b
i =⊥

return V b = (V b
1 , . . . , V b

r )

(c) Sage Block Composition. Adds support for streams (yellow lines 1-6)
and adaptive choice of blocks, privacy parameters (green lines 7-8).

Fig. 4. Interaction Protocols for Composition Analysis. A is an algorithm
defining the adversary’s power; b ∈ {0, 1} denotes two hypotheses the
adversary aims to distinguish; r is the number of rounds; (ϵi , δi )ri=1 the DP
parameters used at each round; (blocksi )ri=1 the blocks used at each round.
AccessControljϵд ,δд returns true if running (ϵi , δi )-DP query Qi on block j

ensures that with probability ≥ (1 − δд ) the privacy loss for block j is ≤ ϵд .

4 Block Composition Theory
This section provides the theoretical backing for block

composition, which we invent for Sage but which we believe
has broader applications (§4.4). To analyze composition, one
formalizes permissible interactions with the sensitive data in
a protocol that facilitates the proof of the DP guarantee. This
interaction protocol makes explicit the worst-case decisions
that can be made by modeling them through an adversary. In
the standard protocol (detailed shortly), an adversary A picks
the neighboring data sets and supplies the DP queries that
will compute over one of these data sets; the choice between
the two data sets is exogenous to the interaction. To prove
that the interaction satisfies DP, one must show that given the
results of the protocol, it is impossible to determine with high
confidence which of the two neighboring data sets was used.

Fig. 4 describes three different interaction protocols of in-
creasing sophistication. Alg. (4a) is the basic DP composition
protocol. Alg. (4b) is a block-level protocol we propose for
static databases. Alg. (4c) is the protocol adopted in Sage; it
extends Alg. (4b) by allowing a streaming database and adap-
tive choices of blocks and privacy parameters. Highlighted
are changes made to the preceding protocol.
4.1 Traditional Query-Level Accounting

QueryCompose (Alg. (4a)) is the interaction protocol as-
sumed in most analyses of composition of several DP inter-
actions with a database. There are three important character-
istics. First, the number of queries r and the DP parameters
(ϵi ,δi )ri=1 are fixed in advance. However the DP queries Qi
can be chosen adaptively. Second, the adversary adaptively
chooses neighboring datasets Di,0 and Di,1 for each query.
This flexibility lets the protocol readily support adaptively
evolving data (such as with data streams) where future data
collected may be impacted by the adversary’s change to past
data. Third, the adversary receives the results V b of running
the DP queries Qi on Di,b ; here, b ∈ {0, 1} is the exogenous
choice of which database to use and is unknown to A. DP is
guaranteed if A cannot confidently learn b given V b .

A common tool to analyze DP protocols is privacy loss:

Definition 4.1 (Privacy Loss). Fix any outcomev = (v1, . . . ,vr )
and denote v<i = (v1, . . . ,vi−1). The privacy loss of an algo-
rithm Compose(A, b, r , ·) is:

Loss(v) = ln
(P(V 0 = v)
P(V 1 = v)

)
= ln

( r∏
i=1

P(V 0
i = vi |v<i )

P(V 1
i = vi |v<i )

)
Bounding the privacy loss for any adversary A with high

probability implies DP [30]. Suppose that for any A, with
probability ≥ (1 − δ ) over draws from v ∼ V 0, we have:
| Loss(v)| ≤ ϵ . Then Compose(A, b, r , ·) is (ϵ,δ )-DP. This
way, privacy loss and DP are defined in terms of distinguish-
ing between two hypotheses indexed by b ∈ {0, 1}.

Previous composition theorems (e.g. basic composition [17],
strong composition [21], and variations thereof [28]) analyze
Alg. (4a) to derive various arithmetics for computing the over-
all DP semantic of interactions adhering to that protocol. In
particular, the basic composition theorem [17] proves that
QueryCompose(A, b, r , (ϵi ,δi )ri=1) is (∑r

i=1 ϵi ,
∑r

i=1 δi )-DP.
These theorems form the basis of most ML DP work. How-
ever, because composition is accounted for at the query level,
imposing a fixed global privacy budget means that one will
“run out” of it and stop training models even on new data.

4.2 Block Composition for Static Datasets
Block composition improves privacy accounting for work-

loads where interaction consists of queries that run on over-
lapping data subsets of diverse sizes. This is one of the charac-
teristics we posit for ML workloads (requirement R1 in §3.2).
Alg. (4b), BlockCompose, formalizes this type of interaction
for a static dataset setting as a springboard to formalizing the
full ML interaction. We make two changes to QueryCompose.



First (line 1), the neighboring datasets are defined once and for
all before interacting. This way, training pipelines accessing
non-overlapping parts of the dataset cannot all be impacted
by one entry’s change. Second (line 4), the data is split in
blocks, and each DP query runs on a subset of the blocks.

We prove that the privacy loss over the entire dataset is the
same as the maximum privacy loss on each block, accounting
only for queries using this block:

Theorem 4.2 (Reduction to Block-level Composition). The
privacy loss of BlockCompose(A,b, r , (ϵi ,δi )ri=1, (blocksi )ri=1)
is upper-bounded by the maximum privacy loss for any block:

| Loss(v)| ≤ max
k

�� ln ( r∏
i=1

k ∈blocksi

P(V 0
i = vi |v<i )

P(V 1
i = vi |v<i )

)��.
Proof. Let D0 and D1 be the neighboring datasets picked by
adversary A, and let k be the block index s.t. D0

l = D1
l for

all l , k, and |D0
k ⊕ D1

k | ≤ 1. For any result v of Alg. (4b):�� Loss(v)�� = �� ln ( r∏
i=1

P (V 0
i = vi |v<i )

P (V 1
i = vi |v<i )

)��
=
�� ln ( r∏

i=1
k∈blocksi

P (V 0
i = vi |v<i )

P (V 1
i = vi |v<i )

)
+

�����������
ln

( r∏
i=1

k<blocksi

P (V 0
i = vi |v<i )

P (V 1
i = vi |v<i )

)��
≤ max

k

�� ln ( r∏
i=1

k∈blocksi

P (V 0
i = vi |v<i )

P (V 1
i = vi |v<i )

)��
The slashed term is zero because if k < blocksi , then⋃
j ∈blocksi

D0
j =

⋃
j ∈blocksi

D1
j , hence P (V 0

i =vi |v<i )
P (V 1

i =vi |v<i )
= 1. □

Hence, unused data blocks allow training of other (adap-
tively chosen) ML models, and exhausting the DP budget
of a block means we retire that block of data, and not the
entire data set. This result, which can be extended to strong
composition (see tech. report [32]), can be used to do tighter
accounting than query-level accounting when the workload
consists of queries on overlapping sets of data blocks (require-
ment R1). However, it does not support adaptivity in block
choice or a streaming setting, violating R2 and R3.
4.3 Sage Block Composition

Alg. (4c), AdaptiveStreamBlockCompose, addresses the
preceding limitations with two changes. First, supporting
streams requires that datasets not be fixed before interacting,
because future data depends on prior models trained and
pushed into production. The highlighted portions of lines 1-
10 in Alg. (4c) formalize the dynamic nature of data collection
by having new data blocks explicitly depend on previously
trained models, which are chosen by the adversary, in addition
to other mechanisms of the world W that are not impacted by
the adversary. Fortunately, Theorem 4.2 still applies, because
model training can only use blocks that existed at the time of
training, which in turn only depend on prior blocks through
DP trained models. Therefore, new data blocks can train new
ML models, enabling endless operation on streams (R3).

Second, interestingly, supporting adaptive choices in the
data blocks implies supporting adaptive choices in the queries’
DP budgets. For a given block, one can express query i’s
choice to use block j as using a privacy budget of either
(ϵi ,δi ) or (0, 0). Lines 7-8 in Alg. (4c) formalize the adaptive
choice of both privacy budgets and blocks (requirement R2).
It does so by leveraging recent work on DP composition
under adaptive DP budgets [46]. At each round, A requests
access to a group of blocks blocksi , on which to run an (ϵi ,δi )-
DP query. Sage’s Access Control permits the query only if
the privacy loss of each block in blocksi will remain below
(ϵд ,δд). Applying our Theorem 4.2 and [46]’s Theorem 3.3,
we prove the following result (proof in [32]):

Theorem 4.3 (Composition for Sage Block Composition).
AdaptiveStreamBlockCompose(A,b,r ,ϵд ,δд ,W) is (ϵд ,δд)-DP
if for all k, AccessControlkϵд,δд enforces:( r∑

i=1
k ∈blocksi

ϵi (v<i )
)
≤ ϵд and

( r∑
i=1

k ∈blocksi

δi (v<i )
)
≤ δд .

The implication of the preceding theorem is that under
the access control scheme described in §3.2, Sage achieves
event-level (ϵд ,δд)-DP over the sensitive data stream.
4.4 Blocks Defined by User ID and Other Attributes

Block composition theory can be extended to accommo-
date user-level privacy and other use cases. The theory shows
that one can split a static dataset (Theorem 4.2) or a data
stream (Theorem 4.3) into disjoint blocks, and run DP queries
adaptively on overlapping subsets of the blocks while account-
ing for privacy at the block level. The theory focused on time
splits, but the same theorems can be written for splits based on
any attribute whose possible values can be made public, such
as geography, demographics, or user IDs. Consider a work-
load on a static dataset in which queries combine data from
diverse and overlapping subsets of countries, e.g., they com-
pute average salary in each country separately, but also at the
level of continents and GDP-based country groups. For such a
workload, block composition gives tighter privacy accounting
across these queries than traditional composition, though the
system will still run out of privacy budget eventually because
no new blocks appear in the static database.

As another example, splitting a stream by user ID en-
ables querying or ignoring all observations from a given user,
adding support for user-level privacy. Splitting data over user
ID requires extra care. If existing user IDs are not knows,
each query might select user IDs that do not exist yet, spend-
ing their DP budget without adding data. However, making
user IDs public can leak information. One approach is to use
incrementing user IDs (with this fact public), and periodically
run a DP query computing the maximum user ID is use. This
would ensure DP, while giving an estimate of the range of user
IDs that can be queried. In such a setting, block composition
enables fine-grain DP accounting over queries on any subset



Taxi Regression Task
Pipelines: Configuration:

Linear
Regression
(LR)

DP Alg. AdaSSP from [56], (ϵ, δ )-DP
Config. Regularization param ρ : 0.1
Budgets (ϵ, δ ) ∈ {(1.0, 10−6), (0.05, 10−6)}
Targets MSE ∈ [2.4 × 10−3, 7 × 10−3]

Neural
Network
(NN)

DP Alg. DP SGD from [2], (ϵ, δ )-DP
ReLU, 2 hidden layers (5000/100 nodes)

Config. Learning rate: 0.01, Epochs: 3
Batch: 1024, Momentum: 0.9

Budgets (ϵ, δ ) ∈ {(1.0, 10−6), (0.5, 10−6)}
Targets MSE ∈ [2 × 10−3, 7 × 10−3]

Avg.Speed x3* Targets Absolute error ∈ {1, 5, 7.5, 10, 15} km/h

Criteo Classification Task
Pipelines: Configuration:

Logistic
Regression
(LG)

DP Alg. DP SGD from [37], (ϵ, δ )-DP
Config. Learning rate: 0.1, Epochs: 3 Batch: 512
Budgets (ϵ, δ ) ∈ {(1.0, 10−6), (0.25, 10−6)}
Targets Accuracy ∈ [0.74, 0.78]

Neural
Network
(NN)

DP Alg. DP SGD from [37], (ϵ, δ )-DP
ReLU, 2 hidden layers (1024/32 nodes)

Config. Learning rate: 0.01, Epochs: 5
Batch: 1024

Budgets (ϵ, δ ) ∈ {(1.0, 10−6), (0.25, 10−6)}
Targets Accuracy ∈ [0.74, 0.78]

Counts x26** Targets Absolute error ∈ {0.01, 0.05, 0.10}
Tab. 1. Experimental Training Pipelines. *Three time granularities: hour
of day, day of week, week of month. **Histogram of each categorical feature.

of the users. While our block theory supports this use case, it
suffers from a major practical challenge. New blocks are now
created only when new users join the system, so new users
must be added at a high rate relative to the model release rate
to avoid running out of budget. This is unlikely to happen for
mature companies, but may be possible for emerging startups
or hospitals, where the stream of incoming users/patients may
be high enough to sustain modest workloads.

5 Evaluation
We ask four questions: (Q1) Does DP impact Training

Pipeline reliability? (Q2) Does privacy-adaptive training in-
crease DP Training Pipeline reliability? (Q3) Does block
composition help over traditional composition? (Q4) How do
ML workloads perform under Sage’s (ϵд ,δд)-DP regime?
Methodology. We consider two datasets: 37M-samples from
three months of NYC taxi rides [43] and 45M ad impressions
from Criteo [1]. On the Taxi dataset we define a regression
task to predict the duration of each ride using 61 binary fea-
tures derived from 10 contextual features. We implement
pipelines for a linear regression (LR), a neural network (NN),
and three statistics (average speeds at three time granularities).
On the Criteo dataset we formulate a binary classification
task predicting ad clicks from 13 numeric and 26 categorical
features. We implement a logistic regression (LG), a neural
network (NN), and histogram pipelines. Tab. 1 shows details.

Training: We make each pipeline DP using known algo-
rithms, shown in Tab. 1. Validation: We use the loss, accuracy,

and absolute error SLAed validators on the regression, classi-
fication, and statistics respectively. Experiments: Each model
is assigned a quality target from a range of possible values,
chosen between the best achievable model, and the perfor-
mance of a naïve model (predicting the label mean on Taxi,
with MSE 0.0069, and the most common label on Criteo,
with accuracy 74.3%). Most evaluation uses privacy-adaptive
training, so privacy budgets are chosen by Sage, with an
upper-bound of ϵ = 1. While no consensus exists on what a
reasonable DP budget is, this value is in line with practical
prior work [2, 38]. Where DP budgets must be fixed, we use
values indicated in Tab. 1 which correspond to a large bud-
get (ϵ = 1), and a small budget that varies across tasks and
models. Other defaults: 90%::10% train::test ratio; η = 0.05;
δ = 10−6. Comparisons: We compare Sage’s performance to
existing DP composition approaches described in §3.2. We
ignore the first alternative, which violates the endless execu-
tion requirement R3 and cannot support ML workloads. We
compare with the second and third alternatives, which we call
query composition and streaming composition, respectively.

5.1 Unreliability of DP Training Pipelines in TFX (Q1)
We first evaluate DP’s impact on model training. Fig. 5

shows the loss or accuracy of each model when trained on
increasing amounts data and evaluated on 100K held-out sam-
ples from their respective datasets. Three versions are shown
for each model: the non-DP version (NP), a large DP budget
version (ϵ = 1), and a small DP budget configuration with ϵ
values that vary across the model and task. For both tasks, the
NN requires the most data but outperforms the linear model in
the private and non-private settings. The DP LRs catch up to
the non-DP version with the full dataset, but the other models
trained with SGD require more data. Thus, model quality is
impacted by DP but the impact diminishes with more training
data. This motivates privacy-adaptive training.

To evaluate DP’s impact on validation, we train and validate
our models for both tasks, with and without DP. We use TFX’s
vanilla validators, which compare the model’s performance
on a test set to the quality metric (MSE for taxi, accuracy for
Criteo). We then re-evaluate the models’ quality metrics on a
separate, 100K-sample held-out set and measure the fraction
of models accepted by TFX that violate their targets on the
re-evaluation set. With non-DP pipelines (non-DP training
and validation), the false acceptance rate is 5.1% and 8.2%
for the Taxi and Criteo tasks respectively. With DP pipelines
(DP training, DP validation), false acceptance rates hike to
37.9% and 25.2%, motivating SLAed validation.

5.2 Reliability of DP Training Pipelines in Sage (Q2)
Sage’s privacy-adaptive training and SLAed validation are

designed to add reliability to DP model training and valida-
tion. However, they may come at a cost of increased data
requirements over a non-DP test. We evaluate reliability and
sample complexity for the SLAed validation ACCEPT test.
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Fig. 5. Impacts on TFX Training Pipelines. Impact of DP on the overall performance of training pipelines. 5a, and 5b show the MSE loss on the Taxi regression
task (lower is better). 5c; 5d show the accuracy on the Criteo classification task (higher is better). The dotted lines are naïve model performance.
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Fig. 6. Number of Samples Required to ACCEPT models at achievable quality targets. For MSE targets (Taxi regression 6a, and 6b) small targets are harder to
achieve and require more samples. For accuracy targets (Criteo classification 6c, and 6d) high targets are harder and require more samples.

Dataset η No SLA NP SLA UC DP SLA Sage SLA

Taxi
0.01 0.379 0.0019 0.0172 0.0027
0.05 0.379 0.0034 0.0224 0.0051

Criteo
0.01 0.2515 0.0052 0.0544 0.0018
0.05 0.2515 0.0065 0.0556 0.0023

Tab. 2. Target Violation Rate of ACCEPTed Models. Violations are across
all models separately trained with privacy-adaptive training.

Tab. 2 shows the fraction of ACCEPTed models that violate
their quality targets when re-evaluated on the 100K-sample
held-out set. For two confidences η, we show: (1) No SLA,
the vanilla TFX validation with no statistical rigor, but where
a model’s quality is computed with DP. (2) NP SLA, a non-
DP but statistically rigorous validation. This is the best we
can achieve with statistical confidence. (3) UC DP SLA, a
DP SLAed validation without the correction for DP impact.
(4) Sage SLA, our DP SLAed validator, with correction. We
make three observations. First, the NP SLA violation rates
are much lower than the configured η values because we use
conservative statistical tests. Second, Sage’s DP-corrected
validation accepts models with violation rates close to the NP
SLA. Slightly higher for the loss SLA and slightly lower for
the accuracy SLA, but well below the configured error rates.
Third, removing the correction increases the violation rate by
5x for the loss SLA and 20x for the accuracy SLA, violating
the confidence thresholds in both cases, at least for low η.
These results confirm that Sage’s SLAed validation is reliable,
and that correction for DP is critical to this reliability.

The increased reliability of SLAed validation comes at
a cost: SLAed validation requires more data compared to
a non-DP test. This new data is supplemented by Sage’s
privacy-adaptive training. Fig. 6a and 6b show the amount of

train+test data required to ACCEPT a model under various loss
targets for the Taxi regression task. Fig. 6c and 6d show the
same for accuracy targets for the Criteo classification task. We
make three observations. First, unsurprisingly, non-rigorous
validation (No SLA) requires the least data but has a high
failure rate because it erroneously accepts models on small
sample sizes. Second, the best model accepted by Sage’s SLA
validation are close to the best model accepted by No SLA.
We observe the largest difference in Taxi LR where No SLA
accepts MSE targets of 0.0025 while the Sage SLA accepts as
low as 0.0027. The best achievable model is slightly impacted
by DP, although more data is required. Third, adding a sta-
tistical guarantee but no privacy to the validation (NP SLA)
already substantially increases sample complexity. Adding
DP to the statistical guarantee and applying the DP correction
incurs limited additional overhead. The distinction between
Sage and NP SLA is barely visible for all but the Taxi LR.
For Taxi LR, adding DP accounts for half of the increase over
No SLA requiring twice as much data (one data growth step
in privacy-adaptive training). Thus, privacy-adaptive training
increases reliability of DP training pipelines for reasonable
increase in sample complexity.

5.3 Benefit of Block Composition (Q3)
Block composition lets us combine multiple blocks into a

dataset, such that each DP query runs over all used blocks
with only one noise draw. Without block composition a DP
query is split into multiple queries, each operating on a single
block, and receiving independent noise. The combined results
are more noisy. Fig. 7a and 7c show the model quality of the
LR and NN models on the Taxi dataset, when operating on
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Fig. 7. Block-level vs. Query-level Accounting. Block-level query accounting provides benefits to model quality and validation.

blocks of different sizes, 100K and 500K for the LR, and 5M
for the NN. Fig. 7b and 7d show the SLAed validation sample
complexity of the same models. We compare these configu-
rations against Sage’s combined-block training that allows
ML training and validation to operate on their full relevance
windows. We can see that block composition helps both the
training and validation stages. While LR training (Fig. 7a)
performs nearly identically for Sage and block sizes of 100K
or 500K (6h of data to a bit more than a day), validation is
significantly impacted. The LR cannot be validated with any
MSE better than 0.003 with block sizes of 500K, and 0.0044
for blocks of size 100K. Additionally, those targets that can
be validated require significantly more data without Sage’s
block composition: 10x for blocks of size 500K, and almost
100x for blocks of 100K. The NN is more affected at training
time. With blocks smaller than 1M points, it cannot even be
trained. Even with an enormous block size of 5M, more than
ten days of data (Fig. 7c), the partitioned model performs 8%
worse than with Sage’s block composition. Although on such
large blocks validation itself is not much affected, the worse
performance means that models can be validated up to an
MSE target of 0.0025 (against Sage’s 0.0023), and requires
twice as much data as with block composition.

5.4 Multi-pipeline Workload Performance (Q4)
Last is an end-to-end evaluation of Sage with a workload

consisting of a data stream and ML pipelines arriving over
discrete time steps. At each step, a number of new data points
corresponding approximately to 1 hour of data arrives (16K
for Taxi, 267K for Criteo). The time between new pipelines
is drawn from a Gamma distribution. When a new pipeline
arrives, its sample complexity (number of data points required
to reach the target) is drawn from a power law distribution,
and a pipeline with the relevant sample complexity is chosen
uniformly among our configurations and targets (Tab. 1). Un-
der this workload, we compare the average model release in
steady state for four different strategies. This first two leverage
Query Composition and Streaming Composition from prior
work, as explained in methodology and § 3.3. The other two
take advantage of Sage’s Block Composition. Both strategies
uniformly divide the privacy budget of new blocks among all
incomplete pipelines, but differ in how each pipeline uses its
budget. Block/Aggressive uses as much privacy budget as is
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Fig. 8. Average Model Release Time Under Load.

available when a pipeline is invoked. Block/Conserve (Sage)
uses the Privacy-Adaptive Training strategy defined in § 3.3.

Fig. 8 shows each strategy’s average model release time
under increasing load (higher model arrival rate), as the sys-
tem enforces (ϵд ,δд) = (1.0, 10−6)-DP over the entire stream.
We make two observations. First, Sage’s block composition
is crucial. Query Composition and Streaming Composition
quickly degrade to off-the-charts release times: supporting
more than one model every two hours is not possible and
yields release times above three days. On the other hand,
strategies leveraging Sage’s block composition both provide
lower release times, and can support up to 0.7 model arrivals
per hour (more than 15 new models per day) and release them
within a day. Second, we observe consistently lower release
times under the privacy budget conserving strategy. At higher
rates, such as 0.7 new models per hour, the difference starts
to grow: Block/Conserve has a release time 4x and 2x smaller
than Block/Aggressive on Taxi (Fig. 8a) and Criteo (Fig. 8b)
respectively. Privacy budget conservation reduces the amount
of budget consumed by an individual pipeline, thus allowing
new pipelines to use the remaining budget when they arrive.

6 Related Work
Sage’s main contribution – block composition – is related

to DP composition theory. Basic [17] and strong [21, 28]
composition theorems give the DP guarantee for multiple
queries with adaptively chosen computation. McSherry [40]
and Zhang, et.al. [60] show that non-adaptive queries over
non-overlapping subsets of data can share the DP budget.
Rogers, et.al. [47] analyze composition under adaptive DP
parameters, which is crucial to our block composition. These
works all consider fixed datasets and query-level accounting.



Compared to all these works, our main contribution is to
formalize the new block-level DP interaction model, which
supports ML workloads on growing databases while enforc-
ing a global DP semantic without running out of budget. This
model sits between traditional DP interaction with static data,
and streaming DP working only on current data. In proving
our interaction model DP we leverage prior theoretical results
and analysis methods. However, the most comprehensive prior
interaction model [47] did not support all our requirements,
such as interactions with adaptively chosen data subsets, or
future data being impacted by previous queries.

Streaming DP [8, 16, 18, 19] extends DP to data streams
but is restrictive for ML. Data is consumed once and assumed
to never be used again. This enables stronger guarantees, as
data need not even be kept internally. However, training ML
models often requires multiple passes over the data.

Cummings, et.al. [11] consider DP over growing databases.
They focus on theoretical analysis and study two setups. In the
fist setup, they also run DP workloads on exponentially grow-
ing data sizes. However, their approach only supports linear
queries, with a runtime exponential in the data dimension and
hence impractical. In the second setup, they focus on train-
ing a single convex ML model and show that it can use new
data to keep improving. Supporting ML workloads would re-
quire splitting the privacy budget for the whole stream among
models, creating a running out of privacy budget challenge.

A few DP systems exist, but none focuses on streams or ML.
PINQ [40] and its generalization wPINQ [44] give a SQL-like
interface to perform DP queries. They introduce the parti-
tion operator allowing parallel composition, which resembles
Sage’s block composition. However, this operator only sup-
ports non-adaptive parallel computations on non-overlapping
partitions, which is insufficient for ML. Airavat [48] pro-
vides a MapReduce interface and supports a strong threat
model against actively malicious developers. They adopt a
perspective similar to ours, integrating DP with access control.
GUPT [41] supports automatic privacy budget allocation and
lets programmers specify accuracy targets for arbitrary DP
programs with a real-valued output; it is hence applicable to
computing summary statistics but not to training ML models.
All these works focus on static datasets and adopt a generic,
query-level accounting approach that applies to any work-
load. Query-level accounting would force them to run out
of privacy budget if unused data were available. Block-level
accounting avoids this limitation but applies to workloads
with specific data interaction characteristics (§3.2).

7 Summary and Future Work
As companies disseminate ML models trained over sensi-

tive data to untrusted domains, it is crucial to start controlling
data leakage through these models. We presented Sage, the
first ML platform that enforces a global DP guarantee across
all models released from sensitive data streams. Its main con-
tributions are its block-level accounting that permits endless

operation on streams and its privacy-adaptive training that
lets developers control DP model quality. The key enabler of
both techniques is our systems focus on ML training work-
loads rather than DP ML’s typical focus on individual training
algorithms. While individual algorithms see either a static
dataset or an online training regime, workloads interact with
growing databases. Across executions of multiple algorithms,
new data becomes available (helping to renew privacy budgets
and allow endless operation) and old data is reused (allowing
training of models on increasingly large datasets to appease
the effect of DP noise on model quality).

We believe that this systems perspective on DP ML presents
further opportunities worth pursuing in the future. Chief
among them is how to allocate data, privacy parameters, and
compute resources to conserve privacy budget while training
models efficiently to their quality targets. Sage proposes a
specific heuristic for allocating the first two resources (§3.3),
but leaves unexplored tradeoffs between data and compute
resources. To conserve budgets, we use as much data as is
available in the database when a model is invoked, with the
lowest privacy budget. This gives us the best utilization of
the privacy resource. But training on more data consumes
more compute resources. Identifying principled approaches
to perform these allocations is an open problem.

A key limitation of this work is its focus on event-level pri-
vacy, a semantic that is insufficient when groups of correlated
observations can reveal sensitive information. The best known
example of such correlation happens when a user contributes
multiple observations, but other examples include repeated
measurements of a phenomenon over time, or users and their
friends on a social network. In such cases, observations are
all correlated and can reveal sensitive information, such as
a user’s demographic attributes, despite event-level DP. It
should be noted that even in the face of correlated data DP
holds for each individual observation: other correlated obser-
vations constitute side information, to which DP is known
to be resilient. Still, to increase protection, an exciting area
of future work is to add support for and evaluate user-level
privacy. Our block accounting theory is amenable to this se-
mantic (§4.4), but finding settings where the semantic can be
sustained without running out of budget is an open challenge.
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A Block Composition
This section makes several clarifications and precisions to

the block composition theory in §4. It then ports prior strong
composition results to our block accounting model, both for
fixed and adaptive choices of blocks and DP parameters.

A.1 Clarifications and Precisions
Neighboring Datasets. We measure the distance between
datasets using the symmetric difference: viewing a dataset
as a multiset, two datasets D and D ′ are neighboring if their
disjunctive union (the elements which are in one of the sets
but not in their intersection) is at most one. We note |D ⊕ D ′ |
the distance between D and D ′. This definition is not the most
standard: most DP work uses the Hamming distance which
counts the number of records to change to go from D to D ′.
Intuitively, under the symmetric difference an attacker can
add or remove a record in the dataset. Changing a record cor-
responds to a symmetric difference of size 2, but a Hamming
distance of 1. Changing a record can still be supported under
the symmetric difference using group privacy [20]: it is thus
slightly weaker but as general.

We chose to use the symmetric difference following PINQ
[40], as this definition is better suited to the analysis of DP
composition over splits of the dataset (our blocks). Changing
one record can indeed affect two blocks (e.g. the timestamp is
changed) while adding or removing records only affects one.
Neighboring Streams. This notion of neighboring dataset
extends pretty directly to streams of data [8, 16, 18, 19]. Two
streams D and D ′ indexed by t are neighboring if there exists
an index T such that: for t < T the streams are identical (i.e.
|Dt<T ⊕ D ′

t<T | = 0), and for all t ≥ T the streams up to t
form neighboring datasets (i.e. |Dt ≥T ⊕ D ′

t ≥T | ≤ 1). This
is equivalent to our Algorithm (4b) where the data, though
unknown, is fixed in advance with only one record being
changed between the two streams.

This definition however is restrictive, because a change
in a stream’s data will typically affect future data. This is
especially true in an ML context, where a record changed in
the stream will change the targeting or recommendation algo-
rithms that are trained on this data, which in turn will impact
the data collected in the future. Because of this, D and D ′ will
probably differ in a large number of observations following
the adversary’s change of one record. Interactions described
in Algorithm (4c) model these dependencies. We show in
Theorem (4.3) that if the data change impacts future data only
through DP results (e.g. the targeting and recommendation
models are DP) and mechanisms outside of the adversary’s
control (our “world” variableW ), composition results are not
affected.
Privacy Loss Semantics. Recall that bounding the privacy
loss (Definition 4.1) with high probability implies DP [30]: if
with probability (1 − δ ) over draws from v ∼ V 0 (or v ∼ V 1)
| Loss(v)| ≤ ϵ , then the interaction generating V b is (ϵ,δ )-DP.

In this paper, we implicitly treated DP and bounded loss as
equivalent by declaring Qi s as (ϵ,δ )-DP, but proving composi-
tion results using a bound on Qi ’s privacy loss. However, this
is not exactly true in general, as (ϵ,δ )-DP implies a bound on
privacy loss with weaker parameters, namely that with proba-
bility at least (1 − 2δ

ϵeϵ ) the loss is bounded by 2ϵ . In practice,
this small difference in not crucial, as the typical Laplace
and Gaussian DP mechanisms (and those we use in Sage) do
have the same (ϵ,δ )-DP parameters for their bounds on pri-
vacy loss [20]: the Laplace mechanism for (ϵ, 0)-DP implies
that the privacy loss is bounded by ϵ and achieving (ϵ,δ )-DP
with the Gaussian mechanism implies that the privacy loss is
bounded by ϵ with probability at least (1 − δ ).
A.2 Proof for Basic Composition

The paper omits the proof for basic composition to save
space. Here, we re-state the result and spell out the proof:

Theorem (Theorem 4.3: Basic Sage Block Composition).
AdaptiveStreamBlockCompose(A,b,r ,ϵд ,δд ,W) is (ϵд ,δд)-
DP if for all k, AccessControlkϵд,δд enforces:( r∑

i=1
k ∈blocksi

ϵi (v<i )
)
≤ ϵд and

( r∑
i=1

k ∈blocksi

δi (v<i )
)
≤ δд .

Proof. Denote li the highest block index that existed when
query i was run. Denote Db

≤li the data blocks that existed at
that time. Recall v<i denotes the results from all queries
released previous to i. Query i depends on both v<i and
Db

≤li ; the latter is a random variable that is fully determined
by v<i . Hence, the privacy loss for Alg. (4c) is: Loss(v) =

ln
( r∏
i=1

P (V 0
i =vi |v<i ,D0

≤li
)

P (V 1
i =vi |v<i ,D1

≤li
)

)
= ln

( r∏
i=1

P (V 0
i =vi |v<i )

P (V 1
i =vi |v<i )

)
,

After applying Theorem 4.2, we must show that ∀k,�� ln ( r∏
i=1

k ∈blocksi

P (V 0
i =vi |v<i )

P (V 1
i =vi |v<i )

)�� ≤ r∑
i=1

k ∈blocksi

ϵi with probability ≥

(1 −
r∑
i=1

k ∈blocksi

δi ). The justification follows:

�� ln ( r∏
i=1

k∈blocksi

P (V 0
i = vi |v<i )

P (V 1
i = vi |v<i )

)�� ≤ r∑
i=1

k∈blocksi

�� ln ( P (V 0
i = vi |v<i )

P (V 1
i = vi |v<i )

)��
Since Qi is ϵi (v<i ),δi (v<i ))-DP,

�� ln (
P (V 0

i =vi |v<i )
P (V 1

i =vi |v<i )

)�� ≤ ϵi (v<i )
with probability ≥ 1 − δi (v<i ). Applying a union bound over
all queries for which k ∈ blocksi concludes the proof. □

A.3 Strong Composition with Block-Level Accounting
We now prove strong composition results for Algorithms

(4b) and (4c).
Fixed Blocks and DP Parameters: We now show how to
use advanced composition results (e.g. [21]) is the context
of block composition. This approach requires that both the
blocks used by each query and the DP parameters be fixed in
advanced, and correspond to Algorithms (4b).



Theorem A.1 (Strong Block Composition – Fixed DP Pa-
rameters). BlockCompose(A, b, r , (ϵi ,δi )ri=1, blocksri=1) is
(ϵд ,δд)-DP, with:

ϵд = max
k

( r∑
i=1

k ∈blocksi

(eϵi − 1)ϵi +

√√√√√ r∑
i=1

k ∈blocksi

2ϵ2i log(
1
δ̃
)
)
,

δд = δ̃ +max
k

( r∑
i=1

k ∈blocksi

δi
)

Proof. After applying Theorem 4.2, what remains to be shown

is that ∀k, �� ln ( r∏
i=1

i ∈blocksk

P (V 0
i =vi |v<i )

P (V 1
i =vi |v<i )

)�� ≤ ∑r
i=1

k ∈blocksi
(eϵi −

1)ϵi +
√√ r∑

i=1
k ∈blocksi

2ϵ2i log(
1
δ̃
) , with probability at least (1 −

δ̃
r∑
i=1

k ∈blocksi

δi ). Using the fact Qi ’s privacy loss is bounded by

ϵi with probability at least (1 − δi ), we know that there exists
events Ei and E ′

i with joint probability at least (1−δi ) such that

for all vi ,
��� ln ( P (V 0

i =vi |Ei )
P (V 1

i =vi |E′
i )
) ��� ≤ eϵ . We can now condition the

analysis on Ei and E ′
i , and use Theorem 3.20 of [20] to get that

with probability at least (1−δ̃ ),
��� ln ( P (V 0=v |Ei )

P (V 1=v |E′
i )
) ��� ≤ eϵk , where

ϵk =
∑r

i=1
k ∈blocksi

(eϵi − 1)ϵi +
√√ r∑

i=1
k ∈blocksi

2ϵ2i log(
1
δ̃
). A union

bound on the Ei and E ′
i for all {i,k ∈ blocksi } completes the

proof. □

The proof directly extends to the stream setting (yellow
parts of Alg. (4b) in the same way as in the proof of Theo-
rem 4.3.
Adaptive Blocks and DP Parameters: Recall that with ei-
ther adaptive blocks or DP parameters (or both), DP parame-
ters (ϵi (v<i ),δi (v<i )) depend on history. Traditional compo-
sition theorems do not apply to this setting. For basic com-
position, the DP parameters still “sum” under composition.
However, as showed in [46], strong composition yields a dif-
ferent formula: while the privacy loss still scales as the square
root of the number of queries, the constant is worse than with
parameters fixed in advance.

Theorem A.2 (Strong Adaptive Stream Block Composition).
AdaptiveStreamBlockCompose(A, b, r , ϵд , δд , W) is (ϵд ,δд)-
DP, and:

max
k

( r∑
i=1

k ∈blocksi

(eϵi − 1)ϵi
2

+

√√√√√
2
( r∑

i=1
k ∈blocksi

ϵ2i +
ϵ2д

28.04 log(1/δ̃ )
)

√√√√√√√√(
1 +

1
2
log(

28.04 log(1/δ̃ )
r∑
i=1

k ∈blocksi

ϵ2i

ϵ2д
+ 1) log( 1

δ̃
)
) )

≤ ϵд ,

δ̃ +max
k

( r∑
i=1

k ∈blocksi

δi
)
≤ δд

Proof. Similarly to the proof of Theorem 4.3, we apply The-
orem 4.2, and bound the privacy loss of any block k using
Theorem 5.1 of [46]. □

B Validation Tests
Sage has built-in validators for three classes of metrics.

§3.3 describes the high level approach and the specific func-
tionality and properties of the loss-based validator. This sec-
tion details all three validators and proves their statistical and
DP guarantees.
B.1 SLAed Validator for Loss Metrics

Denote a loss function l(f ,x ,y) with range [0,B] measur-
ing the quality of a prediction f (x) with label y (lower is
better), and a target loss τloss on the data distribution D.
ACCEPT Test: Given a the DP-trained model f dp, we want to
release f dp only if LD(f dp) ≜ E(x,y)∼Dl(f dp,x ,y) ≤ τloss .
The test works as follows. First, compute a DP estimate of
the number of samples in the test set, corrected for the im-
pact of DP noise to be a lower bound on the true value with
probability (1 − η

3 ) (Lines 11-13 List. 2):

n
dp
te = nte + Laplace(

2
ϵ
) − 2

ϵ
ln( 3

2η
).

Then, compute a DP estimate of the loss corrected for DP
impact (Lines 14-17 List. 2) to be an upper bound on the
true value, Lte (f dp) ≜ 1

nte

∑
te l(f dp,x ,y), with probability

(1 − η
3 ):

Ldp
te (f dp) =

1

n
dp
te

(∑
te

l(f dp,x ,y)+Laplace(2B
ϵ
)+ 2B

ϵ
ln( 3

2η
)
)

Lines 18-20, we see that Sage will ACCEPT when:

Ldp
te (f dp) +

√√√
2BLdp

te (f dp) ln(3/η)
n
dp
te

+
4B ln(3/η)

n
dp
te

≤ τloss .

This test gives the following guarantee:

Proposition B.1 (Loss ACCEPT Test (same as Proposition 3.1)).
With probability at least (1 − η), the Accept test returns true
only if LD(f dp) ≤ τloss .



Proof. The corrections for DP noise imply that P(ndpte >
nte) ≤ η

3 , and P(Ldp
te (f dp) > Lte (f dp)) ≤ η

3 (i.e. the lower
bounds hold with probability at least (1-η3 )). Define UBdp ≜

Ldp
te (f dp)+

√
2BLdp

te (f dp) ln(3/η)
ndp
te

+
4 ln(3/η)
ndp
te

, and UB ≜ Lte (f dp)+√
2BLte (f dp) ln(3/η)

nte
+

4 ln(3/η)
nte

. Applying Bernstein’s inequal-
ity [49] yields P(LD(f dp) > UB) ≤ η

3 . A union bound on
those three inequalities gives that with probability at least
(1 − η), LD(f dp) ≤ UB ≤ UBdp . The test ACCEPTs when
UBdp ≤ τloss . □

This test uses Bernstein’s concentration inequality to com-
pute an upper bound for the loss over the entire distribu-
tion [49], which will give good bounds if the loss is small.
If instead one expects the variance to be small, one can use
empirical Bernstein bounds [35] as a drop-in replacement.
Otherwise, one can fall back to Hoeffding’s inequality [25].
REJECT Test: The REJECT test terminates Privacy-Adaptive
Training of a model when no model of the considered class
F can hope to achieve the desired τloss performance. Not-
ing the best possible model on the data distribution f ⋆ ≜
argminf ∈F LD(f ), we want to reject when LD(f ⋆) > τloss .
To do this, we consider the best model in F on the training
set f̂ ≜ argminf ∈F Ltr (f ), and proceed as follows. First,
we compute the DP upper and lower bounds for ntr, holding
together with probability at least (1− η

3 ) (Lines 24-27 List. 2):

n
dp
tr = ntr + Laplace(

2
ϵ
),

n
dp
tr = n

dp
tr − 2

ϵ
ln(3

η
),

n
dp
tr = n

dp
tr +

2
ϵ
ln(3

η
).

Then, we compute a DP estimate of the loss corrected for DP
impact (Lines 14-17 List. 2) to be a lower bound on the true
value with probability (1 − η

3 ):

Ldp
te ( f̂ ) =

1

n
dp
tr

(∑
tr

l( f̂ ,x ,y) + Laplace(2B
ϵ
) − 2B

ϵ
ln( 3

2η
)
)
.

Finally, Sage will REJECT when:

Ldp
te ( f̂ ) − B

√
log(3/η)
n
dp
tr

> τloss .

This test gives the following guarantee:

Proposition B.2 (Loss REJECT Test). With probability at
least (1 − η), f dp (or more accuratly F ) is rejected only if
LD(f ⋆) > τloss .

Proof. By definition, Ltr ( f̂ ) ≤ Ltr (f ⋆). Applying Hoeffd-
ing’s inequality [25] to f ⋆ gives P(LD(f ⋆) < Ltr (f ⋆) −
B
√

log(3/η)
ntr

) ≤ η
3 . Similarly to the proof for Proposition (B.1),

applying a union bounds over this inequality and the DP cor-
rection gives that with probability at least (1 − η), LD(f ⋆) ≥
Ltr (f ⋆) − B

√
log(3/η)

ntr
≥ Ldp

tr ( f̂ ) − B

√
log(3/η)
ndp
tr
> τloss , con-

cluding the proof. □

Here we leverage Hoeffding’s inequality [25] as we need
to bound LD(f ⋆): since we do not know f ⋆, we cannot com-
pute its variance or loss on the training set to use (empirical)
Bernstein bounds.
DP Guarantee: We now need to prove that the ACCEPT and
REJECT tests each are (ϵ, 0)-DP. Since they each use a disjoint
split of the dataset (training and testing) running both tests is
(ϵ, 0)-DP over the entire dataset.

Proposition B.3 (DP ACCEPT). Accept is (ϵ, 0)-DP.

Proof. The only data interaction for ACCEPT are to compute

n
dp
te and Ldp

te (f dp). The former is sensitivity 1, and is made
ϵ
2 -DP with the Laplace mechanism. The latter uses data in
the inner sum, which has sensitivity B and is made ϵ

2 -DP with
the Laplace mechanism. Using basic composition, the test is
(ϵ, 0)-DP. □

The proof for REJECT is a bit more complicated as part of
the procedure involves computing f̂ , which is not DP.

Proposition B.4 (DP REJECT). Reject is (ϵ, 0)-DP.

Proof. To apply the same argument as for Prop.B.3, we need
to show that computing Ltr ( f̂ ), which includes computing
f̂ , has sensitivity B. Recall that f̂ minimizes the training
loss: f̂tr = argminf ∈F

∑
ntr l(f ,x ,y). If we add a data point

d, then f̂tr has a loss at worst B on the new point. Because
the best model with the new data point f̂tr+d is at least as
good as f̂tr (otherwise it wouldn’t be the argmin model),
Ltr+d ( f̂tr+d ) ≤ Ltr ( f̂tr ) + B. Similarly, f̂tr+d cannot be bet-
ter than f̂tr on the training set, so Ltr+d ( f̂tr+d ) ≥ Ltr ( f̂tr ).
Hence the sensitivity of computing Ltr ( f̂ ) is at most B. □

We highlight that REJECT relies on computing f̂ for both
its statistical and DP guarantees. However, f̂ may not always
be available. In particular, it can be computed for convex
problems, but not for NNs for instance.
B.2 SLAed Validator for Accuracy

The accuracy metric applies to classification problems,
where a model predicts one out of many classes. The target
τacc is the proportion of correct predictions to reach on the
data distribution. The accuracy validator follows the same
logic as the loss validator, with two small changes. First, the
upper and lower bounds are reversed as losses are minimized
while accuracy is maximized. Second, the result of classifica-
tion predictions follows a binomial distribution, which yields
tighter confidence intervals. Note 1{predicate} the indicator
function with value 1 if the predicate is true, and 0 otherwise,
and Bin(k,n,η) and Bin(k,n,η) the upper and lower bounds



on the probability parameter p of a binomial distribution such
that k happens with probability at least η out of n indepen-
dent draws (both can be conservatively approximated using a
Clopper-Pearson interval).

We compute k
dp
te =

∑
nte 1{ f (x) = y} + Laplace( 2ϵ ) and

n
dp
te = nte+Laplace( 2ϵ ). Similarly for the training set tr , kdptr =∑
nte 1{ f̂ (x) = y} + Laplace( 2ϵ ) and n

dp
tr = ntr + Laplace( 2ϵ ).

Sage will ACCEPT when:

Bin
(
k
dp
te − 2

ϵ
ln(3

η
),ndpte +

2
ϵ
ln(3

η
), η
3

)
≥ τacc .

And REJECT when:

Bin
(
k
dp
tr +

2
ϵ
ln(3

η
),ndptr − 2

ϵ
ln(3

η
), η
3

)
< τacc .

Using the same reasoning as before, we can prove the equiv-
alent four Propositions (B.1, B.2, B.3, B.4) for the accuracy
validator. However, finding f̂ for accuracy is computationally
hard.
B.3 SLAed Validator for Sum-based Statistics

This validator applies to computing sum based statistics
(e.g. mean, variance). The target is defined as the maximum
size of the absolute (additive) error τerr for these summary
statistics on the data distribution. This error can be computed
directly on the training set, so there is no need for a test set.
Second, because of the law of large numbers, we can always
reach the target precision, so there is no rejection test. We
next show the test using Hoeffding’s inequality [25] (if we
expect the variance to be small, empirical Bernstein bounds
[35] will be better and are directly applicable).

Compute:

n
dp
tr = ntr + Laplace(

2
ϵ
) − 2

ϵ
ln(2

η
)

SageACCEPTs if:

1

n
dp
tr

2
ϵ
ln(2

η
) + B

√
ln(2/η)
n
dp
tr

≤ τerr ,

in which case the absolute error is bellow τerr with probability
at least (1 − η), accounting for the statistical error, as well
as the impact of DP noise on both the sum based summary
statistic and the ACCEPT test. Once again, the same reasoning
allows us to prove equivalent Propositions to B.1 and B.3.

C Data Cleaning
The NYC taxi data has a lot of outliers. We filtered the

dataset based on the following criteria: Prices outside of the
range [$0, $1000], durations outside of [0, 2.5] hours, mal-
formed date strings, Points falling outside of the box bounded
by (40.923, −74.27) in the northwest and (40.4, −73.65) in
the southeast which encompasses all of New York City and
much of the surrounding metropolitan area. Filtering points
is acceptable within differential privacy but requires that we
also account for privacy loss on the filtered points – which
we do. However, Sage does not address the data exploration
phase which would be required for more complex data filter-
ing. Exploration is outside of Sage’s scope, and may be better
addressed by systems such as PINQ [40].
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