
Learning to Plan with Logical Automata
Brandon Araki1, *, Kiran Vodrahalli2, *, Thomas Leech1, 3, Cristian-Ioan Vasile1, Mark Donahue3, Daniela Rus1

1MIT CSAIL, Cambridge, MA 02139, 2Columbia University, New York City, NY 10027
3MIT Lincoln Laboratory, Lexington, MA 02421, *Authors contributed equally

Abstract—This paper introduces the Logic-based Value Iter-
ation Network (LVIN) framework, which combines imitation
learning and logical automata to enable agents to learn complex
behaviors from demonstrations. We address two problems with
learning from expert knowledge: (1) how to generalize learned
policies for a task to larger classes of tasks, and (2) how
to account for erroneous demonstrations. Our LVIN model
solves finite gridworld environments by instantiating a recurrent,
convolutional neural network as a value iteration procedure over
a learned Markov Decision Process (MDP) that factors into two
MDPs: a small finite state automaton (FSA) corresponding to
logical rules, and a larger MDP corresponding to motions in the
environment. The parameters of LVIN (value function, reward
map, FSA transitions, large MDP transitions) are approximately
learned from expert trajectories. Since the model represents the
learned rules as an FSA, the model is interpretable; since the
FSA is integrated into planning, the behavior of the agent can be
manipulated by modifying the FSA transitions. We demonstrate
these abilities in several domains of interest, including a lunchbox-
packing manipulation task and a driving domain.

I. INTRODUCTION

In the imitation learning (IL) problem, desired behaviors are
learned by imitating expert demonstrations [1, 11, 35]. IL has
had success in tackling tasks as diverse as camera control, speech
imitation, and self-driving for cars [42, 10, 19, 46]. However, an
IL model trained to imitate a specific task must be re-trained on
new expert data to learn a new task. Additionally, in order for
a robot to correctly learn a task, the expert demonstrations must
be of high quality: most imitation learning methods assume that
experts do not make mistakes. Therefore, we ask

1) How can expert demonstrations for a single task generalize
to much larger classes of tasks?

2) What if the experts are unreliable and err?
This paper provides answers to these questions by applying

elements of formal logic to the learning setting. We require our
policies to be derived from learned Markov Decision Processes
(MDP), a standard model for sequential decision making and
planning [5, 38]. We assume these MDPs can be factored into
a large MDP that describes the motion of the robot in the
physical environment, and, more importantly, a small finite state
automaton (FSA) that corresponds to the rules the agent follows.
After learning the transition and reward functions of the MDP
and FSA, it is possible to manually change the FSA transitions
to make the agent perform new tasks and to correct expert errors.
Additionally, the FSA provides a compact symbolic representa-
tion of the policy.

For example, imagine the robotic arm in Fig. 1 packing first
a sandwich and then a banana into a lunchbox. The physical
environment and the motions of the robotic arm can be described
by a “low-level” MDP. The rules the robot follows are described

Fig. 1: The Jaco mobile robotic arm platform used
in the experiments for lunchbox packing.

using FSAs. In the FSA, transitions are dependent on logical
truth statements called propositions. In this environment there are
three propositions – “robot has grasped sandwich”, “robot has
grasped banana”, and “robot has dropped whatever it is holding
into the lunchbox”. The truth values of these propositions control
transitions between the FSA’s states, which we also refer to as
logic states. For example, when “robot has grasped sandwich” is
true, the FSA transitions from being in an initial state to being in a
state in which “the robot has grasped the sandwich.” When it is in
this new state and “robot has dropped whatever it is holding into
the lunchbox” is true, it transitions to the next state, “the robot
has placed the sandwich into the lunchbox.” We assume that the
propositions correspond to locations in 2D space (e.g., we assume
that the manipulator has a pre-programmed behavior to grasp a
banana when it is in the vicinity of the banana and “robot has
grasped banana” becomes true). This assumption enables us to
factor the unknown MDP as the product of the high-level FSA
and the low-level MDP. A simpler example of a product MDP is
illustrated in Fig. 2.

The agent then learns approximate transitions and rewards
associated with this product MDP, and generates a policy by
running a planning algorithm. This approach has two benefits:
1) the learned policy is interpretable in the sense of learned
FSA representations of rules, and 2) the behavior of the agent
is manipulable because the rules that the agent follows can be
changed in a predictable way by modifying the FSA’s transitions.
These benefits address the questions posed before: performing
new tasks without re-learning and correcting faulty behaviour.

A. Outline of Our Approach

a

o o

b

S0 S1

Trap Goal

a ^ !o

b ^ !oo

o

T !o

!b ^ !o!a ^ !b ^ !o

×

a

o o

b

S0 S1

Trap Goal

a

o o

b

a

o o

b

a

o o

b

Fig. 2: An illustration of how an MDP and an FSA create a
product MDP. The MDP is a 2D gridworld with propositions
a, b, and o. The FSA describes the rules “go to a, then b,
and avoid o. The resulting product MDP represents how these
rules interface with the 2D gridworld.

Planning over Approximate MDPs Our model assumes that the
MDP of the robot’s behavior, also called a product automaton
(PA), factors into a small, high-level FSA and a large, low-
level MDP. When the FSA and MDP are known, one can find
the optimal policy over the PA with standard planning methods
[4, 26, 16, 40]. The model in this paper extends this approach
to the IL setting where the transition and reward functions of
the PA are unknown by learning an approximate MDP and
then planning over the resulting MDP model. Exclusively during
training we assume a logic oracle that the agent can query to
learn its current FSA state. This assumption is more plausible and
efficient to simulate compared to related works, which require
knowledge of the full FSA [32, 45]. Our model, the Logic-based
Value Iteration Network (LVIN), learns the relevant part of the
transition matrix (TM) describing the FSA and directly integrates
it into a differentiable recursive planning algorithm generalizing
the Value Iteration Network (VIN) proposed in [41]. The key idea
is to add a VIN module at each state of the FSA and link them
together appropriately.
Logic Formalism In the robotics and control community, tem-
poral logic languages such as Linear Temporal Logic (LTL) are
used to unambiguously specify complex tasks, and a large and
versatile class of these specifications can be directly translated
into FSAs [22, 43, 6, 24, 25, 44, 30, 36]. In this paper, we
assume that the high-level FSA is generated by an unknown
LTL specification, although our methodology generalizes to any
formal grammar that specifies FSAs. In fact, our model does not
require that the expert demonstrations be generated from an FSA
— it simply finds the best explanation that can be expressed as a
product of an FSA and an MDP.
Experiments In the experiments, we demonstrate that for several
gridworld tasks of varying complexity and a robot picking task

(Fig. 1), our methodology allows us to efficiently understand and
modify a robot’s behavior. Our approach also solves tasks requir-
ing long sequences of accurate actions, where we demonstrate
standard learning approaches often fail. As another application,
we fix expert mistakes without re-training on new data.

B. Contributions

1) We improve learning by attaching a logic oracle to the
environment during training in the form of an FSA. Our
logic oracle is required to produce less information than
previous work (only FSA state, not the full transition
matrix) and is thus more feasible to implement.

2) We introduce a differentiable planning model called the
Logic-based Value Iteration Network (LVIN) which inte-
grates an FSA into the recursive planning step of VIN. Us-
ing an imitation learning objective, we report considerable
improvements over baselines in four different domains,
including a robot picking task with real-world experiments.

3) We show that our framework can learn the transition matrix
between FSA states, thus allowing us to interpret the logic
rules that the model has learned.

4) We show how the learned transition matrix can be modified
to manipulate the behavior of the agent to reliably perform
other desired tasks without further learning. As a result, we
can generalize to new tasks and fix the mistakes of unreli-
able experts without additional expert demonstrations.

II. RELATED WORK

Logic-based Approaches Some recent work uses logical struc-
ture to make imitation learning and reinforcement learning (RL)
problems problems easier. [32] uses LTL to define constraints on
a Monte Carlo Tree Search. [28] and [18] use the product of an
LTL-derived FSA with an MDP to make learning more efficient.
In [21] the authors use LTL to design a sub-task extraction
procedure as part of a more standard deep reinforcement learning
setup. However, these methods assume the LTL specifications are
already known, and [32, 33, 21, 18] do not allow for a model
that is easy to interpret and manipulate. By contrast, our model
only requires the current FSA state and the location of logic
propositions in the environment.
Multi-task and Meta Learning We can also look at our method
through the lens of multi-task and meta learning, methods which
solve classes of tasks assuming a distribution over tasks [7, 2, 12,
14, 15]. LVIN is a model-based approach which can be viewed
as sharing the structure of the low-level large MDP across tasks,
while the high-level small FSA governs the task parameters. If
we separated the learning of the FSA and the low-level MDP, we
could learn the MDP across multiple tasks. Importantly, the FSA
is human interpretable and manipulable, allowing us to change
the task being solved with no new data (zero-shot), in contrast
with one-shot methods like MAML [14] or [20] which require
more data to adapt to new tasks from the task distribution.
Faulty Experts Other works tackle the problem of unreliable
experts in imitation learning. [29] interpolates between imitation
and intention learning with an entirely different approach based
on inverse reinforcement learning, where transition dynamics are

known. [17] uses reinforcement learning with expert demonstra-
tions, while our approach only requires easy and direct modifica-
tion of an interpretable policy.
Hierarchical Learning LVIN is an instance of hierarchical learn-
ing: We can view the FSA as a high-level description of the
tasks the agent must accomplish. The first instance of hierarchical
learning was introduced in [31]. Related is the options framework
of [39]. The idea is to temporally abstract out the kinds of actions
you must take in a sequence, and to use sequences of these actions
to specify policies. [2] applies the options framework and uses
policy sketches, sequential strings of sub-policies from a sub-
policy alphabet, to build an overall policy. Here, only actions have
hierarchical structure while our method simplifies the entire MDP
by providing a high-level view via the logic FSA.

In more recent work, [27] combines high-level imitation poli-
cies with low-level reinforcement learned policies to train more
quickly. [23] builds in a hierarchy of planning with models of
objects in the world rather than only considering low-level states,
similar to the propositions in our model. Both models lack an
interpretable transition matrix which can be easily modified to
change policy behavior.

III. PROBLEM STATEMENT

Our goal is for agents to find interpretable and manipulable
solutions to 2D gridworld tasks in the imitation learning setting.
We define the finite gridworld state space S to consist of (row,
column) pairs (r, c). The action space A consists of the 8
cardinal movement directions. We assume the agent is provided
with expert demonstrations of a task (e.g., packing a lunchbox
with many different configurations of initial conditions, includ-
ing the locations of the food and the lunchbox). Additionally,
the demonstrated task is assumed to be expressible as an LTL
specification (see Sec. V-A), where propositions correspond to
objects with semantic meaning in the environment, e.g., banana,
lunchbox. We denote the set of propositions by L and include
∅ ∈ L to denote “no proposition.” F corresponds to states in
an FSA (see Sec. IV) describing the rules of the environment.
The propositions are assumed to have stationary locations in
S , determined by a known proposition map M : S → L.
These locations can be obtained from sensors such as location
sensors or pre-trained object detectors. We also assume access
(exclusively during training) to the state f ∈ F of the FSA
via a logic oracle. The agent must learn a policy π : S →
dist(A) (a distribution over A) minimizing the cross-entropy
loss H(πagent, πexpert) := Ea∼πagent [log πexpert(a)] with expert tra-
jectories {{(st, ft, `t, at)(n)}Tt=1}Nn=1 while being interpretable
and manipulable, so a human can efficiently tweak the policy to
achieve a different goal in the same state-action space (zero-shot
learning). Here, st ∈ S, at ∈ A, ft ∈ F , `t ∈ L, T is the
number of iterations per trajectory, andN is the number of trajec-
tories. We reiterate that interpretable in this paper means that we
learn an FSA (together with a policy) from expert trajectories of
the unknown product automaton MDP. Manipulable means that
we can obtain new policies without re-learning by modifying the
learned specification FSA.
Feasibility of Assumptions Recognizing propositions in environ-
ments is a feasible assumption given recent advances in computer

vision. In a driving environment, one could train a convolutional
deep network to recognize objects of interest (traffic lights, other
cars) independently of the driving task on potentially much larger
datasets of images than those obtained while actually driving.
Requiring only the current FSA state during training makes the or-
acle feasible to implement in practice beyond simulation settings,
as the TM is often a difficult feature of the logic specification
to design. One can often implement the FSA state oracle with a
simple deterministic function of the environment. For instance, a
self-driving car can identify geographic entities like home and
school via GPS lookup.

IV. THE LOGIC-BASED VALUE ITERATION NETWORK

As described in Section I, our method, the Logic-based Value
Iteration Network (LVIN), (1) uses expert trajectories to learn
an approximate MDP and then (2) plans on top of the learned
MDP using value iteration, a standard dynamic programming
method which solves known MDPs [5]. An MDP is a tuple
(S,A,R, T , γ) corresponding to states, actions, a reward func-
tionR : S ×A → R, a transition function T : S ×A → dist(S)
(a distribution over state space), and a discount factor γ ∈ (0, 1).
LVIN learns the MDP parameters R, T , and γ, and the final
policy is a lookup table commonly known as a Q-function [38]:
each state s and action a are assigned a valueQ(s, a). The policy
is π(s) := maxaQ(s, a).

We assume the state space of the approximate MDP we learn
can be factored into two components: S , the gridworld state
space, and F , the FSA states (defined by formulae of proposi-
tions). We thus learn a tuple (S×F ,A, T ,R, γ). The transitions
T can be factored into the components P : S × A → dist(S)
and TM : F × L → dist(F) assuming that unique propositions
define the transitions between states in F , i.e., the FSA is deter-
ministic. The FSA MDP is given by (F ,L, ∅, TM, 1). Note TM
depends on S throughM(S) = L.
Value-Iteration Network The Value Iteration Network (VIN)
[41] is a neural network architecture used to find policies for
MDPs. The key idea is to learn a neural net policy given value
features generated by a value iteration procedure on an MDP
learned from expert data that approximates the true MDP of the
environment. The main insight is that the standard value iteration
algorithm can be expressed in the form of a convolutional neural
network. For known MDP (S,A, T ,R, γ), the value iteration
updates are given by:

Qt+1(s, a)← R(s, a) +
∑
s′∈S

[γT (s′|s, a)]V t(s′)

V t+1(s)← max
a

Qt+1(s, a)

We interpret [γT (s′|s, a)] as a convolution filter (the grid world
dynamics are sparse), and the maximization over actions as a
max-pooling step. By iterating these steps k times, we get a k-
layer neural network. Since this procedure is differentiable, we
can simultaneously learn a reward map R, a transition matrix
γT , the resulting value function V , and a neural net policy
over V simply by stacking each operation end-to-end and then
backpropagating through the policy loss function (an imitation
loss if there are experts, or an environment reward in the more
general reinforcement learning setting) [41].

LVIN: Augmenting VIN with Logic We generalize VIN by
assuming the factorization of the approximate MDP we learn
into low-level and high-level components corresponding to S and
F , respectively. The constraints on proposition mapM identify
propositions with the actions of the FSA MDP (Fig. 3). We think
of the resulting factorization as creating a separate VIN for each
FSA state (Fig. 4). We learn reward map R and transitions T
describing an MDP by backpropagating the imitation loss from
the Q-value policy through the following network. For input
(s, f, a), the output of the jth layer of the LVIN network is:

LVINj+1(γT̄ , R̄, V̄ j) := 〈Q(s, f, a), V̂ (s, f), V (s, f)〉j+1

(1)

Q
j+1

(s, f, a) := R(s, f, a) + γ
∑
s′∈S
P(s′|s, a)V

j
(s′, f) (2)

V̂ j+1(s, f) := max
a

Q
j+1

(s, f, a) (3)

V
j+1

(s, f) := Ef ′∼TM(·|f,M(s))

[
V̂ j(s, f ′)

]
(4)

LVIN(γT̄ , R̄, {V̄ j}kj=0) := LVINk(·, ·,LVINk−1(·, ·, · · ·))
(5)

Alg. 1 gives the full training algorithm. We augment the training
of T with an additional predictive task: given the current state,
FSA state and an action, predict the next FSA state. This objective
is meant to provide supervision to the task of learning the FSA
transition matrix factor of the full transition dynamics. There are
therefore two training losses: (1) a cross-entropy loss on next
FSA state prediction, for learning the unknown FSA transition
matrix, and (2) a cross-entropy loss on the action prediction.
Cross-entropy between distributions p and q is denoted H(p, q).

Algorithm 1 LVIN Multi-Trajectory Training

1: procedure LVIN-TRAINING
2: Training Inputs: {{(st, ft,M(st), at)

(n)}Tt=1}Nn=1

3: To learn:
4: Transition matrix TM ∈ RF×F×L
5: Low-level action kernels P(·|·, a)
6: Value and Q functions V ,Q
7: Build the model LVIN(γT ,R, {V j}kj=0):
8: Normalize TM so that it is row-stochastic.
9: for all s ∈ S: M(s) 6= ∅, all f ∈ F do

10: V
i+1

(s, f) := Ef ′∼TM(·|f,M(s))

[
V̂ i(s, f ′)

]
11: end for
12: for all (st, ft,M(st), at)

(n) in data do
13: Gradient update on TM:
14: loss = H(ft+1,TM(·|ft,M(st)))
15: Backpropagate the imitation loss through LVIN:
16: loss = H(at, σsoftmax(QLVIN(st, ft)))
17: end for
18: end procedure

Avoiding System Identification Since we learn the MDP with
an imitation loss and a predictive loss, we avoid the sample-
inefficient system identification problem (learning the true MDP

exactly as in model-based IL): we only care about approximate
MDPs which result in good policies after planning (a similar
property holds for VIN). Our approach therefore lies inbetween
model-based and model-free IL and benefits from properties of
both settings. Thus we expect to see some errors in T and R
that barely affect the LVIN policy, leaving interpretability and
manipulability intact.

S0 S1 G

Trap

S0 S0 S1 G T

A 0 1 0 0

B

O

φ

S1 S0 S1 G T

A

B 0 0 1 0

O

φ

Fig. 3: The FSA transition matrix (learned by predicting
the next FSA state) connects the value maps across FSA
states (S0, S1, G, T) (see Eq. (4)). Each proposition (A:
first goal, O: obstacle, B: second goal) is associated with
a row of the learned TM for each FSA state based onM.

see Fig. 3

 𝑉𝑖′

.

.

.

#
FSA

 𝑉0

 𝑅0

 𝑉0

maxpool

 𝑄0

 𝑉1

 𝑅1

 𝑉1

 𝑄1

 𝑉𝑖

 𝑅𝑖

 𝑉𝑖

 𝑄𝑖

𝑘 iterations

 𝑃

 𝑃

 𝑃

𝑇𝑀

𝑇𝑀

Fig. 4: LVIN forward pass: Each FSA state has a value map.
P(·|·, a) are shared across FSA states (can relax), and applied
to produce Q-maps. Max-pooling yields updated value maps
for each FSA state. The third layer output is depicted in detail
in Fig. 3. The process is looped k times, see Eqs. (1)-(5).

V. EXPERIMENTS AND RESULTS

We test LVIN against 2-3 baselines on 4 domains. As in [41,
3, 8], we consider gridworlds, which can express many complex
tasks. (LVIN extends to any discrete environment (including dy-
namic ones) with more compute.) Each domain illustrates a key
claim. The kitchen domain lends itself to in-depth analysis due
to its simplicity. In the longterm domain, the agent must collect
four keys and pass through four doors in sequence in order to
reach the goal. Its complexity shows how the learned TM can be
interpreted to understand the rules governing the agent’s behavior
even in cases where the actual FSA is difficult to understand,

as discussed in Sec. V-D. We show how to manipulate a TM in
the pickworld domain, Sec. V-E. Lastly, the rules of the driving
domain show how the TM can be modified to fix policies learned
from demonstrations by faulty experts, Sec. V-F.

A. Generating Expert Data
Linear Temporal Logic We use linear temporal logic (LTL) to
formally specify tasks [9]. Formulae φ constructed in LTL have
the syntax grammar

φ ::= p | ¬φ | φ1 ∨ φ2 | © φ | φ1 U φ2 (6)

where p is a proposition (a boolean-valued truth statement that
can correspond to objects or goals in the world), ¬ is negation,
∨ is disjunction, © is “next”, and U is “until”. The derived
rules are conjunction (∧), implication (=⇒), equivalence (↔),
“eventually” (♦φ ≡ TrueU φ) and “always” (�φ ≡ ¬♦¬φ),
see [4] for details. Intuitively, φ1 U φ2 means that φ1 is true until
φ2 is true, ♦φ means that there is a state where φ is true and �φ
means that φ is always true.
Generating Data We use the software packages SPOT [13] and
Lomap [43] to convert LTL formulae into FSAs. Every FSA that
we consider has a goal state, referred to in figures as G, which is
the desired final state of the agent, as well as a trap state, referred
to in figures as T, which is an undesired terminal state. For each
domain, we generate a set of environments in which obstacles and
other propositions are randomly placed. Given the FSA and an
environment, we run Dijkstra’s shortest path algorithm to create
expert trajectories that we use as data for imitation learning.

B. Baselines
VIN: We compare the performance of LVIN to VIN. VIN cannot
predict the next FSA state, nor can it learn a TM.
Hard-coded LVIN: It is not necessary to learn the TM from data
– if the FSA is known, then the TM corresponding to the FSA can
be used. We compare the performance of LVIN to LVIN with a
hard-coded TM to see if learning the TM degrades performance.
CNN: We formulate a less constrained version of LVIN that uses
a 3D CNN instead of a TM to transfer values between FSA states.
A TM is also learned, but it is learned independently of the action
predictions and is not used in planning. The CNN operation
acts on a concatenation of the proposition matrix and the value
function, returning the next iteration of the value function. The
CNN has |F| input and |F| output channels. The kernel size is
(|L| + |F|, 1, 1), so the convolution operates on one cell (r, c)
of the domain at a time, linearly combining the propositions and
logic state values.

C. Environments
Kitchen Domain We first examine the kitchen domain (shown in
Fig. 5a), an 8× 8 gridworld with determnistic actions that enable
movement to adjacent cells. The domain has three propositions:
o for obstacle, a for milk, and b for cereal. The specification is
♦(a ∧ ♦b) ∧ �¬o – first fill the bowl with milk (visit a) and
then put in the cereal (visit b) while avoiding randomly placed
obstacles (chairs, tables, and plants).
The first two rows of Fig. 5b show that LVIN, hard-coded LVIN,
and the CNN baseline all learn how to plan. The VIN baseline,
however, has poor action prediction. Examining the VIN’s failure

(a) The 8× 8 kitchen domain.
Kitchen Domain

LVIN Hard-coded
LVIN CNN VIN

Action
Accuracy 98.85% 99.07% 98.29% 68.05%

FSA
Accuracy 99.71% 99.73% 99.73% N/A

Performance over 5000 rollouts
Both Goals,

Correct Order 99.84% 99.76% 99.20% 38.92%

Only Milk 0.02% 0.06% 0.00% 19.88%
Only Cereal 0.02% 0.00% 0.00% 34.10%
Both Goals,

Wrong Order 0.02% 0.00% 0.74% 5.28%

No Goal 0.10% 0.18% 0.06% 1.82%

(b) Performance of LVIN and baselines in the kitchen domain.

Fig. 5

modes reveals that since it has no record of which goal it has
visited, the VIN model goes to the cereal without going to the
milk almost as frequently as it visits both goals in the correct
order. It also often visits only the milk without ever advancing to
the cereal. VIN’s performance highlights the importance of the
FSA as a form of memory for tasks with sequential steps. We
also note that the CNN baseline performs just as well as LVIN,
indicating that explicitly integrating a TM into the planning step
is not necessary for good performance.
Longterm Domain The longterm domain is a 12 × 9 gridworld
and shows LVIN’s ability to learn complex sequential specifica-
tions. In this environment (Fig. 6a) there are 10 propositions: keys
ka, kb, kc, kd that unlock doors da, db, dc, and dd, respectively;
and g for the goal and o for obstacles. To progress to the goal, the
agent must follow the specification ♦g ∧�¬o∧ (¬da U ka)∧
(¬db U kb)∧(¬dc U kc)∧(¬dd U kd) that involves learning
a “longterm” plan – it must first pick up Key A, then go get Key
D, then Key B, then Key C, before it can access the room in
which the goal is located. The results in Table Ia show that while
LVIN and the CNN baseline have good performance, VIN cannot
complete a single rollout successfully, which is unsurprising
given the lengthy sequential nature of this domain.
Pickworld Domain The pickworld domain is an 18 × 7 grid-
world where the agent must first pick up either a sandwich a
or a burger b and put it in a lunchbox d, and then pick up
a banana c and put it in the lunchbox d. The specification is
♦((a∨b)∧♦(d∧♦(c∧♦d)))∧�¬o. As shown in Table Ib, VIN

(a) The longterm domain. Yellow squares are keys; brown squares are
doors; the green square is the goal; and black squares are obstacles.

(b) The pickworld domain.
Learned

Agent

Work

Zone

Green

Light

Red

Light

Left

Lane

Goal

Obstacle

(c) The driving domain.

Fig. 6

cannot complete a single successful rollout due to the sequential
nature of the domain.
Driving Domain The driving domain (Fig. 6c) is a 14 × 14
gridworld with the goal of showcasing LVIN’s ability to learn
and encode rules, in this case three “rules of the road.” The
model must learn three rules of the road – reach the goal (g) and
avoid obstacles (o): ♦g ∧�¬o; prefer the right lane over the left
lane (l): �♦¬l; and stop at red lights (r) until they turn green
(e): �(r ⇒ (r U e)). Interestingly, the VIN baseline slightly
outperforms the other baselines (see Table Ic). This is because
there is only one “sequential” goal, which is to reach the goal g.
Otherwise, the rules of the road can be encoded into the VIN’s
reward function. However, since the VIN does not encode the
TM, it can only learn the rules implicitly, whereas the LVIN and
CNN baselines can learn the rules explicitly. This allows a user to
check that safe rules have been learned, as discussed in Sec. V-F.

D. Interpretability

One benefit of learning the TM, whose rows and columns
correspond to specific FSA states and propositions, is that its
values can be assigned meaningful interpretations. Consider the
longterm domain. The specification has 10 propositions and
translates to an FSA with 33 states. With no knowledge of

Longterm
LVIN CNN VIN

Action
Accuracy 99.49% 98.82% 66.16%

FSA
Accuracy 100.00% 99.40% N/A

Performance over 1000 rollouts
Success

Rate 100.00% 82.80% 0.00%

(a) Performance of LVIN and baselines on the longterm
domain

Pickworld

LVIN Hard-coded
LVIN CNN VIN

Action
Accuracy 99.67% 99.46% 99.06% 59.68

FSA
Accuracy 100.00% 100.00% 100.00% N/A

Performance over 1000 rollouts
Success

Rate 83.20% 83.20% 71.90% 0.00%

(b) Performance of LVIN and baselines on pickworld
Driving

LVIN Hard-coded
LVIN CNN VIN

Action
Accuracy 99.35% 99.38% 99.10% 99.39%

FSA
Accuracy 100.00% 99.93% 87.94% N/A

Performance over 1000 rollouts
Success

Rate 99.60% 98.40% 98.60% 99.90%

(c) Performance of LVIN and baselines on driveworld

TABLE I

S0 da db dc dd ka kb kc kd g o φ
S0 1 1
S1 1
S2 1
S3
S4
G
T 1 1 1 1 1 1 1

(a) In the initial state, Door A is not allowed, and Key
A leads to state S1

S1 dd kd
S0
S1
S2 1
S3
S4
G
T 1

(b) In S1, Key
D leads to S2.

S2 db kb
S0 1
S1
S2
S3 1
S4
G
T

(c) In S2, Key B
leads to S3.

S3 dc kc
S0
S1
S4
S3
S2 1
G
T 1

(d) In S3, Key C
leads to S4.

S4 g
S0
S1
S2
S3
S4
G 1
T

(e) S4 leads
to goal.

TABLE II: The learned transition matrix of the longterm
domain. Cells of interest are highlighted in yellow; unexpected
values are highlighted in red. Propositions in a given state that
are never encountered are shaded in gray.

the specification it would be difficult to tell what is going on.
However, the structure of the domain forces the agent to pick up
the keys in a specific order. Therefore the agent visits only 6 of
the 33 states (7 including the trap state). Since LVIN learns the
TM of this reduced FSA, after training we can examine the TM
to reconstruct the FSA and learn the rules of the system. Table II
contains parts of the TM of the longterm domain learned by

LVIN. Each table is associated with one FSA state and specifies
how each proposition maps to the next FSA state.

In the TM of the initial state S0, Table IIa, we see that all doors
and keys map to the trap state, except for Key A, which maps
to state S1. In other words, the model has learned that when in
S0, the agent is not permitted to travel through doors and that
it must pick up Key A before any other key. Partial TMs for the
other states show that the model has learned a sequence of keys
to pick up, and that it cannot pass through the door associated
with its key until it has picked up the key. Unexpected transitions
are highlighted in red. In every case, unexpected transitions occur
where the model has not actually observed a transition (columns
highlighted in grey) but rather had to infer the value. This is
understandable because in these cases the model picks a value
that helps it reduce its loss, which may not coincide with the true
TM.

The learned and true TMs of the other domains are shown
in Fig. 7, and they can be analyzed in a similar way to the
longterm domain’s TM. Note that the trap and goal states are not
shown because they are trivial. For the kitchen and pickworld
domains, the states are ordered sequentially – for the kitchen
domain (Fig. 7a), the goal in S0 is to reach a, and the goal in
S1 is to reach b. In the pickworld domain (Fig. 7b), the goal in
S0 is to reach either a or b; the goal in S1 is to reach d; the goal
in S2 is to reach c; and the goal in S3 is to reach d again. For the
driveworld domain (Fig. 7c), S0 corresponds to when the car is
in the right lane, driving towards goal g. S1 corresponds to when
the car is in the left-hand lane, and S2 corresponds to when the
car is at a red light.

E. Manipulability

Since we can interpret the TM layer, we can also modify it
to change the behavior of the agent in a predictable way. To
demonstrate, we manipulate the TM that was learned in the
pickworld domain. The learned TM tells the robot to pick up
either the sandwich or the burger, put it in the lunchbox, and
then pick up the banana and put it in the lunchbox; φp1 =
♦((a∨b)∧♦(d∧♦(c∧♦d)))∧�¬o. However, whoever is having
their lunch packed may have a preference between sandwich
and burger. Let “only sandwich, then banana” be φp2 and “only
burger, then banana” be φp3. As another example, a user may
prefer the banana to be packed before the sandwich/burger. Let
“banana, then sandwich/burger” be φp4.

The modifications to the TM are shown in Fig. 8. To make
the agent pick up only the sandwich, we modify the TM’s initial
state S0 so that b (the burger) maps back to S0 instead of the
next state S1 (Fig. 8a). Similarly, to pick up only the burger, we
modify S0 so that a (the sandwich) maps back to S0, as shown
in Fig. 8b, and the sandwich is ignored. Lastly, to modify the TM
to pick up the banana first (Fig. 8c), we first modify S0 so that
a and b are ignored and c (the banana) leads to S1. In S1, the
agent’s goal is to drop its payload into the lunchbox. We then
modify the next state, S2, so that a and b are the goals of S2
and c, the banana, is ignored. These modifications result in the
robot picking up the banana in S0 and picking up the sandwich
or burger in S2. The results of these changes can be seen in
Table III. The first two columns show that LVIN and the CNN

S0 S1
a b o Ø

S0

S1

G

T

LV
IN

TR
U

E

a b o Ø

S0

S1

G

T

(a) Kitchen transition matrix
S0 S1

a b c d o Ø
S0

S1

S2

S3

G

T

LV
IN

TR
U

E

a b c d o Ø a b c d o Ø a b c d o Ø

S2 S3

S0

S1

S2

S3

G

T

(b) Pickworld transition matrix
S0 S1

e r l g o Ø

S0

S1

S2

G

T

LV
IN

TR
U

E
S2

e r l g o Ø e r l g o Ø

S0

S1

S2

G

T

(c) Driveworld transition matrix

Fig. 7: Learned vs. true transition matrices. The tiles are shaded
in grayscale to denote the probability of a transition (black
corresponds to 1 and white to 0). Red outlines denote what
LVIN should have learned if it learned an incorrect transition.

baseline trained directly on these new specifications successfully
learn them. The second pair of columns shows the performance of
LVIN and the CNN baseline when they are initially trained on the
original specification, φp1, and then have their TMs modified to
represent the new specifications. Modified LVIN has equivalent
performance to the LVIN model trained directly on the new
specifications. By contrast, the modified CNN model performs
poorly because the TM is not integrated into the planning step for
the CNN. Instead, the CNN baseline attempts to perform the old
specification. The tests highlight an important shortcoming of the
CNN model: Since the TM is not directly incorporated into the
planning step, modifying the TM does not change the behavior
of the agent.
Manipulability Experiments on Jaco Arm To show how LVIN
can be applied to the real world, we implemented the algorithm

a b c d o Ø
S0

S1

S2

S3

G

T

S0

(a) φp1 → φp2 (pick up only
sandwich, then banana)

S0 a b c d o Ø
S0

S1

S2

S3

G

T

(b) φp1 → φp3 (pick up only
burger, then banana)

S0 S2a b c d o Ø
S0

S1

S2

S3

G

T

a b c d o Ø

(c) φp1 → φp4 (pick up banana, then sandwich/burger)

Fig. 8: Modifications to the learned transition matrix of the
pickworld domain so that the agent follows a new specification.
Deleted values are marked in red, and added values in green.

LVIN CNN Mod.
LVIN

Mod.
CNN

Performance over 1000 rollouts

φp2

Sandwich-
to-Burger

Ratio
1.0 1.0 1.0 0.58

φp3

Burger-to-
Sandwich

Ratio
1.0 1.0 1.0 0.43

φp4
Success

Rate 89.80% 90.60% 95.00% 1.10%

TABLE III: The performance of models using the modified
transition matrices for φp2, φp3, and φp4.

φp1 φp2 φp3 φp4

Success
Rate 18/20 19/20 18/20 20/20

Failure
Modes

2/20 banana
slipped out

of hand

1/20 banana
slipped out

of hand

1/20 banana
slipped out

of hand
1/20 bad path

N/A

TABLE IV: Performance of Jaco arm over 20 trials on each
pickworld specification.

on a Jaco arm, shown in Fig. 1. The Jaco arm is a 6-DOF arm with
a 3-fingered hand and a mobile base. An Optitrack motion capture
system was used to track the hand and the four objects of interest
(a plastic banana, sandwich, burger, and lunchbox). The system
was implemented using ROS [34]; the Open Motion Planning
Library (OMPL) [37] was used for motion planning for the arm.
The motion capture system was used to translate the positions
of the hand and the lunch items into a 2D grid corresponding
to Fig. 6b, and an LVIN model trained on simulated data was
used to generate a path satisfying the specification. The LVIN

model trained on φp1 was then “manipulated” as discussed to
follow specifications φp2, φp3, and φp4. 20 trials were run for
each specification with the Jaco arm, and the results are shown
in Table IV. The arm was largely successful in carrying out the
planned trajectories – 4 of the 5 failures were caused by the
banana falling out of the hand, and only 1 of the 80 trials failed
because of LVIN generating a bad path.

F. Fixing Expert Errors
Our interpretable and manipulable model can also be used to

fix the mistakes of faulty experts. Suppose the real-world driving
data contains bad behavior from drivers breaking the rules. We
model this scenario in Table V, where the Unsafe TM shows a
scenario in which the model has learned to run a red light 10% of
the time. This result can be observed directly from the TM, since
the probability of entering the initial state given that the agent is
on a red light is 10%, meaning it will ignore the red light, while
the probability of recognizing that it is in a “red light” state is
90%. We correct the TM by setting the initial state entry to 0 and
the red light state entry to 1. We perform 1000 rollouts using each
of these TMs. The Unsafe TM results in the agent running 9.88%
of red lights while the Safe TM prevents the agent from running
any red lights.

Unsafe TM
Initial
State

red
light

Initial 0.1
Left Lane 0.0

Goal 0.0
Red Light 0.9

Trap 0.0

Safe TM
Initial
State

red
light

Initial 0.0
Left Lane 0.0

Goal 0.0
Red Light 1.0

Trap 0.0
Rollout Performance
Unsafe TM 9.88%
Safe TM 0.00%

TABLE V

VI. CONCLUSION

Developing interpretable and manipulable models that learn
to plan is an ongoing goal in deep policy learning. By learning
an FSA transition matrix in conjunction with a planning mod-
ule, we were able to build a model that a human can control
intuitively. As a result, the model immediately generalizes to
new task specifications, can be fixed in the presence of expert
errors, and can also solve long-term planning tasks requiring
higher-level state transition information than the environment
provides. Future work will focus on improving the poor scaling
of computation with state and action space size, continuous
state space versions of LVIN, and removing the logic oracle
assumption during training time.

ACKNOWLEDGMENTS

NSF grant 1723943, ONR grant N000141812830, and the Un-
der Secretary of Defense for Research and Engineering under Air
Force Contract No. FA8702-15-D-0001 supported this project.
K.V. is supported by an NSF GRFP fellowship. Any opinions,
findings, conclusions or recommendations in the paper do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning
via inverse reinforcement learning. ICML ’04 Proceedings
of the twenty-first international conference on Machine
learning, page 1, 2004.

[2] Jacob Andreas, Dan Klein, and Sergey Levine. Modu-
lar multitask reinforcement learning with policy sketches.
ArXiv e-prints, 2016.

[3] Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes,
Arian Hosseini, Pushmeet Kohli, and Edward Grefenstette.
Learning to understand goal specifications by modelling
reward. 2018.

[4] C. Baier and J. Katoen. Principles of model checking. MIT
Press, 2008. ISBN 978-0-262-02649-9.

[5] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic
Programming. Athena Scientific, 1st edition, 1996.

[6] A. Bhatia, L.E. Kavraki, and M.Y. Vardi. Sampling-based
motion planning with temporal goals. In IEEE International
Conference on Robotics and Automation (ICRA), pages
2689–2696. IEEE, 2010.

[7] Rich Caruana. Learning many related tasks at the same time
with backpropagation. Advances in Neural Information
Processing Systems, pages 657–664, 1995.

[8] Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem
Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. Babyai: First steps towards
grounded language learning with a human in the loop. arXiv
preprint arXiv:1810.08272, 2018.

[9] Edmund M. Clarke, Orna Grumberg, and Doron Peled.
Model Checking. MIT Press, 2001. ISBN 978-0-262-03270-
4.

[10] Felipe Codevilla, Matthias Miiller, Antonio López, Vladlen
Koltun, and Alexey Dosovitskiy. End-to-end driving via
conditional imitation learning. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 1–9.
IEEE, 2018.

[11] Hal Daumé III, John Langford, and Daniel Marcu. Search-
based structured prediction. Journal of Machine Learning,
75:297–325, 2009.

[12] Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya
Sutskever, and Pieter Abbeel. Rl2: Fast reinforcement
learning via slow reinforcement learning. ArXiv e-prints,
2016.

[13] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury
Fauchille, Thibaud Michaud, Etienne Renault, and Laurent
Xu. Spot 2.0 — a framework for LTL and ω-automata
manipulation. In Proceedings of the 14th International
Symposium on Automated Technology for Verification and
Analysis (ATVA’16), volume 9938 of Lecture Notes in Com-
puter Science, pages 122–129. Springer, October 2016. doi:
10.1007/978-3-319-46520-3_8.

[14] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
Proceedings of the 34th International Conference on Ma-
chine Learning, 2017.

[15] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel,

and Sergey Levine. One-shot visual imitation learning via
meta-learning. arXiv preprint arXiv:1709.04905, 2017.

[16] Jie Fu and Ufuk Topcu. Probably approximately correct
mdp learning and control with temporal logic constraints.
ArXiv e-prints, 2014.

[17] Yang Gao, Huazhe (Harry) Xu, Ji Lin, Fisher Yu, Sergey
Levine, and Trevor Darrell. Reinforcement learning from
imperfect demonstrations. Proceedings of the 35th Interna-
tional Conference on Machine Learning, 2018.

[18] Mohammadhosein Hasanbeig, Alessandro Abate, and
Daniel Kroening. Logically-correct reinforcement learning.
arXiv preprint arXiv:1801.08099, 2018.

[19] Jonathan Ho and Stefano Ermon. Generative adversarial
imitation learning. In Advances in Neural Information
Processing Systems, pages 4565–4573, 2016.

[20] De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh
Garg, Fei-Fei Li, Silvio Savarese, and Juan Carlos Niebles.
Neural task graphs: Generalizing to unseen tasks from a
single video demonstration. ArXiv e-prints, 2018.

[21] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano,
and Sheila A McIlraith. Teaching multiple tasks to an
rl agent using ltl. Proceedings of the 17th International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), 2018.

[22] S. Karaman and E. Frazzoli. Sampling-based Motion Plan-
ning with Deterministic µ-Calculus Specifications. In IEEE
Conference on Decision and Control (CDC), Shanghai,
China, December 2009.

[23] Ramtin Keramati, Jay Whang, Patrick Cho, and Emma
Brunskill. Strategic object oriented reinforcement learning.
2018.

[24] M. Kloetzer and C. Belta. A fully automated framework for
control of linear systems from temporal logic specifications.
IEEE Transactions on Automatic Control, 53(1):287–297,
2008.

[25] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Where’s
Waldo? Sensor-based temporal logic motion planning. In
IEEE International Conference on Robotics and Automa-
tion, pages 3116–3121, 2007.

[26] Morteza Lahijanian, Sean B Andersson, and Calin Belta.
Temporal logic motion planning and control with probabilis-
tic satisfaction guarantees. IEEE Transactions on Robotics,
28(2):396–409, 2012.

[27] Hoang M Le, Nan Jiang, Alekh Agarwal, Miroslav Dudík,
Yisong Yue, and Hal Daumé III. Hierarchical imitation and
reinforcement learning. ArXiv e-prints, 2018.

[28] Xiao Li, Yao Ma, and Calin Belta. Automata guided
hierarchical reinforcement learning for zero-shot skill com-
position. ArXiv e-prints, 2017.

[29] James MacGlashan and Michael L. Littman. Between
imitation and intention learning. IJCAI’15 Proceedings of
the 24th International Conference on Artificial Intelligence,
pages 3692–3698, 2015.

[30] MR Maly, M Lahijanian, Lydia E. Kavraki, H. Kress-Gazit,
and Moshe Y. Vardi. Iterative Temporal Motion Planning
for Hybrid Systems in Partially Unknown Environments. In
International Conference on Hybrid Systems: Computation

and Control (HSCC), pages 353–362, Philadelphia, PA,
USA, March 2013. ACM.

[31] Ronald Parr and Stuart J Russell. Reinforcement learning
with hierarchies of machines. In Advances in neural infor-
mation processing systems, pages 1043–1049, 1998.

[32] Chris Paxton, Vasumathi Raman, Gregory D Hager, and
Marin Kobilarov. Combining neural networks and tree
search for task and motion planning in challenging environ-
ments. ArXiv e-prints, 2017.

[33] Chris Paxton, Yotam Barnoy, Kapil Katyal, Raman Arora,
and Gregory D. Hager. Visual robot task planning. ArXiv
e-prints, 2018.

[34] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y
Ng. Ros: an open-source robot operating system. In ICRA
workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009.

[35] S. Ross, G. Gordon, and J. Bagnell. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. Proceedings of the Fourteenth International Con-
ference on Artificial Intelligence and Statistics, 15:627–635,
2011.

[36] Philipp Schillinger, Mathias Bürger, and Dimos V Dimarog-
onas. Simultaneous task allocation and planning for tempo-
ral logic goals in heterogeneous multi-robot systems. The
International Journal of Robotics Research, 2017.

[37] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The
Open Motion Planning Library. IEEE Robotics & Au-
tomation Magazine, 19(4):72–82, December 2012. doi:
10.1109/MRA.2012.2205651. http://ompl.kavrakilab.org.

[38] Richard S. Sutton and Andrew G. Barto. Introduction
to Reinforcement Learning. MIT Press, Cambridge, MA,
USA, 1st edition, 1998.

[39] Richard S Sutton, Doina Precup, and Satinder Singh. Be-
tween mdps and semi-mdps: Learning, planning, and repre-
senting knowledge at multiple temporal scales. Journal of
Artificial Intelligence Research, 1:1–39, 1998.

[40] M. Svorenova, I. Cerna, and C. Belta. Optimal control of
mdps with temporal logic constraints. In IEEE 52nd Annual
Conference on Decision and Control (CDC), pages 3938–
3943, 2013.

[41] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and
Pieter Abbeel. Value iteration networks. In Advances in
Neural Information Processing Systems 29, pages 2154–
2162, 2016.

[42] Sarah Taylor, Taehwan Kim, Yisong Yue, Moshe Mahler,
James Krahe, Anastasio Garcia Rodriguez, Jessica Hodgins,
and Iain Matthews. A deep learning approach for gener-
alized speech animation. ACM Transactions on Graphics
(TOG), 36(4):93, 2017.

[43] Alphan Ulusoy, Stephen L Smith, Xu Chu Ding, Calin
Belta, and Daniela Rus. Optimality and robustness in multi-
robot path planning with temporal logic constraints. The
International Journal of Robotics Research, 32(8):889–911,
2013.

[44] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding
Horizon Temporal Logic Planning for Dynamical Systems.

In Conference on Decision and Control (CDC) 2009, pages
5997–6004, 2009. doi: 10.1109/CDC.2009.5399536.

[45] Saining Xie, Alexandre Galashov, Siqi Liu, Shaobo Hou,
Razvan Pascanu, Nicolas Heess, and Yee Whye Teh. Trans-
ferring task goals via hierarchical reinforcement learning.
2018.

[46] Yisong Yue and Hoang Le. Imitation learning tutorial.
Tutorial at ICML 2018, 2018. URL https://sites.google.
com/view/icml2018-imitation-learning/home.

http://ompl.kavrakilab.org
https://sites.google.com/view/icml2018-imitation-learning/home
https://sites.google.com/view/icml2018-imitation-learning/home

	Introduction
	Outline of Our Approach
	Contributions

	Related Work
	Problem Statement
	The Logic-based Value Iteration Network
	Experiments and Results
	Generating Expert Data
	Baselines
	Environments
	Interpretability
	Manipulability
	Fixing Expert Errors

	Conclusion

