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Abstract—Low-dimensional embeddings, computed by LSTMs or other
techniques, are a popular approach for capturing the “meaning” of text
and a useful form of unsupervised learning. However, their power is not
theoretically understood. We derive formal understanding by looking
at the subcase of linear embedding schemes. Using compressed sensing
theory we show that representations combining the constituent word
vectors can be information-preserving linear measurements of Bag-of-n-
Grams (BonG) representations of text. This leads to a new theoretical
result about LSTMs: embeddings derived from a low-memory LSTM
are provably at least as powerful on classification tasks as a linear
classifier over BonG vectors, a result that extensive empirical work has
thus far been unable to show. Our experiments support these findings
and establish strong baselines on standard benchmarks. We also show
a surprising new property of pretrained word embeddings: they form
a sensing matrix for text that is more efficient than random matrices,
which may explain why they lead to better representations in practice.

The full version of this work appears in the Proceedings of the 6th
International Conference on Learning Representations (ICLR 2018).1

I. INTRODUCTION

Much attention has been paid to using LSTMs [9] and similar
models for text embedding [2], [5], [11]. LSTMs process text in
limited memory and output a vector that can be used as a featurization
for downstream tasks. However, their powers and limitations have
not been formally established. For example, can they compete with
traditional linear classifiers over trivial but surprisingly powerful Bag-
of-n-Grams (BonG) representations [19], which continue to give
better performance on many downstream tasks? Meanwhile evidence
suggests that simpler linear schemes, consisting of adding up standard
pretrained word embeddings [13], [16], give compact representations
that provide most of the benefits of LSTM embeddings [1].

We tie these threads together via an information-theoretic account
of linear text embeddings with schemes that preserve n-gram infor-
mation as low-dimensional embeddings with provable guarantees for
any text classification task. Furthermore, we show that the original
information can be extracted from the low-dimensional embedding
using compressed sensing [4]. The following are our main results:

1) Using random vectors in our scheme we show that low-memory
LSTMs are provably at least as good for linear classification
as the full BonG. This novel theoretical result is obtained by
generalizing a theorem by [3]. Extensive empirical study of
this issue has been inconclusive, and we do not know of any
previous provable quantification of the power of embeddings.

2) We study experimentally how our scheme improves with pre-
trained embeddings (e.g. GloVe) instead of random vectors. We
find that they allow better preservation of Bag-of-Words (BoW)
information, i.e. they are better than random matrices for
“sensing” BoW signals. We give some theoretical justification
for this surprising finding via a new sparse recovery property
characterizing nonnegative signal recovery.
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3) Finally, we support our theoretical work with empirical results
showing that our embeddings are consistently competitive with
recent schemes and perform much better than all previous linear
methods on standard tasks. As our representations are fast and
simple to implement they are strong baselines for future work.

II. RELATED WORK

Distributed representations have long been studied in connectionist
approaches [8], [17]. Our method is closely related to the sparse
distributed memory of [10], while in the unigram case it reduces
to the familiar sum of word embeddings, known to be surprisingly
powerful [1]. Compression of BonGs has been studied using classical
lossless algorithms by [15] and by linear schemes by [14], though
this motivation is not made in the latter. The novelty in our paper
is the connection to compressed sensing, which is concerned with
sparse recovery of x ∈ RN from low-dimensional measurements Ax
by studying conditions on matrix A ∈ Rd×N when this is possible.
Our approach is closely related to related results in learning by [3].

III. DOCUMENT EMBEDDINGS

Our analysis relates feature counting vectors and low-dimensional
embeddings via linear compression. Given a vocabulary of V words
we define a document’s Bag-of-Words (BoW) xBoW to be the V -
dimensional vector counting each word’s occurrence. An extension
is the Bag-of-n-Grams (BonG), which counts all k-grams for k ≤ n.
For ease of analysis we merge all n-grams containing the same
words in a different order, calling the resulting vector a Bag-of-n-
Cooccurrences (BonC); this does not affect performance significantly.

Now let word w have a vector vw ∈ Rd for d� V . For document
w1, . . . , wT we define the unigram embedding as zu =

∑T
t=1 vwt .

This has a straightforward relation with BoW: if A ∈ Rd×V is a ma-
trix with word vector columns then zu = AxBoW. To include n-grams
while remaining low-dimensional, we use elementwise multiplication,
so that for g = {w1, . . . , wn} we have the distributed cooccurrence
(DisC) embedding ṽg = d

n−1
2
⊙n

t=1 vwt . Then the DisC document
embedding is defined as the nd-dimensional concatenation, over
k ≤ n, of the sum of all k-gram DisC vectors. As with the unigram
subcase one can construct a matrix A(n) such that z(n) = A(n)xBonC.

Finally, we show how these linear schemes are related to LSTMs.
Starting with h0 = 0m an m-memory LSTM with word vectors
vw ∈ Rd takes in words w1, . . . , wT one-by-one and computes

ht+1 = f(Tf (vwt-1 , ht)) ◦ ht + i(Ti(vwt-1 , ht)) ◦ g(Tg(vwt-1 , ht))

for hidden state ht ∈ Rm, “activation” functions f, i, g, and affine
transformations T∗(x, y) = W∗x + U∗y + b∗ with weight matrices
W∗ ∈ Rm×d, U∗ ∈ Rm×m and bias vectors b∗ ∈ Rm. The LSTM
representation is then the state at the last time step, i.e. zLSTM = hT .
Importantly, we can show an initialization of gates and input functions
that constructs the previously-defined DisC embeddings:
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Fig. 1. Average F1-score of recovered BoW vectors from SST and IMDB
vs. dimension. Pretrained word embeddings need half the dimensionality of
random vectors to achieve near-perfect recovery.

Fig. 2. F1-score of 1000 recovered BoWs compared to number of words.
For d = 200, pretrained embeddings are better than random vectors as sensing
vectors for natural language BoW but are worse for random sparse signals.

Proposition 3.1: Given word vectors vw ∈ Rd, one can initialize
an O(nd)-memory LSTM that takes in words w1, . . . , wT and
constructs a DisC embedding, i.e. for all documents zLSTM = z(n).

IV. LSTMS AS COMPRESSED LEARNERS

Our main contribution is an analysis of our embedding schemes
showing that they are at least as good as BonCs for classification.
This requires two simplifying assumptions: the BonCs are scaled by

1
T
√
n

and no n-cooccurrence contains a word more than once.
Theorem 4.1: Let S = {(xi, yi)}mi=1 be drawn i.i.d. from a distri-

bution D over BonCs of documents of length at most T satisfying the
above assumptions and let w0 be the linear classifier minimizing the
logistic loss `D . Then for d = Ω̃

(
T
ε2

log nV
γ

)
and appropriate choice

of regularization coefficient one can initialize an O(nd)-memory
LSTM over i.i.d. word embeddings vw ∼ Ud{±1/

√
d} such that

w.p. (1− γ)(1− 2δ) the classifier ŵ minimizing the `2-regularized
logistic loss over its representations satisfies

`D (ŵ) ≤ `D (w0) +O

(
‖w0‖2

√
ε+

1

m
log

1

δ

)
This bound shows that LSTMs match BonC performance as ε → 0
i.e. by increasing the embedding dimension d. To prove this theorem,
we generalize a result in [3] and show that learning is possible under
linear compression if the matrix satisfies a strong recovery property
(RIP). We then show that the matrix A(n) for random embeddings is
a bounded orthonormal system and hence satisfies this property [7].

V. SPARSE RECOVERY WITH PRETRAINED EMBEDDINGS

Theorem 4.1 is proved using random embeddings, but in practice
LSTMs use vectors such as GloVe that do not satisfy the required
recovery property. Here we present the surprising empirical finding
that pretrained embeddings are more efficient at encoding and re-
covering BoWs by `1-minimization. We take documents from the
SST [18] and IMDB [12] datasets, embed them as zu = AxBoW for
d = 50, 100, 200, . . . , 1600 (where A ∈ Rd×V is the embedding
matrix), and solve Basis Pursuit (BP): min ‖w‖1 s.t. Aw = zu.

Figures 1 and 2 show that pretrained embeddings need a lower
dimension than random vectors to recover BoWs. This is surprising
as their objective goes against usual conditions such as incoherence;
indeed as seen in Figure 2 recovery is poor for random signals.

Fig. 3. DisC embedding performance vs. original dimension.

Representation n d SST (±1) SST IMDB

BonC 1-3 20K-200K+ 80.9 42.3 90.0
DisC 1-3 1600-4800 85.5 46.7 89.6

SIF [1] 1 1600 84.4 45.8 89.2
Sent2Vec [14] 1-2 700 80.2 31.0 85.5

CFL [15] 5 100K+ 90.4

skip-thoughts [11] 4800 85.1 45.8

The latter indicates that the fact that documents are meaningful sets
of words is important for sparse recovery using cooccurrence-based
embeddings. While properties for recovering signals with support
S ⊂ [V ] are hard to check, we use geometric results for nonnegative
BP [6] to formulate a verifiable condition, the supporting hyperplane
property, that is indeed more likely to be satisfied by pretrained
embeddings. As similarity properties that may explain these results
also relate to downstream tasks, we conjecture a relationship between
embeddings, recovery, and classification that may be understood
under a generative model. Though these experiments do not directly
apply to the Section IV bounds, they show that the compressed
sensing framework is relevant even for pretrained word embeddings.

VI. EMPIRICAL FINDINGS

Our theoretical results show that our n-gram embeddings can
approach BonG performance. We find that DisC is comparable
to other representations on several standard tasks, being the top
performer on the SST tasks, and verify that DisC performance on
the IMDB task approaches that of BonCs as dimensionality increases
(Figure 3), as predicted by Theorem 4.1. Using pretrained vectors,
DisC performance reaches BonC earlier, surpassing it for unigrams.
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