
Equilibrium Separations with No-Regret Agents

William Brown∗ Jon Schneider† Kiran Vodrahalli‡

February 14, 2023

Abstract

We consider a number of questions related to repeated gameplay between two agents, possibly using
no-(swap)-regret algorithms, and introduce a notion of generalized equilibrium with asymmetric regret
constraints which we use to analyze tradeoffs between the choices of learning algorithms and the rewards
obtained by each player. We first show that there exists a wide class of games where a player can signif-
icantly increase their utility by switching from playing a no-swap-regret algorithm to their Stackelberg
strategy (in fact, almost any game without pure Nash equilibria is of this form). We then show that
there exist pairs of algorithms which converge to any desired generalized equilibrium while simultane-
ously maintaining regret guarantees against arbitrary opponents, which yields a tight characterization
for the maximal reward obtainable against some no-regret learner, yet we also show that there are games
in which this value is unobtainable against a large class of standard no-regret algorithms. Finally, we
consider the question of identifying the Stackelberg strategy while playing against a no-regret agent
when the game is initially unknown, and again show a number of separations depending on the agent’s
learning algorithm: the Stackelberg strategy is learnable in exponential time via repeated play with any
no-regret agent (and in polynomial time with any no-dynamic-regret agent) for any game where it is
learnable via queries, and there are games where this strategy is learnable in polynomial time against
any no-swap-regret agent but requires exponential time against an arbitrary no-regret agent.

1 Introduction

How should two rational agents play a repeated, possibly unknown, game against one another? One nat-
ural answer – barring any knowledge of the game, or the capacity to compute potentially computationally
intractible equilibria – is that they should employ some sort of learning algorithm to learn how to play over
time. Indeed, there is a vast literature which studies what happens when all the players in a repeated game
run (some specific type of) learning algorithms to select their actions. For example, when all players in a
game simultaneously run no-(swap)-regret learning algorithms, it is known that the average strategy profile
of the learners converge to a (coarse) correlated equilibrium (Moulin and Vial, 1978; Foster and Vohra, 1998;
Hart and Mas-Colell, 2000). More recent works have studied how to design algorithms that converge to
these equilibria at faster rates (Daskalakis et al., 2011; Anagnostides et al., 2022; Daskalakis et al., 2021),
performance guarantees of such equilibria compared to the optimal possible welfare (Blum et al., 2008; Hart-
line et al., 2015), and the specific dynamics of such learning algorithms (Daskalakis et al., 2010; Ligett and
Piliouras, 2011b; Mertikopoulos et al., 2018).

In contrast, relatively little attention has been devoted to whether it is actually in the interest of these
agents to run these specific learning algorithms. For example, in a setting where all agents are running no-
swap-regret learning algorithms, when can an agent significantly benefit by deviating and running a different
type of algorithm? And if they can, what algorithm should the agent deviate to?

1.1 Our results

We explore the following questions (and others) in the case where two agents repeatedly play a normal-form,
general-sum game for T rounds.

∗w.brown@columbia.edu
†jschnei@google.com
‡kirannv@google.com

1

When is no-swap-regret play a stable equilibrium? What should you do if you know that your
opponent in a repeated game is running a no-swap-regret algorithm to select their actions? In Deng et al.
(2019), the authors show that one utility-optimizing response (up to additive o(T) factors) is to play a static
(mixed) strategy (your Stackelberg strategy) and obtain the Stackelberg value of the game.

However (as we discuss in further detail below), determining your Stackelberg strategy requires some
knowledge of the game, and acquiring this knowledge from repeated play may be difficult. In comparison,
it is relatively straightforward to also run a no-swap-regret learning algorithm. This begs the question:
are there games where you obtain significantly less utility (i.e., at least Ω(T) less utility) by running a
no-swap-regret learning algorithm instead of playing your Stackelberg strategy?

We show that the answer is yes, such games exist and are relatively common. In fact, we provide an
efficient algorithmic characterization of the games G for which both players playing a no-swap-regret learning
algorithm is an (o(T)-)approximate Nash equilibrium of the entire repeated game. The exact characterization
is presented in Section 3 and is somewhat subtle (e.g., there are slightly different characterizations depending
on whether we insist all pairs of no-swap-regret algorithms lead to approximate equilibria or only one specific
pair). One consequence of both characterizations, however, is that in order for it to be an approximate
equilibrium for both players to play a low-swap regret strategy, the game G must possess a pure Nash
equilibrium. That is, in any game without a pure Nash equilibrium, it is possible for at least one of the
parties to do significantly better by switching from no-swap-regret learning to playing their Stackelberg
strategy.

Playing against no-regret learners. What if our opponent is not running a no-swap-regret algorithm,
but simply a no-(external)-regret algorithm? In this case, it is still possible to obtain at least the Stackelberg
value of the game by playing our Stackelberg strategy (no-regret algorithms are also guaranteed to eventually
learn and play the best response to this strategy). However, unlike in the no-swap-regret setting, there exist
specific games and no-regret algorithms where it is possible to obtain significantly (Ω(T)) more than the
Stackelberg value by playing a specific dynamic strategy.

This phenomenon was first observed in Deng et al. (2019), where the authors gave an example of a specific
game where it is possible to obtain Ω(T) more than Stackelberg when playing against any no-regret algorithm
in the family of mean-based learning algorithms (including algorithms such as multiplicative weights and
FTRL). However, many basic questions remain unanswered – for example, understanding in which games it
is possible to outperform playing one’s Stackelberg strategy, and by how much.

We present some answers to these questions for the case of generic no-regret algorithms. Specifically,
we first show that if player B is running (any) no-regret algorithm, the utility of player A (regardless of
what strategy they employ) is upper bounded by ValA (∅, E) · T + o(T), where ValA (∅, E) is what we call
the the unconstrained-external (equilibrium) value of the game for player A, which is given by the solution
to a linear program. We then show that this upper bound is asymptotically tight: there exists a no-regret
algorithm L such that if player B is playing according to L, then the player A can obtain utility at least
ValA (∅, E) · T − o(T) by playing an appropriate strategy in response.

Note that this characterization does not completely resolve the question of Deng et al. (2019) – it requires
the construction of a fairly specific no-regret algorithm A, and it is still open what is possible against specific
(classes of) no-regret algorithms (e.g., multiplicative weights or mean-based algorithms). In fact, we show
that there are games where it is impossible to obtain the unconstrained-external value against a mean-based
learner (Theorem 4).

Learning the Stackelberg strategy through repeated play. Finally, we address the question of how
hard is it to actually play the Stackelberg strategy in a game (e.g., in a setting where an agent is deviating
from playing no-swap-regret). Given full knowledge of the game G, finding an agent’s Stackelberg strategy
is simply a computational problem which turns out to be efficiently solvable by solving several small LPs
(see Conitzer and Sandholm (2006)). However, in a setting where the base game is unknown, the agent must
learn their Stackelberg strategy over time.

There is some existing work on the problem of learning the Stackelberg strategy in a game (e.g., Letchford
et al. (2009); Peng et al. (2019)), but this work generally assumes access to a best-response oracle for the
game (i.e., for a specific mixed strategy, what is the best-response of our opponent and what utility do we
obtain under this joint strategy profile?). In contrast, if our opponent is playing a specific no-regret learning

2

algorithm, they may not immediately best respond to the strategies we play! This raises the following two
questions. First, when is it possible to learn the Stackelberg equilibrium of a game while playing against
a learning opponent? Second, is it easier to learn this equilibrium when playing against certain classes of
learning algorithms?

We begin by showing that it is indeed possible to convert any algorithm that learns the Stackelberg
equilibrium via (approximate) best-response queries to an algorithm that can learn the Stackelberg equilib-
rium while playing against a generic no-regret learner, albeit at the cost of an exponential blow-up in the
number of rounds (if the original algorithm required Q best-response queries, the second algorithm requires
T = exp(O(Q)) rounds of play). We then show that, in some sense, this exponential blow-up is necessary. In
particular, we give an example of a game with M actions where it is possible to learn the Stackelberg equilib-
rium in poly(M) rounds when playing against any no-swap-regret learning algorithm, but where it requires
at least exp(Ω(M)) rounds to learn this equilibrium when playing against certain no-regret algorithms.

Generalized equilibria (and separations). In developing some of the above results, we find it useful to
work with a generalization of correlated and coarse correlated equilibria that we call generalized equilibria.
At a high level, given a class FA of “deviation rules” (time independent rules for modifying an agent’s
strategy) for the first agent, and a class FB of “deviation rules” for the second agent, we define an (FA,FB)-
equilibrium to be a joint distribution over strategy profiles where neither player can increase their reward
by applying one of the deviations in their class. These classes directly capture common regret notions: for
example, when FA is the class E of fixed action deviations, this corresponds to the first agent having a
no-(external)-regret guarantee, and thus (E , E)-equilibria are simply coarse correlated equilibria. Where the
flexibility of this definition is useful is the ability to specify different classes for FA and FB ; for example, if
we set FA = ∅ (no valid deviations except the identity) and FB = E , then (∅, E)-equilibria are exactly the
unconstrained-external equilibria mentioned above.

Some of the above results extend to these generalized equilibria (for example, we prove an analogue of
the above result on inducing the best unconstrained-external equilibrium for any generalized equilibrium
notion). In addition, we characterize the maximal reward gaps between generalized equilibria for many of
the explicit variants we consider (Theorem 8).

1.2 Related Work

The broader literature on no-regret learning in repeated games is substantial, covering many equilibrium
convergence results varying assumptions. A recent line of work (Braverman et al. (2017); Deng et al. (2019);
Mansour et al. (2022)) considers problems related to optimizing one’s reward when competing against a no-
regret learner in a game. We extend these questions to consider the relationship and regret for an optimizer,
as well as to settings where properties of the game are initially unknown, and give a series of separation
results in terms of various notions of equilibrium. Also relevant is the literature on analysis of no-regret
trajectory dynamics, and in particular Ligett and Piliouras (2011a) which shows a game in which no-regret
dynamics outperform the reward of the Nash equilibrium. Additionally, there is also prior work considering
regret minimization problems involving either best-responding or otherwise strategic agents (see e.g. Balcan
et al. (2015); Huang et al. (2018)), as well as work considering alternate notions of regret for repeated
Stackelberg games (e.g. Goktas et al. (2022)).

2 Preliminaries

Throughout, we consider two-player bimatrix games G = (A,B), where player A (“the optimizer”) has
action set A = {a1, . . . , aM} and player B (“the learner”) has action set B = {b1, . . . , bN}. When the
optimizer plays action ai and the learner plays action bj , the players receive rewards uA(ai, bj) and uB(ai, bj),
respectively. We assume that the magnitude of each utility is bounded by a constant. The sets of mixed
strategies for each player are denoted by ∆(A) and ∆(B), respectively; when the optimizer plays a mixed
strategy α ∈ ∆(A) and the learner plays β ∈ ∆(B), the expected reward for the optimizer is given by

uA(α, β) =
∑M

i=1

∑N
j=1 αiβjuA(ai, bj), with uB(α, β) defined analogously. An action b ∈ B is a best response

to a strategy α ∈ ∆(A) if b ∈ argmaxb′∈B uB(α, b
′). Let BR(α) be the set of all such actions.

3

Definition 1 (Stackelberg Equilibria). The Stackelberg equilibrium of a game G is the pair of strategies
(α, b) given by argmaxα∈∆(A), b∈BR(α) uA(α, b), and the resulting expected utility for the optimizer is the
Stackelberg value of the game, denoted StackA.

Throughout, we assume that there is an (approximate) Stackelberg equilibrium with a unique best re-
sponse; this is implied by several natural assumptions, such as that the best response regions have positive
volume (see Section 5.1), or when the game has no weakly dominated strategies (see Deng et al. (2019)).

Given a sequence of action pairs (ai1bj1), . . . , (aiT bjT) for T > 0 and some set of functions F , where each
f ∈ F maps actions A to action profiles in ∆(A), we say that the F-regret for the optimizer (and analogously
for the learner) is

RegF (T) = max
f∈F

T∑
t=1

uA(f(ait), bjt)− uA(ait , bjt).

Definition 2 (No-F-Regret Learning). We say a learning algorithm L is a no-F-regret algorithm if, for
some constant c < 1, we have that RegF (L, T) = O(T c), where RegF (L, T) is the F-regret corresponding to
the action sequence played by L.

Some notable sets of regret comparator functions F are the constant maps E (corresponding to external
regret), where all input actions are mapped to the same output action, and the “swap functions” I (corre-
sponding to internal regret), which contain all single swap maps fij : [M] → [M] where f(i) = j and f(i′) = i′

for i′ ̸= i. Imposing these constraints on players in a game results in a (coarse) correlated equilibrium, which
are instances of our notion of generalized equilibrium.

Definition 3 (Generalized Equilibria). A (FA,FB)-equilibrium σ ∈ ∆(A × B) in a two-player game is
a joint distribution over action profiles (a, b) such that player A cannot increase their expected reward by
deviating with some strategy in FA and player B cannot benefit by deviating with some strategy in FB.

We consider an ε-approximate generalized equilibrium to be one where each constraint is satisfied up to
additive error ε, and we say that the value of a game G for player A of a certain equilibrium class (FA,FB),
denoted ValA (FA,FB) is the maximum reward obtainable by player A at some (FA,FB)-equilibrium (with
ValB (FA,FB) defined analogously for player B).

While many equilibrium notions for two-player games impose symmetric regret constraints on each player
(e.g. Nash, correlated, and coarse correlated equilibria), this need not always be the case (Stackelberg
equilibria are a motivating example for considering more general notions of asymmetric equilibria). In
particular, we focus the function classes E and I corresponding to external and internal regret as mentioned
above, as the well empty set ∅ corresponding to unconstrained regret. For example, any joint distribution
over action profiles where player B has zero swap regret constitutes a (∅, I)-equilibrium for a game, and
the optimal value for such an equilibrium for player A coincides with the Stackelberg value. Further, these
sets of equilibria characterize the possible outcome spaces for pairs of learning algorithms, and each can be
optimized over via a linear program.

Proposition 1. For a repeated game over T rounds where player A uses a no-FA-regret algorithm and
player B uses a no-FB-regret algorithm, the average rewards obtained by each player are upper bounded by
ValA (FA,FB) + o(1) and ValB (FA,FB) + o(1), respectively.

Proposition 2. For a game G, if there is an approximate Stackelberg equilibrium (α, b) such that uA(α, b) =
StackA −ε where BR(α) = {b} for any ε > 0, then StackA = ValA(∅, I).

Proposition 3. For any game G and constraints (FA,FB), both ValA (FA,FB) and ValB (FA,FB) are
computable via linear programs with MN variables and poly(M,N, |FA| , |FB |) constraints. When FA and
FB belong to {∅, E , I}, the number of constraints is poly(M,N).

In general, these values for a player can differ when considering distinct notions of generalized equilib-
ria. In Appendix A we give several examples of such separations, and discuss further characterizations of
generalized equilibria and their corresponding values.

4

Anytime regret-bounds and mean-based learning. For some of our results, it will be most natural
for us to assume that algorithms have anytime regret bounds, i.e. that regret over the first t rounds is
bounded by O(tc) for any t ≤ T . Many standard no-regret algorithms obtain bounds of this form by
appropriately decaying their learning rates or applying doubling methods. Another key property of many
no-regret algorithms, identified by Braverman et al. (2017), is that they are mean-based.

Definition 4 (Mean-Based Learning). Let σi,t be the cumulative reward resulting from playing action i for
the first t rounds. An algorithm L is γ-mean-based if, whenever σi,t ≤ σj,t − γT , the probability that the
algorithm selects action i in round t+ 1 is at most γ, for some γ = o(1).

3 Stability of no-swap-regret play

We begin by addressing the following question: when is it the case that for two players in a game, it is
an approximate (Nash) equilibrium for both players to play no-swap-regret strategies? More specifically,
imagine a “metagame” where at the beginning of this repeated game, both players simultaneously announce
and commit to a specific adaptive (and possibly randomized) algorithm they intend to run to select actions
to play in the repeated game G for the next T rounds. In this metagame, for which games G is it an
o(T)-approximate Nash equilibrium for both players to play a no-swap-regret learning algorithm?

Of course, the answer to this question might depend on which specific no-swap-regret learning algorithm
the agents declare. We therefore attempt to understand the following two questions:

• Necessity: For which games G is it the case that there exists some pair of no-swap-regret algorithms
which form a o(T)-approximate Nash equilibrium? (Equivalently, when is it never the case that playing
no-swap-regret algorithms forms an approximate Nash equilibrium).

• Sufficiency: For which games G is it the case that all pairs of no-swap regret algorithms form
o(T)-approximate Nash equilibria?

We begin by providing an efficient algorithmic procedure to answer both of these questions for a specific
game G. To do this, recall that when two players both employ no-swap regret strategies, they asymptotically
(time-average) converge to some correlated equilibrium. On the other hand, by defecting from playing a no-
swap regret strategy (while the other player continues playing their no-swap regret strategy), a player can
guarantee their Stackelberg value for the game. Moreover, as shown by Deng et al. (2019), this is the optimal
(up to o(T) additive factors) best response to an opponent running a no-swap regret strategy.

It thus suffices to understand how the utility a player might receive under a correlated equilibrium
compares to the utility they receive under their Stackelberg strategy. For a fixed game G, let StackA =
ValA(∅, I) be the Stackelberg value for the first player, StackB be the Stackelberg value for the second
player. We have the following theorem.

Theorem 1. Fix a game G. The following two statements hold:

1. There exists some pair of no-swap-regret algorithms that form an o(T)-approximate Nash equilibrium
in the metagame iff there exists a correlated equilibrium σ in G such that uA(σ) = StackA and uB(σ) =
StackB.

2. Any pair of no-swap-regret algorithms form an o(T)-approximate Nash equilibrium in the metagame iff
for all correlated equilibria σ in G, uA(σ) = StackA and uB(σ) = StackB.

Moreover, given a game G, it is possible to efficiently (in polynomial time in the size of G) check whether
each of the above cases holds.

The characterization in Theorem 1 is algorithmically useful, but sheds little direct light on in which
games or how often we would expect playing no-swap-regret to be an approximate equilibrium. It turns out
that for many games, playing no-swap-regret is not an equilibrium; below we will show that for almost all
games, if G does not have a pure Nash equilibrium, at least one player has an incentive to deviate to their
Stackelberg strategy.

5

Definition 5. A property P of a game holds for almost all games if, given any game G, property P holds
with probability 1 for the game G′ formed by starting with G and perturbing each of the entries uA(ai, bj)
and uB(ai, bj) by independent uniform random variables in the range [−ε, ε] (for any choice of ε). In other
words, the property holds for almost all choices of the 2MN utility values that define a game (with respect
to the standard measure on this space).

Theorem 2. For almost all games G, if G does not have a pure Nash equilibrium, then there does not exist
a pair of no-swap-regret algorithms which form a o(T)-approximate Nash equilibrium in the metagame for
G.

Sketch. We can show that if a correlated equilibrium has the same utility for a player as their Stackelberg
value (a consequence of Theorem 1), then the correlated equilibrium must be a convex combination of valid
Stackelberg equilibria. In almost all games, both players have unique Stackelberg equilibria, which implies
that this correlated equilibrium must actually be the Stackelberg strategy for both players simultaneously.
This implies that it is a pure Nash equilibrium (since one action in a generic Stackelberg equilibrium is
always pure).

Note that although Theorem 2 holds for almost all games, there are some important classes of games
(most notably, zero-sum games) in the measure zero subset omitted by this theorem statement that both
a. do not have pure Nash equilibria and b. have the property that playing no-swap-regret algorithms is an
approximate equilibrium in the metagame (in particular, for zero-sum games, the Stackelberg value collapses
to the value of the unique Nash equilibrium). Still, Theorem 2 shows that there are very wide classes of
games for which playing no-swap-regret algorithms is not stable from the perspective of the agents.

4 Generalized Equilibria and No-Regret Learning

In this section, we assume the game is known by both players. Our goal is to establish whether or not
it is possible to achieve a specific generalized equilibrium with no-F-regret learners – of particular interest
is the optimal such equilibrium. We prove that it is possible to “target” specified generalized equilibra
(thus including various notions of optimal equilibrium) while maintaining no-F-regret properties when given
leeway to design the learning algorithms that both players use. However, even in very natural settings where
one player is playing a mean-based no-regret algorithm, there exist games where a specific (∅, E)-equilibrium
cannot be reached regardless of the learning algorithm the second player uses.

Before we proceed, we formally state the regret-equilibrium connection between Definitions 2 and 3 in
the following proposition:

Proposition 4 (Convergence of No-F-Regret Dynamics to Generalized Equilibrium). Suppose after T it-
erations of dynamics where player A plays a no-FA-regret algorithm and player B plays a no-FB-regret
algorithm, player A has average FA-regret ≤ ε and player B has average FB-regret ≤ ε. Let σt := ptA × ptB
denote the joint distribution over both players’ actions at time t and σ := 1

T

∑T
t=1 σ

t denote the time-averaged
history over joint player action distributions. Then we have that σ is an ε-approximate (FA,FB)-equilibrium:

E
(a,b)∼σ

[uA (a, b)] ≥ E
(a,b)∼σ

[uA (fA(a), b)]− ε

E
(a,b)∼σ

[uB (a, b)] ≥ E
(a,b)∼σ

[uB (a, fB(b))]− ε

for every possible deviation fA ∈ FA, fB ∈ FB. Likewise, if players A and B repeatedly play strategies
corresponding to an (FA,FB)-equilibrium, then player A is no-FA-regret and player B is no-FB-regret.

We show that for any generalized equilibrium E in a game, there exists a pair of algorithms which satisfy a
“best-of-both-worlds” property: when played together, they converge to E, yet they simultaneously maintain
the corresponding regret guarantees when played against arbitrary adversaries.

Theorem 3. Consider any game G. Suppose there exists a no-FA-regret learning algorithm LA and a no-
FB-regret learning algorithm LB. For any particular (FA,FB)-equilibrium E in a game G, there exists a
pair of learning algorithms (L∗

A(E),L∗
B(E)) such that:

6

• The empirical sequence of play when Player A uses L∗
A(E) and Player B uses L∗

B(E) converges to E.

• L∗
A(E) and L∗

B(E) are no-FA-regret and no-FB-regret, respectively, against arbitrary adversaries.

Our approach is for the algorithms to initially implement a schedule of strategies which converges to E.
Yet, these algorithms also detect when their opponent disobeys the schedule by tracking their F-regret with
respect to E, and after o(T) violations can deviate indefinitely to playing a standalone no-F-algorithm for
all remaining rounds. This result has some notable implications:

Corollary 3.1. For any equilibrium scoring function ϕ : ∆(A×B) → R with a unique optimum computable
in finite time, there exists a pair of learning algorithms (L∗

A,L
∗
B) such that:

• The empirical distribution when player A uses L∗
A and player B uses L∗

B converges to argmaxE ϕ(E).

• L∗
A and L∗

B are no-FA-regret and no-FB-regret, respectively, against arbitrary adversaries.

Proof. First optimize ϕ over E in finite time to find the unique optimum; then apply Theorem 3 to the
resulting desired equilibrium.

Corollary 3.1 allows for optimizing for objectives such as total welfare or min-max utility for both players,
and also for imposing further conditions on generalized equilibria beyond F-regret constraints (e.g. product
distribution constraints for Nash equilibria) by assigning arbitrarily low scores to invalid strategy profiles.

Furthermore, this result implies that Val(∅,E)(G) tightly characterizes the maximum reward attainable
against a no-regret learner, i.e. for each game G, there exists a no-regret algorithm LB for the learner and an
efficiently implementable algorithm LA for the optimizer (which may require positive regret) which, when
played together, yield the maximum reward attainable with an adaptive strategy against a no-regret learner
for the optimizer.

Corollary 3.2. For any game G, there exists a no-regret algorithm L and a strategy for Player A such that
the empirical average reward of Player A converges to ValA (∅, E) when Player B uses L.

While this requires the learner to use a specific no-regret algorithm, we show that some such constraint
is necessary to obtain ValA(∅, E): for the class of mean-based no-regret algorithms, there are instances where
ValA(∅, E) and ValA(∅, I) are separated by a constant and where the maximal value obtainable against a
mean-based learner is asymptotically equal to ValA(∅, I).

Theorem 4. Against any mean-based no-regret algorithm for player B, there is a game where a T -round
reward of ValA(∅, E) · T − o(T) cannot be reached by any adaptive strategy for player A.

b1 b2 b3
a1 1, 1 0, 0 3, 0
a2 0, 0 1, 1 0, 0

Figure 1: Game where ValA (∅, E) > ValA (∅, I) = MBRewA

Proof. Let MBRewA denote the maximal reward obtainable by player A when player B uses a mean-based
algorithm. Observe that b3 is dominated for player B, and thus cannot be included in any (∅, I)-equilibrium.
Further, it will never be played by a mean-based learner for more than o(T) rounds, as for any distribution
over a1 and a2 the best response is either b1 or b2. As such, both ValA (∅, I) and MBRewA are at most
1 + o(1); a reward of 1 − o(1) is obtainable by committing to either a1 or a2 for each round. However, we
can see that the optimal (∅, E)-equilibrium p for player A includes positive mass on (a1, b3), and yields an
average reward of ValA (∅, E) = 2 for player A. Let p1 be the probability on (a1, b1), let p2 be the probability
on (a2, b2), let p3 be the probability on (a1, b3), and let p0 be the remaining probability. The reward for
player A is given by:

RewA(p) = p1 + p2 + 3p3

and p defines a (∅, E)-equilibrium if
RewB(p) ≥ RewB(p → bi)

7

for each bi, which holds if:

p1 + p2 ≥ p1 + p3;

p1 + p2 ≥ p2;

p1 + p2 ≥ 0.

Only the first constraint is non-trivial, and so the optimal (∅, E)-equilibrium for player A occurs by maxi-
mizing p1+p2+3p3 subject to p2 ≥ p3, which yields a probability of 0.5 for both p2 and p3 (and 0 for p1 and
p0), as well as an average reward of 2. As such, player A cannot obtain a reward approaching ValA(∅, E), as
their per-round reward is at most 1 + o(1).

5 Learning Equilibria in Unknown Games

The previous results have considered settings where the optimizer has full information of the payoffs of the
game G. In many cases, such as when a game is represented implicitly with rewards being returned by
interaction with some oracle, this assumption is unrealistic. Here, we consider the question of strategizing
against a no-regret learner when the game is initially unknown. In particular, we consider the goal of
efficiently matching the Stackelberg value (which is always possible in the full-information case, and is the
best conceivable outcome against some algorithms), and we show that the feasibility of this can depend on the
details of the specific no-regret algorithm used by the agent. We introduce a method for robustly learning
Stackelberg strategies via perturbed best response queries, which we extend to give a polynomial-round
strategy learning against arbitrary no-dynamic-regret algorithms, as well an exponential-round strategy for
arbitrary no-regret algorithms. We also give an example set of games for which learning the Stackelberg
strategy against a class of mean-based algorithms requires exponential time, but where learning against an
arbitrary no-swap-regret algorithm can be done in polynomial time.

5.1 Robust Query Algorithms

First, we consider the problem of robustly learning the Stackelberg strategy for a game via best response
queries in which the input mixed strategy for any query may be perturbed in an arbitrary by some small
amount. Algorithms for computing Stackelberg equilibria via queries typically assume the ability to specify
a mixed strategy to arbitrary precision and observe the opponent’s best response, as well one’s reward
Letchford et al. (2009); Peng et al. (2019), and aim to find the exact Stackelberg equilibrium. Instead, we
will be interested in matching StackA to within poly(ε), while tolerating a perturbation error of ε to our
queries. Given a strategy α, an ε-perturbed best response query to α returns some action b ∈ BR(α + p),
where p ∈ RM is an arbitrary vector satisfying ∥p∥1 ≤ ε and α + p ∈ ∆(A). For a class of games G, an
algorithm Qε is an ε-robust query algorithm for learning an approximate Stackelberg equilibrium if, over
a sequence of at most Q ε-perturbed best response queries, it outputs a strategy α∗ with robust reward
uA(α

∗ + p, b) ≥ StackA −O(εc) for some c > 0 and any b ∈ BR(α∗ + p), again for any p ∈ RM satisfying
∥p∥1 ≤ ε and α+ p ∈ ∆(A).

The query complexity of existing algorithms often depends on structural properties of the game such as
bit representation length, the number of extremal points of best response regions, and the size of the smallest
best response region. This last condition poses inherent difficulties for finding initial points inside each best
response region Rj = {α ∈ ∆(A) : bj = BR(α)} in the robust setting: if a region Rj does not contain a
ball of radius ε, then adversarial perturbations may prevent all queries from observing bj as a best response.
Here, we assume that regions are sufficiently large to preclude this, and further that an initial such point is
known for each region.1 Our robust query algorithm builds on the algorithm from Letchford et al. (2009),
calibrated to precision O(log(1/ε)), with an added contraction step to ensure that points in the estimated
best response regions R̂j are contained in the corresponding regions Rj even after applying perturbations.

1The assumption that an initial point is known can be relaxed via sampling if each region Rj has volume at least Ω(poly(ε)),
using the sampling approach from Letchford et al. (2009).

8

Theorem 5. Suppose that for a game G, for each bj where BR(α) = {bj} for some α ∈ ∆(A), we are given
a strategy α(j) such that BR(α(j) + p) = {bj} for any p with ∥p∥1 ≤ ε1/2 . Then, there is an ε-robust query
algorithm which requires Q = poly(M,N, log(1/ε)) queries, and which yields a strategy α∗ with robust reward
at least StackA −O(ε1/2).

Proof. Note that when imposing an ε-grid line segment between any two points in (convex) feasible regions
Rj and Rj′ , at most one point on this grid can result in multiple possible best responses due to perturbation.
From this, we can run the SU algorithm from Letchford et al. (2009) starting from each α(j), specified for
log(1/ε) bits of precision, with the small modification that the hyperplane boundary points for an estimated
best response region R̂j are chosen to be one step inward along the ε-grid used for binary searching line

segments. Each such point necessarily belongs to Rj , and the set of linear programs for each R̂j will output
the optimal Stackelberg strategy associated with these contracted best response regions, up to precision
log(1/ε).

To see that this impacts utility by at most O(ε1/2), note that each Rj contains a ball of radius ε1/2 (here
denoted ε1/2 B). Let Rj be parameterized such that α(j) is the origin. Consider any halfspace defined by a
hyperplane of Rj ; any point the hyperplane’s distance to the origin is decreased by a factor of at most 1−ε1/2,
as the absolute distance along the normal vector is at least ε1/2 and is decreased by O(ε) when considering
the parallel hyperplane to that of Rj ; the estimated boundary of R̂j lies between these hyperplanes. This is

maintained upon taking the intersection of the halfspaces which define R̂j , and so we have that any point in

(1−O(ε1/2))Rj is contained in R̂j . Further, we have that

(1−O(ε1/2))R̂j +O(ε1/2)2 B ⊆ (1−O(ε1/2))R̂j +O(ε1/2)R̂j ⊆ Rj ,

and so any point in (1 − O(ε1/2))R̂j has a ball of radius ε around it contained in Rj . As such, optimizing

over (1 − O(ε1/2))R̂j yields a strategy within O(ε1/2), as rewards are bounded by a constant, and so upon

taking the maximum over each R̂j we obtain a reward at least StackA −O(ε1/2).

5.2 From Robust Query Algorithms to Adaptive Strategies

We give a set of reductions from robust query algorithms for learning Stackelberg equilibria to adaptive
strategies for playing no-regret or no-dynamic-regret learners. The notion of dynamic regret, which was
originally formulated in Zinkevich (2003) and extended to the online setting in Hall and Willett (2013),
considers regret with respect to comparator sequences which may change over time. Here, we make use
of a simplified notion which considers only comparator sequences which change once every W rounds, for
W = o(T); note that this is implied for sufficiently large W by the standard path-length formulation.

Definition 6 (Dynamic Regret Learning). Consider the partition of a length-T horizon into consecutive
windows of length W . An algorithm is no-dynamic-regret for W and F if, for some constant c < 1, we have
that RegF (L,W) = O(W c) for each window in the partition.

Intuitively, the property that no-regret algorithms must frequently play the best response to the entire
history of losses (or to a recent window of losses in the case of no-dynamic-regret algorithms) enables us to
simulate queries by playing actions which align the relevant history with the strategy we intend to query. For
arbitrary anytime no-regret algorithms, this approach may take exponentially many rounds, as subsequent
queries may require “washing out” nearly the entire history of play, whereas the per-window regret bound
of no-dynamic-regret algorithms allows query simulation in a polynomial number of rounds.

For simplicity, we assume that players know their own reward matrix but not their opponent’s; this is
straightforward to relax for the optimizer when the learner is no-regret, as the relevant history changes slowly
enough inside each Rj to enable playing each strategy ai and observing uA(ai, bj).

Theorem 6. Given a robust query algorithm Qε for a class of games G and a learner using an anytime
no-regret algorithm L, there is an adaptive strategy for the optimizer which achieves an average reward at
least StackA −O(ε1/2 + T c−1) after T = O(poly(1/ε)Q) rounds. If L is a no-dynamic-regret algorithm for
windows of size W = Ω(poly(1/ε)), there is an adaptive strategy which achieves an average reward at least
StackA −O(ε1/2 + T c−1) after T = O(WQ/ε1/2) rounds.

9

Proof. First, consider an anytime no-regret learner with an O(tc) regret bound. To implement a query q,
greedily play the action whose historical frequency of play is the furthest below its target frequency in q.
After O(poly(1/ε)) rounds, the historical distribution will be within O(ε) of q, and continuing the greedy
selection strategy indefinitely will ensure that the history remains in a O(ε)-ball around q. Let tq be the
time at which this occurs. After maintaining the greedy strategy for q for an additional ω(tcq) rounds, the
anytime regret bound ensures that most frequently played item must indeed be the best response response to
some point in the O(ε)-ball around q, provided that this ball is contained entirely inside some best response
region Rj . Recall that our robust query algorithm Qε does not make use of the response for the point
which may lie on the boundary, and always steps inward by ε towards α(j), for which the corresponding
ball will be entirely contained in Rj . For the kth subsequent query q(k), playing the greedy strategy will
result in convergence of the history to with O(ε) after O(poly(1/ε)i) rounds, as the entire history prior to
implementing q(i) contributes at most O(ε) of the current history. We repeat this process until all Q queries
have been answered, requiring O(poly(1/ε)Q) rounds, after which we can commit to playing the strategy α∗

output by Qε rounds, which dominates the history after t increases factor of O(1/ε). The difference between
our average utility and StackA is bounded by the O(ε1/2) error resulting from α∗, as well as the learner’s
average regret T c−1 which bounds the fraction of rounds in which the best response to α∗ is not played.

For the dynamic regret case, if W is large enough to implement each query as above (ignoring prior
history), we can simply allocate one window per query, requiring a total of QW rounds to learn α∗. After
increasing t by a factor of ε−1/2, the average error contribution during our learning stage matches the error
resulting from α∗, yielding the bound.

5.3 Separations for Mean-Based and No-Swap-Regret Algorithms

While the previous result indicates that no-dynamic-regret algorithms are efficient to learn against in many
cases, we show here that the exponential dependence for simpler mean-based algorithms is necessary: there
exist games where learning the Stackelberg strategy requires exponentially many rounds. However, for the
games we construct, we show that it is still possible to efficiently learn the Stackelberg strategy against a
no-swap-regret learner.

Theorem 7. There is a distribution over games D such that for a sampled game G:

• For any no-swap-regret learner used by the opponent, there is a strategy for the leader which yields an
average reward of Val(G)− ε in T = poly(M/ε) rounds.

• There is a mean-based no-regret algorithm such that, when used by the opponent, there is no strategy
for the leader which yields an average reward of Val(G)− ε over T rounds unless T = exp(Ω(M)).

Our construction includes a set of actions for player B which are best responses to pure actions from
player A, and one such pure strategy pair will necessarily constitute the Stackelberg equilibrium; identifying
each best response suffices for player A to identify the Stackelberg strategy. The game also includes a
number of safety actions for player B, which yield no reward for player A with any strategy, yet allow player
B to “hedge” between multiple actions of player A. This poses a barrier to optimizing against a mean-based
learner: the history must be heavily concentrated on a single action to observe the best response, and as such
the history length must grow by a constant factor for each observation. However, against a no-swap-regret
learner, it suffices for the optimizer to only play each action for a polynomially long window in order to
identify the learner’s best response, as we can track the accumulation of “swap-regret buffer” for any other
action and show that it cannot be too large, limiting the number of rounds it can be played when it is not
a current best response.

References

I. Anagnostides, C. Daskalakis, G. Farina, M. Fishelson, N. Golowich, and T. Sandholm. Near-optimal
no-regret learning for correlated equilibria in multi-player general-sum games. In Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing, pages 736–749, 2022.

10

S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-algorithm and ap-
plications. Theory of Computing, 8(6):121–164, 2012. doi: 10.4086/toc.2012.v008a006. URL https:

//theoryofcomputing.org/articles/v008a006.

M.-F. Balcan, A. Blum, N. Haghtalab, and A. D. Procaccia. Commitment without regrets: Online learning
in stackelberg security games. In Proceedings of the Sixteenth ACM Conference on Economics and Com-
putation, EC ’15, page 61–78, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450334105. doi: 10.1145/2764468.2764478. URL https://doi.org/10.1145/2764468.2764478.

A. Blum, M. Hajiaghayi, K. Ligett, and A. Roth. Regret minimization and the price of total anarchy. In
Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 373–382, 2008.

M. Braverman, J. Mao, J. Schneider, and S. M. Weinberg. Selling to a no-regret buyer. CoRR,
abs/1711.09176, 2017. URL http://arxiv.org/abs/1711.09176.

V. Conitzer and T. Sandholm. Computing the optimal strategy to commit to. In Proceedings of the 7th
ACM Conference on Electronic Commerce, EC ’06, page 82–90, New York, NY, USA, 2006. Association
for Computing Machinery. ISBN 1595932364. doi: 10.1145/1134707.1134717. URL https://doi.org/

10.1145/1134707.1134717.

C. Daskalakis, R. M. Frongillo, C. H. Papadimitriou, G. Pierrakos, and G. Valiant. On learning algorithms
for nash equilibria. In SAGT, pages 114–125. Springer, 2010.

C. Daskalakis, A. Deckelbaum, and A. Kim. Near-optimal no-regret algorithms for zero-sum games. In
Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages 235–254.
SIAM, 2011.

C. Daskalakis, M. Fishelson, and N. Golowich. Near-optimal no-regret learning in general games. Advances
in Neural Information Processing Systems, 34:27604–27616, 2021.

Y. Deng, J. Schneider, and B. Sivan. Strategizing against no-regret learners. CoRR, abs/1909.13861, 2019.
URL http://arxiv.org/abs/1909.13861.

D. P. Foster and R. V. Vohra. Asymptotic calibration. Biometrika, 85(2):379–390, 1998.

D. Goktas, J. Zhao, and A. Greenwald. Robust no-regret learning in min-max stackelberg games, 2022. URL
https://arxiv.org/abs/2203.14126.

E. C. Hall and R. M. Willett. Dynamical models and tracking regret in online convex programming, 2013.
URL https://arxiv.org/abs/1301.1254.

S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. Econometrica,
68(5):1127–1150, 2000.

J. Hartline, V. Syrgkanis, and E. Tardos. No-regret learning in bayesian games. Advances in Neural Infor-
mation Processing Systems, 28, 2015.

Z. Huang, J. Liu, and X. Wang. Learning optimal reserve price against non-myopic bidders. CoRR,
abs/1804.11060, 2018. URL http://arxiv.org/abs/1804.11060.

J. Letchford, V. Conitzer, and K. Munagala. Learning and approximating the optimal strategy to commit
to. In Algorithmic Game Theory, 2009.

K. Ligett and G. Piliouras. Beating the best nash without regret. SIGecom Exchanges, 10(1):23–26, 2011a.
doi: 10.1145/1978721.1978727. URL http://doi.acm.org/10.1145/1978721.1978727.

K. Ligett and G. Piliouras. Beating the best nash without regret. ACM SIGecom Exchanges, 10(1):23–26,
2011b.

Y. Mansour, M. Mohri, J. Schneider, and B. Sivan. Strategizing against learners in bayesian games, 2022.
URL https://arxiv.org/abs/2205.08562.

11

https://theoryofcomputing.org/articles/v008a006
https://theoryofcomputing.org/articles/v008a006
https://doi.org/10.1145/2764468.2764478
http://arxiv.org/abs/1711.09176
https://doi.org/10.1145/1134707.1134717
https://doi.org/10.1145/1134707.1134717
http://arxiv.org/abs/1909.13861
https://arxiv.org/abs/2203.14126
https://arxiv.org/abs/1301.1254
http://arxiv.org/abs/1804.11060
http://doi.acm.org/10.1145/1978721.1978727
https://arxiv.org/abs/2205.08562

P. Mertikopoulos, C. Papadimitriou, and G. Piliouras. Cycles in adversarial regularized learning. In Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2703–2717.
SIAM, 2018.

H. Moulin and J. P. Vial. Strategically zero-sum games: the class of games whose completely mixed equilibria
cannot be improved upon. International Journal of Game Theory, 7:201–221, 1978.

B. Peng, W. Shen, P. Tang, and S. Zuo. Learning optimal strategies to commit to. In Proceedings of
the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications
of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019. ISBN 978-1-57735-809-1. doi: 10.1609/aaai.
v33i01.33012149. URL https://doi.org/10.1609/aaai.v33i01.33012149.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings
of the Twentieth International Conference on International Conference on Machine Learning, ICML’03,
page 928–935. AAAI Press, 2003. ISBN 1577351894.

12

https://doi.org/10.1609/aaai.v33i01.33012149

A Properties and Separations for Generalized Equilibria

A.1 Proof of Proposition 1

Proof. The set of (FA,FB)-equilibria includes all strategy profile distributions in which both constraints are
satisfied. If a player receives substantially more than the corresponding value, this would imply a violation
of the regret constraints for at least one of the players’ learning algorithms.

A.2 Proof of Proposition 2

Proof. This follows from the proof of Theorem 4 in Deng et al. (2019) upon noting that the assumption used
there regarding no weakly dominated strategies can be replaced by any condition implying a unique best
response to an approximate Stackelberg strategy.

A.3 Proof of Proposition 3

Proof. By definition, the set of (FA,FB)-equilbria σ is a sub-polytope of ∆(A×B) defined via the following
linear constraints:

• For each fA ∈ FA, we have that∑
i∈[M]

∑
j∈[N]

σijuA(ai, bj) ≥
∑
i∈[M]

∑
j∈[N]

σijuA(af(i), bj).

• For each fB ∈ FB , we have that∑
i∈[M]

∑
j∈[N]

σijuB(ai, bj) ≥
∑
i∈[M]

∑
j∈[N]

σijuB(af(i), bj).

The value ValA(FA,FB) is the element σ of this polytope that maximizes
∑

i∈[M]

∑
j∈[N] σijuA(ai, bj).

Optimizing this linear function over the above polytope can be done in time poly(M,N, | FA |, | FB |) via
any linear program solver. Computing ValB(FA,FB) can be likewise done efficiently.

For player A, the regret comparator function sets ∅, E , and I contain 0, M , and M2 elements respectively.
In all three of these cases | FA | = poly(M); likewise, in all three of these cases | FB | = poly(N) (and thus
we can efficiently compute these values when FA,FB ∈ {∅, E , I}).

A.4 Proof of Proposition 4

Proof. The statement follows by observing that

E
(a,b)∼σ

[
u{A,B} (a, b)

]
=

1

T

T∑
t=1

E
(a,b)∼σt

[
u{A,B} (a, b)

]
E

(a,b)∼σ
[uA (fA(a), b)] =

1

T

T∑
t=1

E
(a,b)∼σt

[uA (fA(a), b)]

E
(a,b)∼σ

[uB (a, fB(b))] =
1

T

T∑
t=1

E
(a,b)∼σt

[uB (a, fB(b))]

which in turn are equivalent to the time-averaged utility of the play of players A and B, the time-averaged
utility for player A under a deviation fA, and the time-averaged utility for player B under a deviation
fB . Applying the definition of average F-regret and applying the given bounds on the F-regret yields the
conclusion of the first direction. The reverse direction follows by reversing the steps.

13

A.5 Reward Separations

We show that with respect to optimal values, these equilibrium classes are distinct, and there exist games
where values do not collapse. The separations we show here consider the equilibrium cases either where both
players have identical regret constraints, or where player A is unconstrained. We note that while inspecting
other cases, we identified similar examples for several other generalized equilibrium pairs, and we expect
that strict separations exist between any distinct pair of generalized equilibria for the three regret notions
we consider, in any direction not immediately precluded by the regret constraints. We are mostly interested
in cases where B is constrained, and A may be constrained or unconstrained.

Theorem 8. For each of the following, there exists a 4× 4 game G with rewards in {0, 1, 2} where:

1. Val(∅,E)(G) > Val(∅,I)(G) > Val(E,E)(G) > Val(I,I)(G)

2. Val(∅,E)(G) > Val(E,E)(G) > Val(∅,I)(G) > Val(I,I)(G)

Proof. We prove both results by exhibiting a game with the desired chain of inequalities, which we found by
searching random examples of 4 × 4 games with values constrained in {0, 1, 2} and computing the various
values of the games with a linear programming library. The numerical values are easy to check with compu-
tation. The game G1 := (MA1 ,MB1) satisfies the conditions for the first chain of inequalities, and the game
G2 := (MA2

,MB2
) satisfies the conditions for the second chain of inequalities. First we instantiate the game

G1:

MA1 :=

1 0 0 0
1 0 0 1
2 2 0 2
0 2 0 0

 MB1 :=

0 2 0 0
1 1 1 0
1 0 2 0
1 0 0 1

The corresponding values for game G1 are simple to check:

1. Val(∅,E)(G) = 8/5.

2. Val(∅,I)(G) = 4/3.

3. Val(E,E)(G) = 1.

4. Val(I,I)(G) = 0.

Then we instantiate the game G2:

MA2 :=

2 0 1 0
2 1 1 0
0 2 1 2
2 0 2 1

 MB2 :=

1 0 1 2
0 1 2 0
1 0 2 0
0 2 1 1

The corresponding values for game G2 are simple to check:

1. Val(∅,E)(G) = 13/7.

2. Val(E,E)(G) = 12/7.

3. Val(∅,I)(G) = 5/3.

4. Val(I,I)(G) = 4/3.

14

B Proof of Theorem 1

Proof. We begin with the first claim. To prove the forward direction, if there exists such a σ, then choose
a pair of low-swap-regret algorithms (AlgA,AlgB) such that the time-averaged trajectory over T rounds is
guaranteed to asymptotically converge to σ (this is possible by either the results of Foster and Vohra (1998)
or Theorem 3, which we prove later in the paper). That is, if the two players play strategy σt at round t ∈ [T],
then σ̂ = 1

T

∑
t σt satisfies ||σ̂−σ||∞ = o(1). It follows that

∑
t uA(σt) ≥ T ·uA(σ)−o(T) = T ·StackA −o(T)

and therefore player A has at most an o(T) incentive to deviate (by Deng et al. (2019), they can obtain at
most StackA T + o(T) against AlgB). Symmetric logic holds for player B.

To prove the reverse direction, assume AlgA and AlgB are no-swap-regret algorithms such that (AlgA,AlgB)
is an o(T)-approximate Nash equilibrium in the metagame. Since they are no-swap-regret, the time-averaged
play of these two algorithms for T rounds must converge to an o(1)-approximate correlated equilibrium σ̂T ;
moreover, since (AlgA,AlgB) is an o(T)-approximate Nash equilibrium, σ̂T must have the property that
uA(σ̂T) ≥ StackA −o(1) and uB(σ̂T) ≥ StackB −o(1). Taking the limit as T → ∞ and selecting a convergent
subsequence of the σ̂T , this shows there must exist a correlated equilibrium σ with the desired properties.

Likewise, similar logic proves the second claim with the following modifications. In the forward direction,
we can now choose any pair of low-swap-regret algorithms (AlgA,AlgB), and any correlated equilibrium σ they
asymptotically converge to is guaranteed to have the property that uA(σ) = StackA and uB(σ) = StackB . In
the reverse direction, since any correlated equilibrium is implementable by some pair of low-regret algorithms
(again, by Theorem 3), the same logic shows that all correlated equilibria σ must satisfy uA(σ) = StackA
and uB(σ) = StackB .

Finally, to see that these two conditions are efficiently checkable, note that: i. the two values StackA and
StackB are efficiently computable given the game G, and ii. the set of correlated equilibria σ form a convex
polytope defined by a small (poly(N,M)) number of linear constraints (see Proposition 3). In particular,
since uA(σ) and uB(σ) are simply linear functions of σ for a given game G, we can efficiently check whether
there exists any point in this polytope where uA(σ) = StackA and uB(σ) = StackB .

C Proof of Theorem 2

Proof. We will show that (for almost all games G) if there is a correlated equilibrium σ such that uA(σ) =
StackA and uB(σ) = StackB , then there exists a simultaneous unique Stackelberg equilibrium for both
players in G, which must be a pure Nash equilibrium. Combined with Theorem 1, this implies the theorem
statement.

We will rely on the following fact: in almost all games G, both players have a unique Stackelberg strategy.
To see this, consider the following method for computing A’s Stackelberg strategy. For each pure strategy bj
for player B, consider the convex set Aj ⊆ ∆(A) containing the mixed strategies for player A which induce
bj as a best response (i.e., Aj = {α ∈ ∆(A) | bj ∈ BR(α)}). Then, for each j ∈ [N], compute the strategy
αj ∈ Aj which maximizes uA(αj , bj). The Stackelberg value StackA is then given by maxj uA(αj , bj). In
order for this to stem from a unique Stackelberg equilibrium, it is enough that: 1. the maximum utility is
not attained by more than one j, and 2. for each j, the optimizer αj ∈ Aj is unique.

These two properties are guaranteed to hold in almost all games. To see this, first note that the convex
sets Aj are determined entirely by the utilities uB , so we will treat these as fixed. Now, given any convex
set Aj , the extremal point in a randomly perturbed direction will be unique with probability 1 – but since
αj is simply the extremal point of Aj in the direction specified by uA(·, bj) (which is a randomly perturbed
direction), so αj is unique in almost all games. Finally, if we perturb the magnitude of each of the utilities
uA(·, bj) (keeping the direction the same), the maximizer maxj uA(αj , bj) will also be unique almost surely.

Let (αA, bA) be the Stackelberg equilibrium for player A and let (aB , βB) be the Stackelberg equilibrium
for player B. Now, consider the aforementioned correlated equilibrium σ ∈ ∆(A × B). We will begin by

decomposing it into its marginals based on its first coordinate; that is, we will write σ =
∑M

i=1 λi(ai, βi) for
some mixed strategies βi ∈ ∆(B) and weights λi (with

∑
i λi = 1). By the definition of correlated equilibria,

note that each ai belongs to BR(βi). But this means that uB(ai, βi) ≤ StackB , with equality holding iff
(ai, βi) = (aB , βB) (due to uniqueness of Stackelberg). Therefore, in order for uB(σ) = StackB , we must
have that σ = (aB , βB). By symmetry, we must also have that σ = (αA, bA). If both these are true, then σ

15

is a pure strategy correlated equilibrium of the game, and is hence a pure strategy Nash equilibrium (and
moreover, is also the Stackelberg equilibrium for both A and B).

D Proof of Theorem 3

Proof. Let σ be the joint distribution over action pairs corresponding to E. Let T denote the total number
of steps we run the algorithm for; we will use t ≤ T as a changing step size. Suppose both player A and
player B know σ2. We will define L∗

A(E) and L∗
B(E) in two phases: in the first phase, A and B trust their

opponent and play according to deterministic sequences corresponding to approximations of σ. If either
player violates the other’s trust o(T) times, then the player defects to playing LA or LB respectively forever
after.

First we elaborate upon the trusting phase. Both players consider windows of length Length(t) which
is monotonically increasing in t and also which grows sub-linearly in t. For concreteness, we pick a sub-
linear monotonic increasing growth rate of O(

√
t) and describe how to implement the schedule of window

lengths. We can keep track of a real-valued variable Zt with Z1 = M ·N , and after each window completes,
update it by Ztnext

= Zt +
1

2
√
t
where t is the step at the end of the window. To get an integral window

length, we define Length(t) := ⌊Zt⌋. Thus in this case, the Length(t) grows as O(
√
t), satisfying both

conditions. Both players then compute a weighting instantiated with pairs of pure strategies by assigning
ci := ⌊Length(t) · σi⌋ example pairs (each of weight 1/ Length(t)) to pure strategy pair i ∈ [M · N]. This
weighted distribution approximates σ given Length(t) samples. Note that the rounding approximation is

feasible given only Length(t) samples since
∑M ·N

i=1 ci ≤ Length(t). These pure strategy pair samples are then
lexicographically ordered. Then, both players act according to the pure strategies in order, thereby (over
the window) achieving an (M ·N)/ Length(t) ℓ1 approximation to σ:

M ·N∑
i=1

∣∣∣∣σi −
ci

Length(t)

∣∣∣∣ = M ·N∑
i=1

∣∣∣∣σi −
⌊Length(t) · σi⌋

Length(t)

∣∣∣∣ ≤ M ·N
Length(t)

.

This process repeats for every window.
The distrustful phase occurs if one of the players does not follow the agreed-upon instructions Tdistrust

times, where Tdistrust is taken to be o(T). After this many violations, Player A defaults to playing LA and
likewise Player B defaults to playing LB ever after.

We now show that this algorithm satisfies both conditions in the theorem statement. First, if both players
use L∗

A(E) and L∗
B(E), the play converges to σ, the joint distribution of play corresponding to E. This point

is immediate to observe since (M ·N)/ Length(t) → 0 as t → ∞ as Length(t) is monotone increasing in t.
Now we prove that both players are no-F-regret with respect to any adversary. First we show no-

F-regret for both players in the case where Player A plays L∗
A(E) and Player B plays L∗

B(E). Let σ̂t

be the approximation to σ implemented over the window corresponding to final step t, and suppose that
∥σ − σ̂t∥1 < εt. Recalling the proof of Theorem 3, for Player A (and analogously for Player B) we can bound∣∣∣∣ E

(a,b)∼σ
[uA (a, b)]− E

(a,b)∼σ̂t

[uA (a, b)]

∣∣∣∣ = ∣∣∣(σ − σ̂t)
⊤
uA

∣∣∣
≤ ∥σ − σ̂t∥1 · ∥uA∥2 ≤ εt · C ·

√
M ·N,

where here we interpret σ, σ̂t, uA, uB ∈ RM×N as vectors over the space of all action pairs. Thus for this
particular window, the overall gap from the expected reward for σ is εt · C ·

√
M ·N .

Then we can similarly upper bound E(a,b)∼σ̂t
[uA (fA(a), b)] ≤ E(a,b)∼σ [uA (fA(a), b)] + εt ·C ·M

√
N for

2σ can be communicated from Player A to Player B during a burn-in phase of length > M ·N , the dimension of the discrete
joint distribution over pure player strategy pairs.

16

any choice of fA ∈ FA:∣∣∣∣ E
(a,b)∼σ

[uA (fA(a), b)]− E
(a,b)∼σ̂t

[uA (fA(a), b)]

∣∣∣∣ =
∣∣∣∣∣∣
M∑
k=1

N∑
j=1

(σ̂t(k, j)− σ(k, j)) ·
M∑
i=1

fA(ak)i · u(·, bj)

∣∣∣∣∣∣
≤ ∥σ − σ̂t∥1 · ∥

[
fA(a1)

⊤uA(·, b1), · · · , fA(aM)⊤uA(·, bN)
]
∥2

≤ εt ·
√
M ·N ·max

k,j
∥fA(ak)∥2 · ∥uA(·, bj)∥2

≤ εt ·
√
M ·N · 1 ·

√
M · C2

= εt ·M ·
√
N · C.

Then recall that εt ≤ M ·N
Length(t) . Thus, overall, the average regret using due to the window is bounded by

1

Length(t)
RegF (σ̂t, t) ≤

1

Length(t)
RegF (σ, t) + C2 ·

1

Length(t)
,

where C2 is another constant depending on C,M,N and where we use the shorthand RegF (·, t) to denote
the F-regret over the window ending in step t. Now call σ̂ the strategy where the joint distribution σ̂t as
previously defined gets played in each window t. Now we can bound the total F-regret for σ̂ by the sum of the
F-regrets for each window (maximizing fA ∈ FA over the steps in each window makes it more competitive
than optimizing only one fA over the whole length T sequence). Thus for total F-regret, we have:

RegF (σ̂, T) ≤ RegF (σ, T) + NumWindows(T) · C2 ≤ RegF (σ, T) + o (T) ,

where

NumWindows(T) := min∑k
t=1 Length(t)≥T

k.

The last step follows since NumWindows(T) ≤ o(T), because Length(T) ≤ o(T).
Since we already know that the strategy σ is no-F-regret and Length(T) is o(T), we have proven that

playing σ̂ is no-F-regret in the case where Player A plays L∗
A(E) and Player B plays L∗

B(E).
The second case where the opposing player does not cooperate is easier: after at most o(T) steps, the

player switches to an algorithm LA or LB respectively which is no-F-regret and incurrs only o(T) additional
regret. Thus the theorem statement holds.

E Proof of Theorem 7

Proof. Our game consists of M actions A for the optimizer, and N = 2M +
(
M
2

)
actions for the learner,

which are divided into M primary actions B, M secondary actions S, and
(
M
2

)
safety actions Y.

If we restrict the learner to only playing primary actions, the game somewhat resembles a coordination
game, where each pure strategy pair (aj , bj) is a Nash equilibrium. However, the set B is comprised of both
undominated actions BU and dominated actions BD, which are unknown to the optimizer, and where each
bj ∈ Bd is weakly dominated by the secondary action sj . The optimizer receives reward 0 whenever the
learner plays a secondary action, and so the challenge for the optimizer is to identify the pair (aj , bj) which
maximizes uA(aj , bj), for bj ∈ BD, which will be the Stackelberg equilibrium. Further, the safety actions
yij essentially allow the learner to hedge between two actions; this does not pose substantial difficulty for
the optimizer when the learner is no-swap-regret, yet creates an insurmountable barrier for learning the
Stackelberg equilibrium in sub-exponential time against a mean-based learner.

An instance of a game G ∈ G is specified by the partition of B into BU and BD. There is an action sj ∈ S
for each j, and for each pair (i, j) with i < j there is an action yij ∈ Y. The rewards for a game G are as
follows. For any strategy pair, the optimizer’s utility is given by:

• uA(aj , bj) = j/M for bj ∈ B;

17

• uA(ai, bj) = 0 for bj ∈ B and with i ̸= j;

• uA(ai, sj) = 0 for any sj ∈ S;

• uA(ai, yjk) = 0 for any yjk ∈ Y;

and the learner’s utility is given by:

• For bj ∈ BU :

– uB(aj , bj) = 1;

– uB(ai, bj) = 0 for i ̸= j;

• For bj ∈ BD:

– uB(ai, bj) = 0 for any i;

• For sj ∈ S:

– uB(aj , sj) = 1 if bj ∈ BD;

– uB(aj , sj) = 0 if bj ∈ BU ;

– uB(ai, sj) = 0 for i ̸= j;

• For yij ∈ Y:

– uB(ai, yij) = uB(aj , yij) = 2/3;

– uB(ak, yij) = 0 for i, j ̸= k.

We assume that BU is non-empty, and so there is some optimal pure Nash equilibrium (a∗i , b
∗
i) which yields

a reward of i/M ; it is simple to check that this is also the Stackelberg equilibrium.

Optimizing Against No-Swap Learners. First, we give a method for matching the Stackelberg value
against an arbitrary no-swap-regret learner, which corresponds to the pair (aj , bj) for the largest value j
such that bj ∈ BU . Consider a no-swap-regret learner which obtains a regret bound of τ = O(T c) over T
rounds. Let SRt(b, b

′) for any learner actions b and b′ denote the t-round cumulative swap regret between b
and b′, i.e. the total change in reward which would have occurred if b′ was played instead for each of the first
t rounds in which b was played. To model the behavior of an arbitrary no-swap-regret learner, we disallow
the learner from taking any action which would increase SRt(b, b

′) above τ , given the loss function for the
current round, and otherwise allow the action to be chosen adversarially. While our model is deterministic
for simplicity, it is straightforward to extend to the analysis to algorithms whose regret bounds hold in only
expectation, e.g. by considering a distribution over values of τ in accordance with Markov’s inequality (as
no algorithm can have negative expected regret against arbitrary adversaries) and considering our expected
regret to the Stackelberg value.

Our strategy for the optimizer is:

• For each i ∈ [M], play ai until either bi or si is observed at least t∗ > τ times;

• Return a∗i for the largest i such that bi is observed t∗ times.

We show that this takes at most O(T c · M3) rounds. Once a∗i is identified, we can commit to playing it
indefinitely, at which point the learner must play b∗i in all but at most O(T c · poly(M)) rounds, and so with
T = O(poly(M/ε)) rounds we can increase the total fraction of rounds in which (a∗i , b

∗
i) is played to 1 − ε,

which yields the desired average reward bound.
The key to analyzing the runtime of our strategy is to consider the “buffer” in regret between any pair of

actions before the threshold of τ is reached, which enables us to the bound the number of rounds in which
instantaneously suboptimal actions are played. Note that prior the start of window i (where ai is played),
both bi and si obtain reward 0 in each round, and as such cannot decrease their expected regret relative to
any other action, as all rewards in the game are non-negative. Further, for any previous window j, both bi

18

and si incur regret of 1 with respect to either bj or sj , as well as between the suboptimal and optimal action
in window i, and thus cannot be observed more than τ times in the window. As such, observing bi at least t

∗

times in window i indicates that bi ∈ BU (and likewise observing bi at least t
∗ times indicates that bi ∈ BD).

Any action b ̸= BR(ai) will incur positive swap regret with respect to BR(ai), and cannot be played in
window i once SRt(b,BR(ai)) ≥ τ . Each action begins with SR1(b,BR(ai)) = 0 at time t = 1; for each of the
learner’s actions, we consider the rate at which its buffer decays, as well as instances in which swap regret
can decrease:

• Previously optimal b ∈ B∪S \BR(ai): actions in B∪S can only accumulate negative swap regret
with respect to BR(ai) during rounds in which they were previously optimal; any previous optimum
b = BR(aj) for j < i was played at most t∗ times during window j, and so we have that SRt(b,BR(ai)) ≥
−t∗.

• All b ∈ B∪S \BR(ai): ignoring any previously accumulated regret buffer, each of these 2M −1 actions
can be played at most τ rounds during window i before exhausting their initial buffer. Accounting
for possible previous optima with SRt(b,BR(ai)) < 0, the number of rounds during window i in which
some b ∈ B∪S \BR(ai) is played is at most Mt∗ + (2M − 1)τ .

• Safety actions yjk ∈ Y: Suppose neither aj or ak have been played yet by the optimizer, including in
the current window. As was the case for other actions which have never yielded positive instantaneous
reward, yjk can be played at most τ times before SRt(yjk,BR(ai)) ≥ τ . If j = i, i.e. this is the first
window in which yjk obtains positive instantaneous reward, the per-round regret is 1/3, and so at it
can be played for most 3τ rounds. Further, yjk a obtains a regret of −2/3 with respect to BR(ak). If
k = i and the window for aj has already been completed, yjk can be played for at most 9τ rounds, as
initially we have that SRt(yjk,BR(ai)) ≥ −2τ , which again increases by 1/3 per round. We then have
that the total amount of rounds with safety actions played during window i is at most (12M +M2)τ ,
as there are fewer than M2 total safety actions, and fewer than M in each of the latter cases.

This yields a per-window runtime across all actions of at most Mt∗+(M2+10M −1)τ , which is O(T c ·M3)
across all windows, and so we obtain the desired result for optimizing against arbitrary no-swap-regret
learners.

Optimizing Against Mean-Based Learners. Here, we show that there are mean-based no-regret algo-
rithms for which exponentially many rounds are required for an optimizer to approximate the Stackelberg
value against a learner. When considering horizons which are superpolynomial in the parameters of the game,
it is most natural to consider algorithms with regret bounds which are non-trivial for smaller horizons, as
well as an anytime variant of the mean-based property. We define an extension of the classical Multiplica-
tive Weight Updates algorithm (MWU; see Arora et al. (2012) for a survey), called Rounded Mean-Based
Doubling, which inherits both properties in the anytime setting.

Algorithm 1 Rounded Mean-Based Doubling (RMBD)

Initialize and run MWU for T1 := 2 rounds and n actions.
Let T2 := 2T1 and i := 2.

while Ti ≤ T do
Initialize MWU for Ti rounds and n actions.
Simulate running MWU for Ti−1 rounds, using the average of the first Ti−1 rewards each round.

For Ti−1 rounds, run MWU with action probabilities rounded to multiples of 4γ = Õ(T
−1/2
i).

Let Ti+1 = 2Ti and i := i+ 1. =0

Lemma 5. When running RMBD for T rounds, the following hold at any round t ≤ T :

• RMBD has cumulative regret Õ(n
√
t);

19

• If action j has the highest cumulative reward and σi,t ≤ σj,t − Õ(
√
t), then action i is played with

probability 0 at round t.

Proof. Let C
√
t bound the regret of MWU over t rounds (where C = O(

√
log n)), and let D =

√
2C + Õ(n).

We can bound the regret of RMBD over Ti rounds by D
√
Ti via induction (which holds trivially at T1).

Suppose it holds for some Ti. Let R(Ti) be the true reward obtained by RMBD over Ti rounds, which is at
least σj∗,Ti −D

√
Ti, where σj∗,Ti is the cumulative reward of the best action over Ti rounds. Consider our

simulation of MWU over Ti rounds using the average reward function. As the reward function is identical
each round, and the cumulative reward for each action j is equivalent under averaging, the measured reward
R̂(Ti) from the simulated run is at most σj∗,Ti

after Ti rounds. Upon continuing to run this instance of MWU

for an additional Ti rounds, the regret bound ensures that the total measured reward R̂(Ti+1) is at least
σj∗,2Ti − C

√
2Ti. Rounding probabilities contributes at most an additional 2nγTi to the regret; it suffices

to implement rounding by reallocating probability mass from any pi,t < 2γ onto other actions arbitrarily,
to avoid renormalization. The total reward of RMBD over 2Ti = Ti+1 is given by its cumulative reward at
Ti, as well as the additional reward obtained by the MWU instance over the next Ti rounds, and so we have
that

R(Ti+1) = R(Ti) + R̂(Ti+1)− R̂(Ti)

≥ σj∗,Ti+1
−D

√
Ti − C

√
2Ti − 2nγTi

≥ σj∗,Ti+1
−D

√
Ti+1,

which yields the bound for every Ti. We can extend this to any t ∈ [Ti, Ti+1] with at most a factor 2 increase
to cumulative regret.

To bound the selection frequency of actions with suboptimal cumulative reward, we recall the mean-
based analysis of MWU given in Theorem D.1 from Braverman et al. (2017), which shows that the selection

frequency pk,t for action k at time t is at most γ = 2 log(
√
T logn)√

T logn
if σk,t ≤ σj,t − γT for the action j with

highest cumulative reward. As such, any action whose cumulative reward σk,t ≤ σj,t − Õ(
√
t) will be played

with probability 0.

Suppose a learner plays the action with highest cumulative reward at each round for tburn = Ω̃(M2)
rounds, then plays RMBD thereafter for a total of T rounds. Note that this maintains the both properties
of RMBD for all t. We show that at least T = exp(Ω(M)) rounds are required to identify the Stackelberg
strategy. The optimizer must check the learner’s pure best response to each aj for identification with
certainty, and it is straightforward to construct a distribution in which any strategy which does not observe
BR(aj) for all j will have linear regret to StackA in expectation (e.g. where BU contains one action chosen
uniformly at random). The difficulty in exploration of the best responses comes from the safety actions,
as aj must have been played more frequently than any other action in order to not be dominated by some
safety action. Let ρj,t denote the number of rounds in which the optimizer has played aj out of the first t.
Observe that by construction of the game and the properties of RMBD, an primary or secondary action bj
or sj in BR(aj) will only be played with positive probability when:

ρj,t ≥
2

3
(ρj,t + ρk,t)− Õ(

√
t)

= 2ρk,t − Õ(
√
t)

for all k, which necessitates that ρj,t ≥ 2t
M − Õ(

√
t). Taking tburn sufficiently large, we have that ρj,t ≥ 3

2ρk,t
for any t ≥ tburn and all k. For any subsequent observation BR(ak) at t′, we must have that ρk,t′ ≥ 3

2ρj,t,
and so the number of rounds required to play an action before observing its best response grow at a rate of
at least (3/2)M , which completes the proof.

20

	Introduction
	Our results
	Related Work

	Preliminaries
	Stability of no-swap-regret play
	Generalized Equilibria and No-Regret Learning
	Learning Equilibria in Unknown Games
	Robust Query Algorithms
	From Robust Query Algorithms to Adaptive Strategies
	Separations for Mean-Based and No-Swap-Regret Algorithms

	Properties and Separations for Generalized Equilibria
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Reward Separations

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 7

