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Introduction

Recent work has provided convincing evidence that fMRI
readings from human subjects can be related to semantics
of presented stimuli. Such experiments consist of finding
(1) low-dimensional representations of the fMRI signals, and
(2) low-dimensional semantic representations of the external
stimulus. These tasks build upon work in machine learning.

The earliest work concerned simple settings with carefully
controlled stimuli, such as subjects being presented (visually
or auditorily) with one of a set of carefully selected words as
in Mitchell et al. (2008). Several recent papers attempt vari-
ants of this goal on more natural stimuli like audio stories as
in Huth, deHeer, Griffiths, Theunissen, and Gallant (2016).
An even more recent prior work by Vodrahalli et al. (2017)
explores methodology for improving the performance of text-
fMRI and fMRI-text maps at scene classification and ranking
tasks on a natural movie stimulus with semantic annotations
dataset (J. Chen et al., 2017). In particular, they find that us-
ing the Shared Response Model (SRM) from P.-H. Chen et al.
(2015) to aggregate fMRI data from multiple subjects is supe-
rior to applying standard PCA for producing low-dimensional
representations. Additionally, they show a sentence embed-
ding technique adapted from the natural language processing
(NLP) literature due to Arora, Liang, and Ma (2017) produces
useful semantic vector representations of the annotations. Fi-
nally, they demonstrate that using previous timepoint informa-
tion in the setting of predicting text from fMRI is very helpful,
though the resulting maps are not very interpretable.

In this short paper, we present novel tweaks to the tem-
poral dynamics methodology of Vodrahalli et al. (2017) which
result in great improvements in interpretability with only small
penalties in overall accuracy.

Datasets and Tasks
In this work, we study the Sherlock annotation dataset
(J. Chen et al., 2017; Vodrahalli et al., 2017). The Sherlock
dataset consists of fMRI recordings of 16 people watching the
British television program “Sherlock” for 50 minutes broken
into 1973 TRs, where each TR is 1.5 seconds of film. In this
work, we focus on the default mode network (DMN) region, a
brain area known for its relevance to narrative understanding
Vodrahalli et al. (2017). As a proxy for the semantics of the
movie, we use externally annotated English text scene anno-
tations of the program (average annotation length 15 words
per TR). We account for hemodynamic response by shifting
the fMRI signal 3 TRs back, the approximate delay length.

We evaluate our ability to map between fMRI and text an-
notation representations with the scene classification task.
Given a map from fMRI to text space or its inverse, we ap-
ply the map to heldout timepoints and form “scene chunks”
which partition the test TRs. Scene classification measures
the accuracy of Pearson correlation between predicted and
true scene chunks in determining the identity of a held-
out test chunk. Random guessing gives a chance rate of
1/num. of scenes. In our experiments, the chance rate is 4%.

Methodology
We apply the same primary techniques as Vodrahalli et al.
(2017) to achieve state-of-the-art fMRI-annotation mapping
accuracy, with the exception of the temporal representation.

Interpretable Temporal Dynamics Model

When predicting fMRI→ Text and Text→ fMRI, we would like
to figure out how to use previous time steps in our linear maps.
Let X denote fMRI data and Y denote text data. For the fMRI
→ Text task, we would like to find a map from some repre-
sentation of the fMRI data to some representation of the Text
data. Vodrahalli et al. (2017) learn a unique weight for every
feature 1, · · · ,n of X for every single timepoint in the previous k
time points. This full temporal model is simply expressed as



Figure 1: By adding previous timesteps, we transform the
base space into representations of the dynamics of the data.

learning Ŵ ∈ Rm×n∗(k+1) such that we have Ŵ X̂ = Y , where
X̂ ∈ Rn∗(k+1)×T .

A simpler, smaller, more interpretable model might imag-
ine that previous timestep information could be represented
as a weighted aggregation over k previous timesteps. How-
ever, empirically, weighted aggregation in this form hurts per-
formance. We thus relax the requirement that we have a sin-
gle weight for each column, and allow different columns to
have different weights as in Vodrahalli et al. (2017). However,
we want to enforce additional assumptions on the parame-
ters so that the model is more interpretable. We can compro-
mise by defining the temporal decay model, which assumes
that the weight parameters decay exponentially over the past
k timesteps, at a different rate for each representation feature.

The neuroscientific motivation behind the assumption that
there may be different rates of decay for different fMRI fea-
tures comes from the notion that different parts of the brain
operate over different time scales: The neurons in some parts
of the brain fire a lot more rapidly and react to quickly changing
stimuli, while other parts of the brain fire much more occasion-
ally and change according to real world stimuli which occur at
longer time scales.

We now specify n different decay weights λ = [λ1, · · · ,λn]
for each of the fMRI features in the fMRI→ Text setting. We
formulate the problem setting WCkX̂ = Y , where W ∈ Rm×n,
Ck ∈ Rn×n∗(k+1), X̂ ∈ Rn∗(k+1)×T , and Y ∈ Rm×T . We de-
fine Ck = [Γ0,Γ1, · · · ,Γk] where Γ j(i, i) = e jλi

Zi
and Γ j(i,h) = 0

when i 6= h. Here, Zi = ∑
t−k
j∗=t e(t− j∗)λi normalizes each row.

Results

The scene classification performances for the fMRI → Text
setting in the DMN are 64% (both full temporal Vodrahalli et
al. (2017) and temporal decay models) and 44% (no previous
timesteps). In the Text→ fMRI setting for the DMN, the clas-
sification performances are 20% (full temporal model), 28%
(temporal decay model), and 56% (no previous timesteps).

These results demonstrate that we can replace the model of
Vodrahalli et al. (2017) with a more interpretable model with no
loss in the fMRI→ Text setting, at least for the DMN region. In
the Text→ fMRI setting, we see that the interpretable model

improves upon the full temporal model slightly, though both
temporal models are worse off compared to the no-previous-
timestep model. The same conclusions from Vodrahalli et
al. (2017) with respect to shared space dimension reduction,
word embeddings, and brain ROI performances hold when we
replace the temporal dynamics model.

Conclusion and Future Work
In this work, we presented an interpretable temporal dynam-
ics model which improves maps from fMRI to Text. It remains
to explain why Text to fMRI does not perform as well, a prob-
lem noted by Vodrahalli et al. (2017) as well. We believe the
central reason is due to the relatively high correlation between
the semantic representations compared to the correlation be-
tween fMRI states. As a result, we perform a one-to-many task
when we attempt Text to fMRI, which is more difficult. Future
work should thus further decorrelate the text representations.
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