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Abstract
We introduce a method to learn policies from expert demonstrations that are interpretable and manipulable. We achieve
interpretability by modeling the interactions between high-level actions as an automaton with connections to formal logic.
We achieve manipulability by integrating this automaton into planning via Logical Value Iteration, so that changes to the
automaton have predictable effects on the learned behavior. These qualities allow a human user to first understand what the
model has learned, and then either correct the learned behavior or zero-shot generalize to new, similar tasks. Our inference
method requires only low-level trajectories and a description of the environment in order to learn high-level rules. We achieve
this by using a deep Bayesian nonparametric hierarchical model. We test our model on several domains of interest and also
show results for a real-world implementation on a mobile robotic arm platform for lunchbox-packing and cabinet-opening
tasks.

Keywords Bayesian inference · Formal methods · Imitation learning · Hierarchical models

1 Introduction

In the imitation learning (IL) problem, desired behaviors are
learned by imitating expert demonstrations (Abbeel and Ng
2004; Daumé III et al. 2009; Ross et al. 2011). IL has had
success in tackling tasks as diverse as camera control, speech
imitation, and self-driving for cars (Taylor et al. 2017;Codev-
illa et al. 2018; Ho and Ermon 2016; Yue and Le 2018).

This is one of the several papers published in Autonomous Robots
comprising the Special Issue on Robotics: Science and Systems 2029.
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However, an IL model trained to imitate a specific task must
be re-trained on new expert data to learn a new task. Addi-
tionally, in order for a robot to correctly learn a task, the
expert demonstrations must be of high quality: most imi-
tation learning methods assume that experts do not make
mistakes. Therefore, we ask

1. How can expert demonstrations for a single task gener-
alize to much larger classes of tasks?

2. What if the experts are unreliable and err?

This paper provides answers to these questions by apply-
ing elements of formal logic to the learning setting. We
require our policies to be derived from learned Markov
Decision Processes (MDPs), a standard model for sequen-
tial decision making and planning (Bertsekas and Tsitsiklis
1996; Sutton and Barto 1998). We assume these MDPs can
be factored into a “low-level”MDP that describes the motion
of the robot in the physical environment and a small finite
state automaton (FSA) that corresponds to the rules the agent
follows. After learning the transition and reward functions of
theMDP and FSA, it is possible to manually change the FSA
transitions to make the agent perform new tasks and to cor-
rect expert errors. Additionally, the FSA provides a symbolic
representation of the policy that is often compact.

For example, imagine the robotic arm in Fig. 1 packing
first a sandwich and then a banana into a lunchbox. The phys-
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Fig. 1 The Jaco mobile arm platform opening a cabinet and packing a
lunchbox following rules learned from demonstrations

ical environment and the motions of the robotic arm can
be described by a low-level MDP. The rules the robot fol-
lows are described using FSAs. In the FSA, transitions are
dependent on logical truth statements called propositions.
In this environment there are three propositions—“robot has
grasped sandwich”, “robot has grasped banana”, and “robot
has dropped whatever it is holding into the lunchbox”. The
truth values of these propositions control transitions between
the FSA states, which we also refer to as logic states. For
example,when “robot has grasped sandwich” is true, the FSA
transitions from being in an initial state to being in a state in
which “the robot has grasped the sandwich.”When it is in this
new state and “robot has dropped whatever it is holding into
the lunchbox” is true, it transitions to the next state, “the robot
has placed the sandwich into the lunchbox.” We assume that
the propositions correspond to locations in 2D space (i.e., we
assume that the manipulator has a pre-programmed behavior
to grasp a banana when it is in the vicinity of the banana and
“robot has grasped banana” becomes true). This assumption
enables us to factor the product MDP into a high-level FSA
and a low-level MDP. A simpler example of a product MDP
is illustrated in Fig. 2.

The agent infers the FSA and rewards associated with this
product MDP and generates a policy by running a planning
algorithm on the product MDP. This approach has two bene-
fits: (1) the learned policy is interpretable in that the relations
between high-level actions are defined by an FSA, and (2)
the behavior of the agent is manipulable because the rules
that the agent follows can be changed in a predictable way
by modifying the FSA transitions. These benefits address
the questions posed before: performing new tasks without
re-learning, and correcting faulty behaviour.

In Araki et al. (2019), we introduce “Logical Value Itera-
tion Networks” (LVIN), a deep learning technique that uses
Logical Value Iteration to find policies over the product of
a low-level MDP and an FSA. However, the limitation of
LVIN is that it requires not just low-level trajectories as data
but also high-level FSA state labels. In order to label the
trajectories with FSA state labels, a significant amount of

Fig. 2 An illustration of how an MDP and an FSA create a product
MDP. The MDP is a 2D gridworld with propositions a, b, and o. The
FSA describes the rule “go to a, then b, and avoid o. The resulting
productMDP represents how these rules interfacewith the 2Dgridworld

information about the FSA must be known before learning
occurs. In Araki et al. (2020), we introduce a Bayesian infer-
ence model that uses only the low-level trajectories as data;
no knowledge of the FSA is required at all. We accomplish
this by modeling the learning problem as a partially observ-
able Markov decision process (POMDP), where the hidden
states and transitions correspond to an unknown FSA. We
compose the POMDP with a planning policy to create a hid-
den Markov model (HMM) in which the hidden states are
FSA state labels. The HMM has high-level latent parameters
describing the reward function and the structure of the FSA.
We fit the HMM with stochastic variational inference (SVI)
on expert demonstrations, so that we simultaneously learn
the unknown FSA and the policy over the resulting MDP.
This learning problem is very challenging, so we also intro-
duce a spectral prior for the transition function of the FSA to
help the algorithm converge to a good solution.

We test our learning algorithm on a number of domains,
including two robotic manipulation tasks with real-world
experiments. Our algorithm significantly outperforms the
baseline in all experiments; furthermore, the learned mod-
els have the properties of interpretability and manipulability,
so we can zero-shot generalize to new tasks and fix mistakes
in unsafe models without additional data.

1.1 Contributions

1. We solve logic-structured POMDPs by learning a plan-
ning policy from task demonstrations alone.
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2. We introduce a variation on value iteration called Logical
Value Iteration (LVI), which integrates a high-level FSA
into planning.

3. We use spectral techniques applied to a matrix represen-
tation of a finite automaton to design a novel prior for
hierarchical nonparametric Bayesian models.

4. Our model learns the FSA transition matrix, allowing us
to interpret the rules that the model has learned.

5. We explain how to modify the learned transition matrix
to manipulate the behavior of the agent in a simulated
driving scenario and on a real-world robotic platform in
the contexts of packing a lunchbox and opening a locked
cabinet.

6. We expand on the experiments in Araki et al. (2020),
adding four more experimental domains, a safety experi-
ment, and more details on the manipulation experiments
and the implementation of our real-world experiments.

This work is a union of Araki et al. (2019) and Araki et al.
(2020). The list above summarizes the contributions of the
previous two papers; the unique contribution of this work is
Contribution 6.

2 Related work

Themodel presented in this paper extendsAraki et al. (2019),
which introduces Logical Value Iteration as a planning algo-
rithm over the product of a low-level MDP with a logical
specification defined by an FSA. In the previous work, the
input trajectories had to be labelled with FSA states, which
required significant prior knowledge of the structure of the
FSA. The model in this paper infers the FSA state labels and
the structure of the FSA from only low-level trajectories.
There are a number of other works that incorporate logical
structure in the imitation and reinforcement learning settings.
Paxton et al. (2017) use LTL to define constraints on aMonte
Carlo Tree Search. Li et al. (2017, 2019), Hasanbeig et al.
(2018), and Icarte et al. (2018a) use the product of an LTL-
derived FSA with an MDP to define a reward function that
guides the agent through a task during training. Icarte et al.
(2018b) use LTL to design a sub-task extraction procedure as
part of a more standard deep reinforcement learning setup.
However, these methods assume that the logic specification
is already known, and they do not allow for a model that is
interpretable and manipulable. Our algorithm requires only
the low-level trajectory as input, and it learns a model that is
both interpretable andmanipulable by integrating the learned
FSA into planning.

There are also a number of learning algorithms that infer
some sort of high-level plan from data. Burke et al. (2019)
infer a program from robot trajectories, but their programs

can only be constructed using three simple templates that are
less expressive than LTL or FSAs. Icarte et al. (2019) learn
the structure of “reward machines” via a discrete optimiza-
tion problem.Shah et al. (2018) andShah et al. (2019) take the
approach of learning a logic specification from proposition
traces using probabilistic programming and then planning
over the resulting distribution of specifications. Shah et al.
(2018) give methods for learning a posterior over logic spec-
ifications from demonstrations. Their approach differs from
ours in that the input is the proposition traces of the demon-
strations; they do not take the low-level trajectories and the
layout of the environment into account.Ourmethod uses both
proposition traces and the low-level trajectories as input; this
additional information is useful in learning rules that involve
avoiding propositions. For example, the obstacle proposi-
tion will never appear in an expert proposition trace, but it
is evident from the low-level trajectories that the agent will
take a longer path to avoid an obstacle. Our algorithm can
infer from this information that the obstacle proposition is
associated with the low-reward trap state. Shah et al. (2019)
introduce objectives for planning over a distribution of plan-
ning problems defined by logic specifications which reduces
to the problem of solvingMDPs. Our work directly considers
the problem as a POMDP and introduces data-driven prior
assumptions on the distribution of the FSA to mitigate the
hardness of the problem. We also never have to enumerate
an exponentially sized MDP.

Logical Value Iteration is an extension of Value Iteration
Networks (VIN) (Tamar et al. 2016) to a hierarchical logical
setting. Karkus et al. (2017) is a similar extension of VIN
to partially observable settings. Their model is a POMDP
planning algorithm embedded into a neural network that is
trained over distributions of task demonstrations. Our work
differs from theirs since we focus on factoring the transition
dynamics hierarchically into an interpretable and manipu-
lable FSA. We also therefore prefer a structured Bayesian
approach rather than a deep learning approach for learning
the unknown FSA.

Our Bayesian model draws inspiration from many similar
methods in the Bayesian machine learning literature. There
are a number of other works that have studied hierarchical
dynamical models in the nonparameteric Bayesian inference
setting and have developed specialized techniques for infer-
ence (Fox et al. 2011a, b; Chen et al. 2016; Johnson et al.
2016; Linderman et al. 2017; Mena et al. 2017; Buchanan
et al. 2017). These models typically focus on fitting hierar-
chical linear dynamical systems and do not use ideas from
logical automata. Zhang et al. (2019) apply some of these
ideas specifically to solving POMDPs by locally approxi-
mating more complicated continuous trajectories as linear
dynamical systems. Our primary contribution to this liter-
ature is the way we incorporate the logical automaton into
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planning so that our model is both interpretable and manip-
ulable.

Rhinehart et al. (2018) also introduce a deep Bayesian
model for solving POMDPs, and they achieve a degree of
manipulability in that it is possible to modify their objective
function to specify new goals and rules. However, changes to
the objective function require the policy to be re-optimized,
and the objective function is also less interpretable than an
FSA as a way of understanding and modifying the behavior
of an agent.

There are a few other domains that our work fits into.
Multi-task learning and meta-learning are also methods
that solve classes of tasks assuming a distribution over
tasks (Caruana 1995; Andreas et al. 2016; Duan et al. 2016;
Finn et al. 2017; Huang et al. 2018). The problem of multi-
task reinforcement learning has also been studied from the
lens of hierarchical Bayesian inference (Wilson et al. 2007).
However, thesemethods require samples frommanydifferent
tasks in order to adapt to new tasks from the task distribu-
tion, and they are not manipulable without additional data.
Few-shot learning approaches are another solution concept
to the manipulability problem, but suffer from lack of inter-
pretability (James et al. 2018; Tanwani et al. 2018). There
are also notions of interpretable policy classes frommachine
learning which make no use of finite automata, but which
are not easily manipulable (Rodriguez et al. 2019; Koul et al.
2018). Other approaches attempt to use machine learning
techniques to distill models into interpretable forms (pos-
sibly using automata), but are also difficult to manipulate
(Michalenko et al. 2019; Bastani and Solar-lezama 2018).

Other works tackle the problem of unreliable experts in
imitation learning. MacGlashan and Littman (2015) inter-
polate between imitation and intention learning with an
approach based on inverse reinforcement learning. Gao et al.
(2018) use reinforcement learning with expert demonstra-
tions to correct faulty policies, whereas with our approach,
fixes to the policy can be made by directly modifying the
learned automaton.

There is also extensive work in automaton identification
and learning theory (Gold 1967, 1978; Angluin 1987) that
provides theoretical bounds on the decidability and com-
plexity of learning automata. These works differ in scope
from ours in that they often consider how many expert
queries are necessary to learn an automaton and whether
it is possible to identify the automaton producing a set of
sentences. Our work, by contrast, is grounded in the imita-
tion learning problem setting and aims to learn a distribution
over automata that describes a fixed set of expert demon-
strations. Our algorithm minimizes a nonlinear objective
function using gradient descent. Thus, due to the differences
between the considered problems and approaches, the decid-
ability and complexity guarantees from (Gold 1967, 1978;
Angluin 1987) are not immediately applicable to our work.

Finally, we can also view our problem setup through the
lens of hierarchical reinforcement learning (HRL): the FSA
is a high-level description of the task that the agent must
accomplish. The first instance of HRL was introduced by
Parr and Russell (1998). Related is the options framework
of Sutton et al. (1998), in which a meta-policy is learned
over high-level actions called options. Andreas et al. (2016)
apply the options framework and introduce policy sketches,
sequential strings of sub-policies from a sub-policy alpha-
bet, to build an overall policy. Our work differs from the
options framework in that the options framework only has
hierarchical actions, whereas our method also has a hierar-
chical state space defined by the low-level MDP states and
the high-level FSA states. Le et al. (2018) combine high-
level imitation policieswith low-level reinforcement learning
policies to train more quickly. Keramati et al. (2018) build a
hierarchy of planning by learning models for objects rather
than only considering low-level states. Both approaches lack
an interpretable high-level model that can be easily modified
to change policy behavior.

3 Problem formulation

Our key objective is to infer rules and policies from task
demonstrations. The rules are represented as a probabilistic
automaton W = (F ,P, T M,I,F). F is the set of states
of the automaton; P is the set of propositions; T M : F ×
P ×F → [0, 1] defines the transition probabilities between
states; I is a vector of initial state probabilities; and F is the
final state vector. The number of FSA states is F = |F |, and
the number of propositions is P = |P|. We assume that I
and F are deterministic—the initial state is always state 0,
and the final state is always state (F − 1).

We formulate the overall problem as a POMDP. The
state space is C = S × P × F , where S = X × Y is
a 2D grid (examples are shown in Fig. 6); F is the set of
states of the automaton; and P is the set of propositions
(Fig. 2 is an illustration of this joint state space). The agent
can travel to any neighboring cell, so the action space is
A = {N , E, S, W , N E, N W , SE, SW }. In addition to the
automaton transition function T M , there is also a low-level
transition function T : S×A×S → [0, 1] and a “proposition
map” M : S × P × t → {0, 1}. We assume that every low-
level state is associated with a single proposition that is true
at that state; the proposition map defines this association. We
allow M to vary with time, so that propositions can change
location over time; however, we consider only one domain,
a driving scenario, in which proposition values change with
time. Note that we overload all the transition functions so
that given their inputs, they return the next state instead of a
probability. The most general form of the reward function is
R : C × A → R; however, we assume that the reward func-
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Fig. 3 Each data point is an expert trajectory including low-level state and proposition information. Each trajectory is associated with a proposition
map that relates every position in the domain to a proposition. We use spectral learning to create a prior for the FSA transition function. The
Bayesian model learns variational parameters that define distributions over the reward function and FSA

tion does not vary with P , S, orA, so it is a function of only
the FSA state, R : F → R. This reward function can work
by rewarding the agent for reaching the goal state and penal-
izing the agent for ending up in a trap state. The observation
space isΩ = S×P , and the observation probability function
is O : C × A × Ω → [0, 1]. Therefore we have a POMDP
described by the tuple (C,A, T × M × T M,R,Ω,O, γd).

We formulate the POMDP learning problem as follows.
There are N data points, and each data point i is a trajec-
tory of state-action tuples over Ti time steps, so that dataset
D = 〈d0, . . . , dN 〉, where di = 〈(si

0, ai
0), . . . , (s

i
Ti

, ai
Ti

)〉.
Expanding the POMDP tuple gives (S × P × F ,A, T ×
M × T M,R,S ×P,O, γd). Unknown elements have been
underlined to emphasize the objective of learning the set
of FSA states F , the FSA transition function T M , and the
reward function R. We assume that the actions A, the low-
level transitions T , the proposition map M , the observation
probabilities O, and the discount factor γd are known. We
also assume thatO is deterministic—in other words, that the
agent has sensors that can perfectly sense its state in the envi-
ronment. The goal of solving a POMDP is to find a policy
that maximizes reward—in this case, a policy that mimics
the expert demonstrations.

4 Method

We formulate the POMDP composed with the policy as a
HiddenMarkovModel (HMM)with recurrent transitions and
autoregressive emissions. The hidden states and transitions of
the POMDPare latent variable parameters (shown in Fig. 4a).
The unobserved logic state at every time step is the hidden
state of the HMM, and T M , R, and F are high-level latent
variables.

A sketch of the learning algorithm is shown in Alg. 1, and
Fig. 3 illustrates the inputs and outputs. The data consist of a
propositionmapand a set of expert trajectories over a domain.
The domain in this example is a 3 × 3 gridworld where the
agent must first go to a (orange proposition), then to b (green

Algorithm1MaximumAPosteriori Estimation onBayesian
LVI model (Araki et al. 2020)
1: procedure MAP- Estimation
2: Training Inputs: {{(st , at )

(n)}Ti
t=1}N

i=1
3: To learn:
4: Number of automaton states prior α̂ ∈ R

2P
>0

5: Transition matrix prior ̂βF ∈ R
F×P×F
>0

for F = 3, . . . , 2P
6: Reward function prior γ̂ F ∈ R

F × R
F
>0

for F = 3, . . . , 2P
7: Generate spectral learning prior (Sect. 4.3)
8: Stochastic variational inference on the

learning objective L (Sect. 4.1)

9: return α̂∗,̂β
∗
,̂γ

∗ = argmin
(̂α,̂β,̂γ )

L
10: end procedure

proposition), while avoiding obstacles o (black proposition).
e is the “empty” proposition (light grey proposition). The
figure also illustrates the proposition map M , which maps
every location to a proposition. Each layer of the map is
associated with a single proposition, and the locations where
a proposition is true are highlightedwith the associated color.
Note that only one proposition is true at any given location,
and that each instance of an environment is defined by its
proposition map M .

The algorithm approximates the posterior of a Bayesian
model and returns the modes of the latent variable approxi-
mations (Sect. 4.1). One notable feature of the algorithm is
that it uses Logical Value Iteration (LVI), a hierarchical ver-
sion of value iteration, to calculate policies (see Sect. 4.2)
in order to evaluate the likelihoods of proposed FSAs and
reward functions. One issue with learning complex Bayesian
models is that they are prone to converging to local minima,
particularly in the case of discrete distributions such as the
high-level transition function T M . We use spectral learning
to obtain a good prior (see Sect. 4.3).

Posterior inference finds distributions over the number of
automaton states F , the reward functionR, and the transition
function T M . In Fig. 3, T M is represented as a collection of
matrices—each matrix is associated with the “current FSA
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(a)

(b)

Fig. 4 In the two models above, white circles are latent variables; grey circles are observed variables; black dots are priors. M is an input to the
models because every instance of the environment has a unique proposition map. The plates around the HMM indicate that those variables are
repeated for N trajectories

state”; columns correspond to propositions and rows corre-
spond to the next FSA state. The entry in each grid is the
probability of transitioning, T M( f ′| f , p). Black indicates
1 and white indicates 0. Therefore in the initial state S0, a
causes a transition to S1, whereas o causes a transition to the
trap state T . The outputs of the algorithm are valuable for
two reasons: (1) T M is relatively easy to interpret, giving
insight into the rules that have been learned; and (2) R and
T M can be used for planning, so modifications to T M result
in predictable changes in the agent’s behavior.

4.1 Bayesianmodel

We now give an overview of the Bayesian model. For a
more detailed discussion, please refer to Araki et al. (2020).
The graphical model is shown in Fig. 4a. The main chal-
lenge in this model is to infer the number of FSA states F ,
the reward function RF , and the transition function T M F .
We use the graphical model to specify a likelihood function
p(R, T M, θ |D, α, β, γ ), and we also define a model for a

variational approximation q(R, T M, θ |D, α̂, β̂, γ̂ ), shown
in Fig. 4b. A bar over a variable indicates that it is a list over
values of F .

The objective of the variational inference problem is to
minimize the KL divergence between the true posterior and
the variational distribution:

L = KL(q(R, T M, θ |D, α̂,̂β,̂γ )||p(R, T M, θ |D, α, β, γ ))

α̂∗,̂β
∗
,̂γ

∗ = argmin
(̂α,̂β,̂γ )

L

α̂∗,̂β
∗
, and̂γ

∗
serve as approximations ofα, β, and γ , and

therefore define distributions over F , T M , and R. Letting
F∗ = argmaxF α̂∗, we get priors for T M F∗

(̂βF∗
) andRF∗

(γ̂ F∗
) which can be used for planning.

One of the benefits of the Bayesian approach is that it is
straightforward to incorporate known features of the envi-
ronment into the model as priors. Many of these priors rely
on the assumption that every automaton we consider has one
initial state, one goal state, and one trap state. Our assump-
tions about the rules of the environment are built into each
βF , which are the priors for the transition function T M F .
We incorporate the following priors into our model:

1. β̄ is populated with the value 0.5 before adding other val-
ues, since for Dirichlet priors, values below 1 encourage
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Fig. 5 We create a spectral learning prior from the data in a three-step process. In the first step, the expert trajectories are converted into proposition
traces. The frequency of each trace is used to populate an empirical Hankel matrix (only a portion of the matrix is shown). We then find the rank
decomposition of the matrix and use the resulting weighted automaton as a prior for the Bayesian model

peaked/discrete distributions. In other words, this prior
biases the TM towards deterministic automata.

2. We add a prior to the trap state that favors self-transitions.
This is because the trap state is a “dead-end” state.

3. We add an obstacle prior to bias the model in favor of
automata where obstacles lead to the trap state.

4. We add a goal state prior, so that the model favors self-
transitions for the goal state.

5. We add an empty state prior, so that for the empty state
proposition, the model favors transitions leading back to
the current state.

6. We use spectral learning (see Sect. 4.3) to find a prior for
α and for the other transitions.

7. We also give priors to the reward function so that the
goal state has a positive reward and the trap state has a
negative reward.

The variational problem was implemented using Pyro
(Bingham et al. 2019) and Pytorch. Pyro uses stochastic vari-
ational inference to approximate the variational parameters.

4.2 Logical value iteration (LVI)

The autoregressive emissions of the model draw an action
from a policy at every time step. In this work, the policy is
found using “Logical Value Iteration” (LVI) on the learned
MDP. LVI integrates the high-level FSA transitions T M into
value iteration (Araki et al. 2019). The LVI equations are
shown below. The first two equations are identicial to normal
value iteration—in the first step, the Q-function Q is updated
using reward function R, low-level transitions T , and value
function V . Next, the value function is updated. LVI adds
a third step, where the values are propagated between logic
states using T M . Note that we use M(s) as an input to T M
rather than p; the two are equivalent, since M(s) determin-
istically relates a state s to a proposition p.

Qt+1(s, f , a) ← R(s, f , a) + γd

∑

s′∈S
T (s′|s, a)V t (s′, f )

̂V t+1(s, f ) ← max
a

Qt+1(s, f , a)

V t+1(s, f ) ←
∑

f ′∈F
T M( f ′| f , M(s))̂V t (s, f ′)

4.3 Spectral learning for weighted automata

One of the main issues of using variational inference on
complexBayesianmodels is its tendency to converge to unde-
sirable local minima. Our choice ofmodeling the distribution
of FSAs as a continuous distribution over transition weights
is particularly prone to converging to local minima. To avoid
this, we use the output of spectral learning for weighted
automata as a prior for the transition function T M .

Spectral learning uses tensor decomposition to efficiently
learn latent variables. We summarize here our discussion of
the topic in Araki et al. (2020). Spectral learning can be used
to learn automaton transitionweights by decomposing aHan-
kel matrix representation of the automaton (Arrivault et al.
2017). A Hankel matrix is a bi-infinite matrix whose rows
correspond to prefixes andwhose columns correspond to suf-
fixes of all possible input strings of an automaton. The value
of a cell is the probability of the corresponding string.

We construct an empirical Hankel matrix from the propo-
sition strings in the dataset, as shown in Fig. 5. We then find
a rank factorization of the matrix. We use the open-source
Sp2Learn toolbox (Arrivault et al. 2017) to process the data
and generate the Hankel matrices. We use Tensorflow to per-
form the rank factorization. We can then obtain transition
weights for the automaton.

Spectral learning outputs a weighted automaton that is
better suited as a prior rather than as the primary means
of determining T M . This is because the transition weights
of the learned automaton are not constrained to add to
one—they are weights, not probabilities. In addition, the
learned automaton will not include propositions that are not
present in the proposition traces. Therefore spectral learning
is incapable of learning that the agent seeks to avoid certain
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(a)

(d)

(f) (g)

(e)

(b) (c)

Fig. 6 Example instances of seven domains

propositions, such as obstacles, because these propositions
never occur in the expert data set.

In order to create a prior for the size of the FSA, we learn
automata with number of states ranging from 4 to 2P . We
have observed that for every domain tested, the optimiza-
tion loss drops by one or two orders of magnitude when the
number of states reaches the true number. We therefore use
the optimization losses to create a prior on the number of
states (defined as α in Sect. 4.1). If the optimization loss for
a certain number of states F is cF , then the prior for F states
is log(cF/cF−1). We also use the transition weights as prior
values for β in the Bayesian model.

5 Experiments and results

5.1 Generating expert data

Linear temporal logic We use linear temporal logic (LTL)
to formally specify tasks (Clarke et al. 2001). In our experi-
ments, the LTL formulae were used to define expert behavior
but were not used by the learning algorithm. Formulaeφ have
the syntax grammar

φ := p | ¬φ | φ1 ∨ φ2 | © φ | φ1 U φ2

where p is a proposition (a boolean-valued truth statement
that can correspond to objects or goals in the world), ¬ is
negation, ∨ is disjunction, © is “next”, and U is “until”. The
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derived rules are conjunction (∧), implication ( �⇒ ), equiv-
alence (↔), “eventually” (♦φ ≡ TrueU φ) and “always”
(�φ ≡ ¬♦¬φ) (Baier and Katoen 2008). φ1 U φ2 means
that φ1 is true until φ2 is true, ♦φ means that there is a time
where φ is true and �φ means that φ is always true.

Generating data In our test environments, we define desired
behavior using LTL, andwe then use SPOT (Duret-Lutz et al.
2016) and Lomap (Ulusoy et al. 2013) to convert the LTL
formulae into FSAs. Every FSA that we consider has a goal
state G, which is the desired final state of the agent, and a trap
state T , which is an undesired terminal state. We generate a
set of environments inwhich obstacles and other propositions
are randomly placed. Given the FSA and an environment, we
run Dijkstra’s shortest path algorithm on the product MDP
to create expert trajectories that we use as data for imitation
learning.

LSTM baseline: We compare the performance of LVI to an
LSTM network, which is a generic method for dealing with
time-series data. The cell state of the LSTM serves as a kind
of memory for the network, preserving state from time step
to time step. This is similar to the FSA state of our model; the
FSA state at a given time step represents the agent’s progress
through the FSA and is a sort of memory. The cell state
therefore loosely corresponds to an unstructured FSA state.
We believe that LSTMs are a good baseline for our model
because of their widespread use and because they represent
an unstructured, model-free alternative to our method. The
first layer of the LSTM network is a 3D CNN with 1024
channels. The second layer is an LSTM with 1024 hidden
units.

5.2 Environments

Gridworld domainsThe gridworld domains are simple 8×8
gridworlds with sequential goals. Gridworld1 has goals a
and b (shown in Fig. 6a); Gridworld2 (Fig. 6b) adds goal c,
and Gridworld3 (Fig. 6c) adds goal d. The specification of
Gridworld1 is♦(a ∧♦b)∧�¬o. Gridworld2’s specification
is♦(a∧♦(b∧♦c))∧�¬o and Gridworld3’s is♦(a∧♦(b∧
♦(c ∧ ♦d))) ∧ �¬o.

Lunchbox domain The lunchbox domain (Fig. 6d) is an
18 × 7 gridworld where the agent must first pick up either
a sandwich a or a burger b and put it in a lunchbox d, and
then pick up a banana c and put it in the lunchbox d. The
specification is ♦((a ∨ b) ∧ ♦(d ∧ ♦(c ∧ ♦d))) ∧ �¬o.

Cabinet domain The cabinet domain is a 10×10 gridworld
where the agent must open a cabinet. First it must check
if the cabinet is locked (cc). If the cabinet is locked (lo),
the agent must get the key (gk), unlock the cabinet (uc),
and open it (op). If the cabinet is unlocked (uo), then the
agent can open it (op). The specification is ♦(cc ∧ ♦((uo ∧

♦op) ∨ (lo ∧ (♦(gk ∧ ♦(uc ∧ ♦op)))))) ∧ �¬o. Because
many of the propositions lie in nearly the same point in space
(e.g. checking the cabinet, observing that it is unlocked, and
opening the cabinet), we define a “well” (as shown in Fig. 6e)
that contains the relevant propositions in separate grid spaces
but represents a single point in space in the real world.

Dungeon domain The dungeon domain is a 12×9 gridworld
and shows our model’s ability to learn complex sequen-
tial specifications. In this environment (Fig. 6f) there are
10 propositions: keys ka, kb, kc, kd that unlock doors
da, db, dc, and dd, respectively; and g for the goal and o
for obstacles. To progress to the goal, the agent must follow
the specification♦g∧�¬o∧(¬da U ka)∧(¬db U kb)∧
(¬dc U kc) ∧ (¬dd U kd)—it must first pick up Key A,
then go get Key D, then Key B, then Key C, before it can
access the room in which the goal is located.

Driving domain The driving domain (Fig. 6g) is a 14 ×
14 gridworld where the agent must obey three “rules of the
road”—prefer the right lane over the left lane (l):�♦¬l; stop
at red lights (r ) until they turn green (h): �(r ⇒ (r U h));
and reach the goal (g) while avoiding obstacles (o): ♦g ∧
�¬o. Unlike the other domains, this domain has a time-
varying element (the red lights turn green); it also has an
extra action—“do not move”—since the car must sometimes
wait at the red light.

Performance Our experiments were run on an Intel i9
processor and an Nvidia 1080Ti GPU. The simplest envi-
ronment, Gridworld1, takes ∼ 1.4 hours to train; the most
complicated, the Dungeon domain, takes∼ 7.5 days to train.
TheKLdivergence for all environments shows a typical train-
ing pattern in which the divergence rapidly decreases before
flattening out.

Performance of LVI (shorthand for our model) versus
the LSTM network is shown in Table 1. We measure “suc-
cess rate” as the proportion of trajectories where the agent
satisfies the environment’s specification. LVI achieves vir-
tually perfect performance on every domain with relatively
little data. The results for Gridworld1 in Table 1 show that
LVI achieves almost perfect performance on the domain; the
LSTM achieves a success rate of 88.8% on the training data,
which decreases to 64% on the test data. Similar results hold
for Gridworld2 and 3; however, the LSTM performs much
better on these domains. This is likely because these two
domains have fewer obstacles than the Gridworld1 domain
(theLSTMseems to struggle to avoid randomly placed obsta-
cles). The LSTM network achieves fairly high performance
on the lunchbox and cabinet domains, but has poor perfor-
mance in the time-varying driving domain. Lastly, the LSTM
is completely incapable of learning to imitate the long and
complicated trajectory of the dungeon domain. On top of
achieving better performance than the LSTM network, the
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Table 1 Training and test performance of LVI versus LSTM

Training Test
LVI LSTM LVI LSTM

Gridworld1

Set size 500 15000 3000 3000

Success Rate 99.80% 88.80% 99.97% 64.00%

Gridworld2

Set size 600 10000 1200 2000

Success Rate 99.50% 99.20% 99.33% 98.90%

Gridworld3

Set size 500 10000 1200 2000

Success Rate 100.0% 98.00% 99.99% 98.55%

Lunchbox

Set size 500 9000 1800 1800

Success Rate 99.60% 91.44% 99.94% 82.44%

Cabinet

Set size 550 6000 1800 1800

Success Rate 100.00% 93.60% 100.0% 89.58%

Driving

Set size 500 6000 1800 1800

Success Rate 100.0% 58.54% 100.0% 58.60%

Dungeon

Set size 800 6000 1800 1800

Success Rate 100.0% 0.00% 100.0% 0.00%

Bold numbers indicate that LVI outperformed LSTM in that experiment

LVI model also has an interpretable output that can be mod-
ified to change the learned policy.

The LVI model requires much less data than the LSTM
network for two reasons. One is that the LVI model can take
advantage of the spectral learning prior to reduce the amount
of data needed to converge to a solution, whereas the LSTM
network cannot use the prior. The second is that since the
LVI model is model-based, once it learns an accurate model
of the rules it can generalize to unseen permutations of the
environment better than the LSTM network, which is only
capable of interpolating between data points.

5.3 Interpretability

Our method learns an interpretable model of the rules of an
environment in the formof a transition function T M . Learned
versus true T Ms are shown in Figs. 7 and 8 (we leave out the
goal and trap states of the T Ms, since they are trivial). The
plots show values of the learned variational parameter ̂βF∗

.
Therefore the plots do not show the values of the actual T M
but rather the values of the prior of the T M , giving an idea
of how “certain” the model is of each transition.

Figure 7a shows the T M of Gridworld1. Each matrix cor-
responds to the transitions associated with a given automaton

state. Columns correspond to propositions (e is the empty
proposition) and rows correspond to the probability that,
given current state f and proposition p, the next state is
f ′. Inspecting the learned T M of Gridworld1, we see that
in the initial state S0, a leads to the next state S1, whereas
b leads back to S0. In S1, going to b leads to the goal state
G. In both states, going on an obstacle o leads to the trap
state T . Therefore simply by inspection we can understand
the specification that the agent is following. Gridworld2 and
Gridworld3 follow analogous patterns.

Figure 8a shows the T M of the lunchbox domain. Inspec-
tion of the learned T M shows that in the initial state S0,
picking up the sandwich or burger (a or b) leads to state
S1. In S1, putting the sandwich/burger into the lunchbox (d)
leads to S2. In S2, picking up the banana c leads to S3, and
in S3, putting the banana in the lunchbox d leads to the goal
state G.

The cabinet domain can be interpreted similarly. However,
the dungeonanddrivingdomains require closer inspection. In
the dungeon domain, instead of learning the intended general
rules (“Door A is off limits until Key A is picked up”), the
model learns domain-specific rules (“pick up Key A; then go
to Door A; then pick up Key B; etc”) (see Fig. 9). Crucially,
however, this learned T M is still easy to interpret. In the
initial state S0, most of the columns are blank because the
model is uncertain as to what the transitions are. The only
transition it has learned (besides the obstacle and empty state
transitions) is for KeyA (ka), showing a transition to the next
state. In S1, the only transition occurs at Door A (da). Then
Key D (kd), Door D (dd), Key B (kb), Door B (db), Key C
(kc), Door C (dc), and finally the goal state g. So we can see
by inspecting the learned T M that the model has learned to
go to those propositions in sequence. Although this differs
from what we were expecting, it is still a valid set of rules
that is also easy to interpret.

The driving domain (Fig. 8c) also requires closer inspec-
tion. In the expected T M , there is a left lane rule so that
initial state S0 transitions to a lower-reward state S1 when
the car enters the left lane, because the left lane is allowed but
unideal; S0 transitions to S2 when the car is at a red light,
and then back to S0 when the green light h turns on. Our
model learns a different T M , but due to the interpretability
of these models, it can still be parsed. Unlike in the “true”
T M , in the learned T M , the green light acts as a switch—
the agent cannot reach the goal state unless it has gone to
the green light. This is an artifact of the domain, since the
agent always passes a green light before reaching the goal,
so the learning algorithm mistakes the green light as a goal
that must be reached before the actual goal. The red light
causes a transition from S0 to S1, which is a lower-reward
duplicate of S0. The agent will wait for the red light to turn
green because it thinks it must encounter a green light before
it can reach the goal. Regarding the left lane, the T M places
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(a)

(b)

(c)

Fig. 7 Learned vs. true T Ms for the gridworld domains

significant weight on a transition to low-reward S1 when in
S0, which discourages the agent from entering the left lane.
Therefore although not as tidy as the true T M , the learned
T M is still interpretable.

5.4 Manipulability experiments on Jaco Arm

Our method allows the learned policy to be manipulated to
produce reliable new behaviors. We demonstrate this abil-
ity on a real-word platform, a Jaco arm. The Jaco arm is
a 6-DOF arm with a 3-fingered hand and a mobile base.
An Optitrack motion capture system was used to track the
hand and manipulated objects. The system was implemented
using ROS (Quigley et al. 2009). The OpenMotion Planning
Library (Şucan et al. 2012) was used for motion planning.
The motion capture system was used to translate the posi-

(a)

(b)

(c)

Fig. 8 Learned vs. true T Ms for three domains

Table 2 Performance of Jaco robot in executing learned lunchbox and
cabinet tasks

Lunchbox Cabinet
φl1 φl2 φl3 φl4 φc1 φc2

Successes out of 20 20 20 19 19 20 17

tions of the hand and objects into a 2D grid, and an LVI
model trained on simulated data was used to generate a path
satisfying the specifications.

We modified the learned T Ms of the lunchbox and cabi-
net domains. We call the original lunchbox specification φl1.
We tested three modified specifications—pick up the sand-
wich first, then the banana (φl2, Fig. 10a); pick up the burger
first, then the banana (φl3, Fig. 10b); and pick up the banana,
then either the sandwich or the burger (φl4, Fig. 10c). These
experiments are analogous to the ones in Araki et al. (2019)
and are meant to show that though significantly less infor-
mation is given to our model in the learning process, it can
still perform just as well.
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Fig. 9 Learned vs. true T Ms for the dungeon domain

(a)

(c)

(b)

Fig. 10 Modifications to the learned T M of the lunchbox domain so
that the agent follows the new specifications. Deleted values are marked
in red, and added values in green (Color figure online)

In these modified lunchbox experiments, a indicates that
the sandwich has been picked up, b that the burger has been
picked up, and c that the banana has been picked up. d indi-
cates that the robot has dropped whatever it was holding into

Fig. 11 Cabinet T M modifications, φc1 → φc2. Red indicates that a
transition has been deleted; green that one has been added (Color figure
online)

the lunchbox. Fig. 10a shows the modifications made to the
lunchbox T M to cause it to pick up only the sandwich, and
not the burger, first. In order to achieve this, in S0 we set b
(the burger proposition) to transition back to S0 rather than
to S1, indicating to the agent that picking up the burger does
not accomplish anything. With this change, the agent will
only pick up the sandwich (a). Fig. 10b shows the analo-
gous changes to make the agent pick up only the burger first.
Fig. 10c shows how to make the agent pick up the banana
first, and then either the sandwich or burger. In order to do
this, we first modify S0 so that picking up the banana (c)
leads to the next state, whereas picking up the sandwich or
burger (a or b) leads back to S0. This changemakes the agent
pick up the banana first. S1 does not need to be modified; the

123



Autonomous Robots

agent should still put whatever it is holding into the lunchbox.
We then modify S2 so that this time, picking up the banana
leads back to S2, whereas picking up the sandwich or burger
leads to the next state, S3. With these changes, the agent will
not pick up the banana but will instead pick up either the
sandwich or burger.

We also modified the learned cabinet T M (φc1), so that if
the agent knows that the cabinet is locked, it will pick up the
key first before checking the cabinet (φc2). Themodifications
to the T M are shown in Fig. 11. The T M is modified so that
the agent will get the key (gk) before checking the cabinet
(cc). Therefore, in the initial state S0, cc is set to go to the
trap state so that the agent will avoid it; gk is set to transition
to S2, indicating to the agent that it should get the key first.
In S2, we modify the T M so that cc is the goal instead of gk,
so that the agent will then head to the cabinet and check it.
Finally, in S4, once the agent has checked the cabinet, it must
unlock the cabinet and it does not need to get the key, so we
set gk to the trap state so the agent will be certain to unlock
the cabinet and not try to get the key. These modifications
change the behavior of the agent to always get the key before
checking the cabinet.

We tested each specification 20 times on our experimental
platform; as shown in Table 2 there were only a few failures,
and these were all due to mechanical failures of the Jaco arm,
such as themanipulator dropping an object or losing its grasp
on the cabinet key.

5.5 Fixing expert errors

Our interpretable and manipulable model can also be used
to fix the mistakes of faulty experts. Suppose the real-world
driving data contains bad behavior from drivers breaking the
rules. We model this scenario in Table 3, where the Unsafe
T M shows a scenario in which themodel has learned to run a
red light 10% of the time. This result can be observed directly
from the T M , since the probability of entering the initial state
given that the agent is on a red light is 10%, meaning it will
ignore the red light, while the probability of recognizing that
it is in a “red light” state is 90%. We correct the T M by
setting the initial state entry to 0 and the red light state entry
to 1.We perform 1000 rollouts using each of these T Ms. The
Unsafe T M results in the agent running 9.88% of red lights
while the Safe T M prevents the agent from running any red
lights.

6 Conclusion

Interpretability and manipulability are desirable properties
of learned policies that many imitation learning approaches
struggle to achieve. This work introduces a method to learn
interpretable and manipulable policies by factoring the envi-

Table 3 In this scenario, LVIN
has learned a transition function
T M for the driveworld domain
in which in 10% of cases, the
car will ignore a red light. The
unsafe T M can be modified by
deleting the 0.1 entry in the
“Initial State”’ row of T M and
adding it to the “Red Light” row,
so that the agent will never
ignore a red light. Over 1000
rollouts of the policy for the
unsafe and safe T Ms, the unsafe
T M indeed causes the agent to
run 9.88% of red lights, while
the modified safe T M prevents
the agent from ever running a
red light

Initial State red light

Unsafe T M

Initial 0.1

Left Lane 0.0

Goal 0.0

Red Light 0.9

Trap 0.0

Safe T M

Initial 0.0

Left Lane 0.0

Goal 0.0

Red Light 1.0

Trap 0.0

Rollout Performance

Unsafe T M 9.88%

Safe T M 0.00%

ronment into a low-level environment MDP and a high-level
automaton. The unknown automaton and reward function
are learned using a nonparametric Bayesian model that
observes only the low-level trajectories and propositions.
We demonstrate the effectiveness of our technique on sev-
eral domains, showing how the learned transition matrices
can be interpreted and manipulated to produce predictable
new behaviors. We believe that the general idea behind our
approach—factoring the MDP into a low-level environment
MDP and a high-level rules-based FSA, and using a dynamic
programming-based method to find a policy—is interesting
because it allows the learned policy to be both interpretable
and manipulable. We believe that this idea can be extended
further to make learning algorithms that are applicable to
continuous state spaces and that are even easier to interpret
and compose.
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