
Deep Bayesian Nonparametric Learning of Rules and Plans from Demonstrations
with a Learned Automaton Prior

Brandon Araki,1 Kiran Vodrahalli,2 Thomas Leech,1, 3

Cristian-Ioan Vasile,1 Mark Donahue,3 and Daniela Rus1

1CSAIL, Massachusetts Institute of Technology
2 Columbia University

3 MIT Lincoln Laboratory
araki@mit.edu, knv2109@columbia.edu, tleech@mit.edu, cvasile@mit.edu, mark.donahue@ll.mit.edu, rus@csail.mit.edu

Abstract

We introduce a method to learn imitative policies from ex-
pert demonstrations that are interpretable and manipulable.
We achieve interpretability by modeling the interactions be-
tween high-level actions as an automaton with connections to
formal logic. We achieve manipulability by integrating this
automaton into planning, so that changes to the automaton
have predictable effects on the learned behavior. These quali-
ties allow a human user to first understand what the model has
learned, and then either correct the learned behavior or zero-
shot generalize to new, similar tasks. We build upon previous
work by no longer requiring additional supervised informa-
tion which is hard to collect in practice. We achieve this by
using a deep Bayesian nonparametric hierarchical model. We
test our model on several domains and also show results for a
real-world implementation on a mobile robotic arm platform.

1 Introduction
Imitation learning (IL) is a method for producing desired
behaviors in agents with expert demonstrations [Abbeel and
Ng (2004), Daumé III, Langford, and Marcu (2009), Ross,
Gordon, and Bagnell (2011)]. IL is a successful approach
in many tasks including camera control, speech imitation,
and self-driving for cars [Taylor et al. (2017), Codevilla et
al. (2018), Ho and Ermon (2016)]. Despite these successes,
current approaches to IL fall short of human learning, par-
ticularly in the domain of multi-step tasks. When a human
learns a complicated task, such as driving or preparing a
meal, they can explain, at a high level, the rules they fol-
lowed or the steps they took to perform the task. Further-
more, if the rules change or if they want to, say, cook a
slightly different dish, they can easily alter their behavior
to adapt to the new circumstances. Most current approaches
to IL cannot achieve this level of flexibility because their
learned policies are black boxes.

Our prior work, Araki et al. (2019b), introduces the no-
tions of interpretability and manipulability. A policy is
called interpretable if the relations between its high-level
actions are defined by a finite state automaton (FSA), and it
is manipulable if, by changing the transitions in the FSA, a
human user can produce predictable changes in the learned

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

behavior. These properties were achieved by designing a hi-
erarchical model with high-level actions represented by an
FSA and incorporating the FSA into a differentiable plan-
ning algorithm. However, in addition to expert trajectories,
this model requires the trajectories to be labeled with the
current automaton state at every time step, which is almost
equivalent to requiring the user to know the automaton ahead
of time.

In this paper, we remove the necessity of FSA state la-
bels by interpreting the learning problem as solving a par-
tially observable Markov decision process (POMDP) where
the hidden states and transitions correspond to an unknown
FSA. We model the FSA as part of a hidden Markov model
(HMM), which represents the composition of a planning
policy with the POMDP. Learning the HMM is challenging
because the FSA state labels, transitions, and the number of
FSA states are all unknown. We fit the HMM with stochastic
variational inference (SVI) on expert demonstration data, si-
multaneously learning the unknown FSA and planning over
the resulting MDP.

We also use spectral techniques applied to a matrix rep-
resentation of an automaton to create a prior for the FSA.
We report considerable improvements over baselines in sev-
eral domains, including two robotic manipulation tasks with
real-world experiments. Because our model satisfies the in-
terpretability and manipulability properties from Araki et al.
(2019b), we can zero-shot generalize to new tasks and fix
mistakes in incorrect models without additional demonstra-
tions.

1.1 Contributions
1. We solve logic-structured POMDPs by learning a plan-

ning policy from task demonstrations alone, extending
ideas from the differentiable planning literature.

2. We use spectral techniques applied to a matrix represen-
tation of a finite automaton to design a novel prior for
nonparametric hierarchical Bayesian models.

3. Our model learns the FSA transition matrix, allowing us
to interpret the rules that the model has learned.

4. We explain how to modify the learned transition matrix
to manipulate the behavior of the agent on a real-world
robotic platform in the contexts of packing a lunchbox
and opening a locked cabinet.

2 Related Work
Our model extends Araki et al. (2019b), which builds upon
the Value Iteration Network (VIN) model (Tamar et al. 2016)
by applying a more structured variant of VIN to the prod-
uct of a low-level MDP with a logical specification defined
by an FSA. Other works incorporating logical structure into
the imitation learning setting include Paxton et al. (2017),
Li, Ma, and Belta (2017), Hasanbeig, Abate, and Kroening
(2018), Icarte et al. (2018), Burke, Penkov, and Ramamoor-
thy (2019), and Gordon, Fox, and Farhadi (2019). These
models assume that at least part of the logic specification
is known, and they are not interpretable and manipulable.
By contrast, our model learns the FSA end-to-end in an un-
supervised manner from demonstrations.

Shah et al. (2018) gives methods for learning a posterior
over logic specifications from demonstrations, and Shah, Li,
and Shah (2019) defines objectives for planning over a dis-
tribution of planning problems defined by logic specifica-
tions which reduces to the problem of solving MDPs. Our
work directly considers the problem as a POMDP and in-
troduces data-driven prior assumptions on the distribution
of an FSA to mitigate the hardness of the problem. In ad-
dition, we never have to enumerate an exponentially-sized
MDP. Furthermore, since our model is learned end-to-end,
we recover an FSA specification that is tuned for the imi-
tation policy that we fit, enhancing manipulability and inter-
pretability simultaneously. Karkus, Hsu, and Lee (2017) also
extends VIN to partially observable settings. Our work de-
parts from theirs since we 1) factor the transition dynamics
hierarchically into an interpretable and manipulable FSA,
and 2) employ Bayesian nonparametric inference and a data-
driven prior distribution on the FSA structure over the whole
model, making our policy interpretable and manipulable.

Our model draws inspiration from many methods in the
Bayesian machine learning literature, and can be formulated
as a recurrent, autoregressive HMM. Several other works
have studied hierarchical dynamical models in the nonpa-
rameteric Bayesian inference setting and have developed
various techniques for inference [Fox et al. (2011a), Fox et
al. (2011b), Chen, Linderman, and Wilson (2016), Johnson
et al. (2016), Linderman et al. (2017)]. Our primary contri-
bution to this literature is the way we use the structure of
logical automata in the prior over the hidden states, making
our model interpretable and manipulable.

Rhinehart, McAllister, and Levine (2018) also develop a
deep Bayesian model for solving POMDPs and do not re-
quire new data to change the objective of the policy (al-
though they require the policy to be re-optimized). Since we
model the learned rules as an FSA, we can affect precise
changes to the learned policy by adjusting the FSA, versus
assigning probability distributions to goals or tweaking the
learned policy by adjusting arbitrary costs to states.

3 Problem Formulation
Our key objective is to infer rules and policies from task
demonstrations. The rules are represented as a probabilistic
automatonW = (F ,P, TM, I, F), where F is the states of
the automaton; P is the set of input symbols or propositions;

TM : F×P×F → [0, 1] defines the transition probabilities
between states; I is a vector of initial state probabilities; and
F is the final state vector. We take F = |F| and P = |P|.
We assume that I and F are deterministic – the initial state
is always state 0, and the final state is always state (F − 1).

We formulate the overall problem as a POMDP. The state
space is C = S × P × F , where S = X × Y is a 2D
grid (examples are shown in Fig. 4); F is the set of states of
the automaton; and P is the set of propositions (an illustra-
tion of this joint state space is in Araki et al. (2019a)). The
action space A = {N,E, S,W,NE,NW,SE, SW} – the
agent can travel to any neighboring cell. In addition to the
automaton transition function TM , there is also a low-level
transition function T : S×A×S → [0, 1] and a “proposition
map” M : S × P × t→ {0, 1}. We assume that every low-
level state is associated with a single proposition that is true
at that state; the proposition map defines this association. We
allow M to vary with time, implying that propositions can
change location over time; however, we consider only one
domain that changes with time. Note that we overload all
the transition functions so that given their inputs, they return
the next state instead of a probability. The reward function
isR : C ×A → R; we assume that the reward function does
not vary with P , S, or A, so R : F → R. The observation
space is Ω = S × P , and the observation probability func-
tion isO : C×A×Ω→ [0, 1]. Therefore we have a POMDP
described by the tuple (C,A, T ×M × TM,R,Ω,O, γd).

With this notation, we formulate the POMDP learn-
ing problem as follows. Given N data points, data point
i has Ti time steps. Dataset D = 〈d0, . . . , dN 〉, where
di = 〈(si0, ai0), . . . , (siTi

, aiTi
)〉. Expanding the POMDP tu-

ple gives (S ×P ×F ,A, T ×M × TM,R,S ×P,O, γd).
Unknown elements have been underlined to emphasize the
learning objective. We assume that the actions A, the low-
level transitions T , the proposition map M , the observation
probabilities O, and the discount factor γd are known. We
also assume thatO is deterministic – in other words, that the
agent has sensors that can perfectly sense its state in the en-
vironment. The goal of solving a POMDP is to find a policy
that maximizes reward – in this case, a policy that mimics
the expert demonstrations. This is achieved by learning the
automaton transition function TM , the reward function R,
and the number of states of the automaton F .

4 Method
To learn a policy for the POMDP, we formulate the POMDP
composed with the policy as a hierarchical Hidden Markov
Model (HMM) with recurrent transitions and autoregressive
emissions, where the hidden states and transitions of the
POMDP are latent variable parameters (shown in Fig. 2).
The unobserved logic state at every time step is interpreted
as a hidden state of the FSA, and TM , R, and F are inter-
preted as high-level latent variables.

A sketch of the learning algorithm is shown in Alg. 1, and
Fig. 1 shows example inputs and outputs. The data consist
of a set of expert trajectories over a domain. The domain
shown is a 3 × 3 gridworld where the agent must first go
to a, then to b, while avoiding obstacles o. e is the “empty”

Data Learned ModelAlgorithm

Proposition Maps

a

b

o

e

Trajectories

Bayesian Model

LVIN

(Recursive Planning)

Spectral Learning Prior

S0 a b o e

S0

S1

G

T

S1 a b o e

S0

S1

G

T

G a b o e

S0

S1

G

T

T a b o e

S0

S1

G

T

Reward function (f)

and

transition matrix

Figure 1: The data consist of a set of expert trajectories over a domain. Each trajectory has an associated proposition map that
relates every position in the domain to a proposition. Spectral learning generates an automaton prior for the Bayesian model,
which learns variational parameters that are equivalent to the reward function and transition matrix of the environment.

Algorithm 1 Maximum A Posteriori Estimation on
Bayesian LVIN model

1: procedure MAP-ESTIMATION

2: Training Inputs: {{(st, at)(n)}Ti
t=0}

N−1
i=0

3: To learn:
4: Number of automaton states prior α̂ ∈ R2P−3

>0

5: Transition matrix prior β̂F ∈ RF×P×F>0
for F = 4, . . . , 2P

6: Reward function prior γ̂F ∈ RF × RF>0
for F = 4, . . . , 2P

7: Generate spectral learning prior (Sec. 4.3)
8: Stochastic variational inference on the

learning objective L (Sec. 4.1)

9: return α̂∗, β̂
∗
, γ̂
∗

= arg min
(α̂,β̂,γ̂)

L
10: end procedure

proposition. The figure also illustrates the proposition map
M , which maps every location to a proposition. Locations
where a proposition is true are highlighted with a color. Note
that only one proposition is true at any given location, and
that each instance of an environment has a unique M .

The algorithm consists of approximating the posterior of
a Bayesian model and returning the modes of the latent vari-
able approximations (Sec. 4.1); LVIN, a differentiable vari-
ation of value iteration that incorporates both the low- and
high-level transitions, plays an important role (Sec. 4.2). A
common issue with learning complex Bayesian models is
that they are very sensitive to their initialization. The dis-
crete high-level transition function TM is particularly vul-
nerable to converging to local minima, so we use spectral
learning to obtain a good prior (Sec. 4.3).

Posterior inference finds likely values for the number of
automaton states F , the reward function R, and the transi-
tion matrix TM . In the figure, the TM is represented as a
collection of matrices - each matrix is associated with the
current logic state; columns correspond to propositions and
rows correspond to the next logic state. The entry in each
grid is the probability TM(s′|s, p). Black indicates 1 and
white indicates 0. Therefore in the initial state S0, a causes
a transition to S1, whereas o causes a transition to the trap
state T . The outputs of the algorithm are valuable for two
reasons: 1) TM is relatively easy to interpret, giving insight

into the rules that the expert is following; and 2)R and TM
can be used for planning. Furthermore, modifications to TM
result in predictable changes in the agent’s behavior.

4.1 Bayesian Model
We now define the Bayesian model for the policy class (all
variables in this section are listed in Araki et al. (2019a)).
The nonparametric model is stated in Araki et al. (2019a);
in practice, we approximate the nonparametric model by as-
suming the possible number of FSA states is finite. We will
discuss this approximate model for the rest of the paper.

One of the main challenges in this learning problem is
to infer the number of states F of the transition matrix –
this problem is nonparametric because F is theoretically un-
bounded. We approximate the nonparametric nature of the
problem by assuming that F is upper-bounded by 2P . This
upper bound implies that each proposition is not responsi-
ble for more than 2 transitions to distinct FSA states, which
we believe is a reasonable assumption for normal domains.
TM and R both rely on F to determine their dimensional-
ity. Hidden-state transitions are a function of TM and the
previous observation, among other things (see Fig. 2). Tran-
sitions that depend on variables besides the previous hid-
den state are called recurrent. Transitions between low-level
states st−1 and st are determined by T (st|at, st−1). Ac-
tions are chosen by a policy found using value iteration. Our
value iteration module incorporates TM and is called LVIN
(Sec. 4.2). Both T and LVIN depend on variables besides the
current hidden state and are therefore called autoregressive.

The full generative model is described below:

α ∈ R2P−3
>0 , β ∈(β4, . . . , β2P), γ ∈ (γ4, . . . , γ2P)

θ ∼ Dirichlet(α)

F ∼ Categorical(θ)

βF ∈ RF×P×F>0 , γF ∈ RF × RF>0

TMF |βF ∼ Dirichlet(βF)

RF |γF ∼ Normal(γF)

π := LVIN(TMF ,RF)

at|st−1, ft−1 ∼ π(st−1, ft−1)

st := T (at, st−1), pt := M(st)

ft|pt, ft−1, TM
F ∼ Categorical(TMF (ft−1, pt))

𝑇𝑀𝐹

𝐹θ𝛼

ҧ𝛽

തγ

𝑓0 𝑓1 𝑓2

𝑠1, 𝑎1 𝑠2, 𝑎2 𝑠3, 𝑎3

. . .

. . .

𝑓𝑇−1

𝑠𝑇 , 𝑎𝑇

𝑓𝑇

Autoregressive Emissions

𝑎𝑡 = 𝐿𝑉𝐼𝑁(𝑇𝑀𝐹 , 𝑅 ,𝑀, 𝑠𝑡−1, 𝑓𝑡−1)
𝑠𝑡 = 𝑇(𝑎𝑡, 𝑠𝑡−1)

Recurrent Transitions
𝑓𝑡 = 𝐻(𝑇𝑀𝐹 , 𝑀, 𝑠𝑡 , 𝑓𝑡−1)

𝑀

𝑁

𝐹
𝐹

Figure 2: The graphical model. The model is a nonparametric, hierarchical (green box), recurrent autoregressive HMM. White
circles are latent variables; grey circles are observed variables; and black dots are priors. M is included as an input to the model
to emphasize that every instance of the environment has a unique proposition map. The plate around the HMM indicates that
those variables are repeated for N trajectories.

α is the prior over distributions θ of potential numbers of
FSA states F . β is a collection of 2P − 3 priors βF , where
βF is the prior of the transition matrix TMF of dimension-
ality F ×P ×F . Similarly, γ is a collection of 2P −3 priors
γF , where γF represents the mean and variance priors for
the reward function RF . π is the policy found using LVIN;
action at is drawn from the policy. State st and proposition
pt are given by the deterministic functions T and M . Lastly,
the current automaton state ft is drawn from TMF .

We incorporate known features of the environment into
the model as priors. Many of these priors rely on the as-
sumption that every automaton we consider has one initial
state, one goal state, and one trap state. Our assumptions
about the rules of the environment are built into each βF ,
which are the Dirichlet priors for TMF . Each βF is popu-
lated with the value 0.5 before adding other values, since for
Dirichlet priors, values below 1 encourage peaked/discrete
distributions. Therefore this prior biases the TM towards de-
terministic automata. We add a prior to the trap state that
favors self-transitions because we know that the trap state
is a “dead-end” state. We add an obstacle prior to bias the
model in favor of automata where obstacles lead to the trap
state. We add a goal state prior so that the model favors self-
transitions for the goal state. We add an empty state prior so
that the model favors self-transitions for all states given the
empty proposition. We use spectral learning to give a prior
for the other transitions as well as for α (Sec. 4.3). We also
give priors to the reward function so that the goal state has a
positive reward and the trap state has a negative reward.

The joint distribution over the latent variables is shown
below, with possible numbers of FSA states F and possi-
ble next states f marginalized out. A bar over a variable
indicates that it is a list over possible values of F . i rep-
resents the data index; t the time index; and F the number-
of-automaton-states index.

p(D,R, TM, θ|α, β, γ) =
N−1∏
i=0

T i∏
t=2

2P∑
F=4

F−1∑
f
i,F
t−1=0

p(sit|ait, sit−1)

p(ait|sit−1, f
i,F
t−1, TM

F ,RF)p(f i,Ft−1|f
i,F
t−2, TM

F , sit−1)

p(TMF |F, βF)p(RF |F, γF)p(F |θ)p(θ|α)

The posterior can be derived from the joint distribution.
Our variational approximation to the posterior is

q(R, TM, θ|D, α̂, β̂, γ̂) =
N−1∏
i=0

T i∏
t=2

2P∑
F=4

F−1∑
f
i,F
t−1=0

q(f i,Ft−1|f
i,F
t−2, TM

F , sit−1)q(RF |F, γ̂F)

q(TMF |F, β̂F)q(F |θ)q(θ|α̂)

The variational approximation uses amortization (Ritchie,
Horsfall, and Goodman 2016) to avoid having a huge num-
ber of variational parameters – without amortization, every
next FSA state f i,Ft−1 would have to be drawn from an in-
dependent Dirichlet distribution with its own set of varia-
tional parameters. We avoid this situation by drawing f i,Ft−1

from TMF (f i,Ft−2,M(sit−1)), so that parameters are shared
for a given FSA state-proposition pair. Also note that the
variational approximation is the same as the joint likeli-
hood, except that the first two data-dependent distributions
are removed. Other works such as Damianou and Lawrence
(2013) have also used this pattern for constructing varia-
tional approximations. The proposal distributions are the
same as the corresponding distributions in the joint likeli-
hood function. An illustration of the graphical model of the
variational approximation is in Araki et al. (2019a).

The objective of the variational inference problem is to
minimize the KL divergence between the true posterior and
the variational distribution:

L = KL(q(R, TM, θ|D, α̂, β̂, γ̂)||p(R, TM, θ|D, α, β, γ))

α̂∗, β̂
∗
, γ̂
∗

= arg min
(α̂,β̂,γ̂)

L

α̂∗, β̂
∗
, and γ̂

∗
serve as approximations of α, β, and γ, and

therefore define distributions over F , TM , and R. Letting
F ∗ = arg maxF α̂

∗, we get priors for TMF∗ (β̂F
∗
) and

RF∗ (γ̂F
∗
) which can be used for planning.

The variational problem was implemented using Pyro and
Pytorch. Pyro uses stochastic variational inference to ap-
proximate the variational parameters.

Weighted
automaton

Empirical Hankel matrixStrings of
propositions

Dataset of expert
trajectories

eaeb

aeeb

eeeaeb

e a b eb

a ae
0/100

aa
0/100

ab
2/100

aeb
0/100

ea eae
0/100

eaa
0/100

eab
5/100

eaeb
9/100

eae eaee
0/100

eaea
0/100

eaeb
9/100

eaeeb
8/100

Suffixes

Pr
ef

ix
es S0 S1

S3S2

a, 0.9

b,
0.9

e,
0.1

Figure 3: The process of applying spectral learning to our data. A dataset of expert trajectories is converted to a list of input
strings. The frequency of each input string is used to create the empirical Hankel matrix (only a portion of the matrix is
depicted). From the rank decomposition of the matrix we can derive a weighted automaton as a prior for the Bayesian model.

4.2 Logical Value Iteration Networks (LVIN)
At every time step, the model must choose an optimal ac-
tion by calculating a policy. In this work, the policy is found
using value iteration on the learned MDP. We use the “Log-
ical Value Iteration Network” (Araki et al. 2019b), which
integrates the high-level transitions TM into value iteration.
The modified value iteration equations are shown below. In
the first step, the Q-functionQ is updated using reward func-
tion R, low-level transitions T and value function V . Next,
the value function is updated. LVIN adds a third step, where
the values are propagated between logic states using TM .
Note that propositions P are not an input to the Q and value
functions because each low-level state s is deterministically
associated with a single proposition p, so p is a redundant
input for a given s.

Qt+1(s, f, a)← R(s, f, a) + γd
∑
s′∈S

T (s′|s, a)V t(s′, f)

V̂ t+1(s, f)← max
a

Qt+1(s, f, a)

V t+1(s, f)←
∑
f ′∈F

TM(f ′|f,M(s))V̂ t(s, f ′)

4.3 Spectral Learning for Weighted Automata
One of the main issues of using variational inference on
complex Bayesian models is its tendency to converge to un-
desirable local minima. To avoid this, we use the output of
spectral learning for weighted automata as a prior for TM .

Spectral learning uses tensor decomposition to efficiently
learn latent variables. We can use this technique by repre-
senting an automaton as a Hankel matrix (Arrivault et al.
2017). The Hankel matrix is a bi-infinite matrix with rows
that correspond to prefixes and columns to suffixes of all
possible input strings. The value of a cell is the probability
of the corresponding string. The input string corresponds to
the propositions that are true at each time step. A string from
the environment in Fig. 1 could be eaeeeb, indicating that
the agent traversed an empty space before reaching a, and
then traversed another three empty spaces before reaching b.
The rank of the Hankel matrix is equal to the automaton’s
number of states. An automaton with m states can be recon-
structed from a rank m factorization of the Hankel matrix.

The problem is: given a rank m, find a rank factorization
H = WP .H is the Hankel matrix.H ∈ Rn×d,W ∈ Rn×m,
P ∈ Rm×d. Let hε,S = H[0, :] and hP,ε = H[:, 0].

Hσ = p(uσv) – in other words, Hσ is a submatrix of H
where all prefixes end with σ. Let Σ be an alphabet with
elements σ (Σ corresponds to the propositions). H can be
divided into |Σ| submatrices Hσ and a submatrix Hε (where
ε corresponds to an empty string).

When W and P are obtained, we can derive the Weighted
Automaton (WA) W = 〈m, I, F, (Mσ)σ∈Σ〉 corresponding
to the Hankel matrix. m is the number of states, equal to the
rank of the Hankel matrix. I is the m × 1 vector of initial
state probabilities, and F is the m × 1 vector of final state
probabilities. Mσ are the m×m transition weights from the
current state to the next state for each proposition σ.W can
be derived using the following equations. (+ stands for the
Moore-Penrose pseudoinverse).

I> = h>ε,SP
+, F = W+hP,ε, Mσ = W+HσP

+

Let 1I = [1, 0, . . . , 0] and 1F = [0, . . . , 0, 1]. W and P are
obtained from the optimization problem

minimize
W,P

1

2
||H −WP ||2F + αs

∑
σ∈Σ

||W+HσP
+||1

+ βs||h>ε,SP+ − 1I ||1 + γs||W+hP,ε − 1F ||1
subject to W ≥ 0, P ≥ 0

αs, βs, and γs are hyperparameter weights. The first term
in the objective function corresponds to the matrix factor-
ization; the second term is an L1 regularization term on the
transition weight matrices, and the third and fourth terms are
constraints for the first and last states to be the initial and fi-
nal states, respectively. The positivity constraints on W and
P constrain the weights to be positive.

We use the open-source Sp2Learn toolbox (Arrivault et
al. 2017) to process the data and generate the Hankel matri-
ces. We use Tensorflow to perform the optimization problem
above to factor the matrix. We can then obtain I, F, and Mσ .

The transition weights of the learned WA are not con-
strained to add to one, so they do not correspond to prob-
abilities. The WA will also not include propositions that are
not present in the data strings (such as the obstacle propo-
sition). Therefore the learned WA is better suited as a prior
rather than as the primary means of determining TM .

We learn automata with number of states ranging from 4
to 2P . We have observed that for every domain tested, the
optimization loss drops by one or two orders of magnitude

(a) Lunchbox domain (b) Cabinet domain

Learned
Agent

Work
Zone

Green
Light

Red
Light

Left
Lane

Goal

Obstacle

(c) Driving domain

Figure 4: Example instances of three domains

when the number of states reaches the correct number. We
therefore use the optimization losses to create a prior on the
number of states (defined as α in Sec. 4.1). If the optimiza-
tion loss for a certain number of states F is cF , then the prior
for F states is −log(cF /cF−1). We also use the transition
weights as prior values for β in the Bayesian model.

5 Experiments & Results
5.1 Generating Expert Data
Linear Temporal Logic We use linear temporal logic (LTL)
to formally specify tasks (Clarke, Grumberg, and Peled
2001). Formulae φ have the syntax grammar

φ := p | ¬φ | φ1 ∨ φ2 | © φ | φ1 U φ2

where p is a proposition (a boolean-valued truth statement
that can correspond to objects or goals in the world), ¬ is
negation, ∨ is disjunction, © is “next”, and U is “until”.
The derived rules are conjunction (∧), implication (=⇒),
equivalence (↔), “eventually” (♦φ ≡ TrueU φ) and “al-
ways” (�φ ≡ ¬♦¬φ) (Baier and Katoen 2008). φ1 U φ2

means that φ1 is true until φ2 is true, ♦φ means that there is
a time where φ is true and �φ means that φ is always true.
Generating Data We use SPOT (Duret-Lutz et al. 2016)
and Lomap (Ulusoy et al. 2013) to convert LTL formulae
into FSAs. Every FSA that we consider has a goal state G,
which is the desired final state of the agent, and a trap state
T , which is an undesired terminal state. We generate a set
of environments in which obstacles and other propositions
are randomly placed. Given the FSA and an environment,
we run Dijkstra’s shortest path algorithm to create expert
trajectories that we use as data for imitation learning.
LSTM Baseline: We compare the performance of LVIN to
an LSTM network, which we take to be a generic method
for dealing with time-series data. The first layer of the net-
work is a 3D CNN with 1024 channels. The second layer is
an LSTM with 1024 hidden units. The hidden units do not
directly correspond to logic states or a TM.

5.2 Environments
Lunchbox Domain The lunchbox domain (Fig. 4a) is an
18 × 7 gridworld where the agent must first pick up either
a sandwich a or a burger b and put it in a lunchbox d, and
then pick up a banana c and put it in the lunchbox d. The
specification is ♦((a ∨ b) ∧ ♦(d ∧ ♦(c ∧ ♦d))) ∧�¬o.

Training Test
LVIN LSTM LVIN LSTM

Lunchbox
Set size 500 9000 1800 1800

Success Rate 99.60% 91.44% 99.94% 82.44%

Cabinet
Set size 550 6000 1800 1800

Success Rate 100.00% 93.60% 100.0% 89.58%

Driving
Set size 500 6000 1800 1800

Success Rate 100.0% 58.54% 100.0% 58.60%

Table 1: Training and test performance of LVIN vs. LSTM

Cabinet Domain The cabinet domain is a 10×10 gridworld
where the agent must open a cabinet. First it must check if
the cabinet is locked (cc). If the cabinet is locked (lo), the
agent must get the key (gk), unlock the cabinet (uc), and
open it (op). If the cabinet is unlocked (uo), then the agent
can open it (op). The specification is♦(cc∧♦((uo∧♦op)∨
(lo∧(♦(gk∧♦(uc∧♦op))))))∧�¬o. Because many of the
propositions lie in nearly the same point in space (e.g. check-
ing the cabinet, observing that it is unlocked, and opening
the cabinet), we define a “well” (as shown in Fig. 4b) that
contains the relevant propositions in separate grid spaces but
represents a single point in space in the real world.
Driving Domain The driving domain (Fig. 4c) is a 14× 14
gridworld where the agent must obey three “rules of the
road” – prefer the right lane over the left lane (l): �♦¬l;
stop at red lights (r) until they turn green (h): �(r ⇒
(r U h)); and reach the goal (g) while avoiding obstacles
(o): ♦g ∧�¬o. Unlike the other domains, this domain has a
time-varying element (the red lights turn green); it also has
an extra action – “do not move” – since the car must some-
times wait at the red light.
Performance We ran experiments using an Intel i9 proces-
sor and an Nvidia 1080Ti GPU. The simplest environment
takes∼ 1.4 hours to train; the most complicated takes∼ 7.5
days to train. The KL divergence for all environments shows
a typical training pattern in which the divergence rapidly de-
creases before flattening out. Runtimes and loss curves for
all environments can be found in Araki et al. (2019a).

Performance of LVIN (shorthand for our model) vs. the
LSTM network is shown in Table 1. We measure “success
rate” as the proportion of trajectories where the agent satis-
fies the environment’s specification. LVIN achieves virtually
perfect performance on every domain with relatively little
data. The LSTM network achieves fairly high performance
on the lunchbox and cabinet domains, but has poor perfor-
mance in the time-varying driving domain. On top of achiev-
ing better performance than the LSTM network, the LVIN
model also has an interpretable output that can be modified
to change the learned policy.

The LVIN model requires much less data than the LSTM
network for two reasons. One is that the LVIN model can
take advantage of the spectral learning prior to reduce the
amount of data needed to converge to a solution, whereas the
LSTM network cannot use the prior. The second is that since
the LVIN model is model-based, once it learns an accurate
model of the rules it can generalize to unseen permutations
of the environment better than the LSTM network, which in
a sense only interpolates between data points.

5.3 Interpretability
Our method learns an interpretable model of the rules of
an environment in the form of a transition matrix (TM).
Learned vs. true TMs are shown in Fig. 5 (we leave out the
goal and trap states of the TMs, since they are trivial). The
plots show values of the learned variational parameter β̂F

∗
.

Therefore the plots do not show the values of the actual TM
but rather the values of the prior of the TM, giving an idea
of how “certain” the model is of each transition.

Fig. 5a shows the TM of the lunchbox domain. Each ma-
trix corresponds to the transitions associated with a given
automaton state. Columns correspond to propositions (e is
the empty proposition) and rows correspond to the proba-
bility that, given current state f and proposition p, the next
state is f ′. Inspection of the learned TM shows that in the
initial state S0, picking up the sandwich or burger (a or b)
leads to state S1. In S1, putting the sandwich/burger into
the lunchbox (d) leads to S2. In S2, picking up the banana c
leads to S3, and in S3, putting the banana in the lunchbox d
leads to the goal state G.

The other domains can be interpreted similarly, and most
of them closely match their expected TMs (see Araki et al.
(2019a) for more examples). One exception is the driving
domain (Fig. 5c). In the expected TM, the initial state S0
transitions to a lower-reward state S1 when the car enters the
left lane (indicating that the left lane is allowed but unideal);
S0 transitions to S2 when the car is at a red light, and then
back to S0 when the green light h turns on. Our model learns
a different TM – but due to the nature of the TM, it can
still be interpreted. Unlike in the “true” TM, in the learned
TM, the green light acts as a switch – the agent cannot reach
the goal state unless it has encountered the green light. This
is an artifact of the domain, since the agent always passes
a green light before reaching the goal. The red light leads
from S0 to S1, which is a lower-reward duplicate of S0.
The agent will wait for the red light to turn green because
it thinks it must encounter a green light before it can reach
the goal. Regarding the left lane, the TM places significant

S0 S1
a b c d o e

S0

S1

S2

S3

G

T

L
V

IN
T

R
U

E

a b c d o e a b c d o e a b c d o e

S2 S3

S0

S1

S2

S3

G

T

(a) Lunchbox TM
S0 S1

c
c

g
k

l
o o

o
p

u
c

u
o e

S0

S1

S2

S3

S4

G

T

L
V

IN
T

R
U

E

S2 S3
c
c

g
k

l
o o

o
p

u
c

u
o e

c
c

g
k

l
o o

o
p

u
c

u
o e

c
c

g
k

l
o o

o
p

u
c

u
o e

S0

S1

S2

S3

S4

G

T

c
c

g
k

l
o o

o
p

u
c

u
o e

S4

(b) Cabinet TM

S0

S1

S2

G

T

L
V

IN

S0

h r l g o e h r l g o e h r l g o e

S0

S1

S2

G

T

T
R

U
E

S1 S2

(c) Driving TM

Figure 5: Learned vs true TMs for three domains

weight on a transition to low-reward S1 when in S0, which
discourages the agent from entering the left lane. Therefore
although not as tidy as the true TM, the learned TM is still
interpretable.

5.4 Manipulability Experiments on Jaco Arm

S0 S2

S0

S1

S2

S3

S4

G

T

c
c

g
k

l
o o

o
p

u
c

u
o e

c
c

g
k

l
o o

o
p

u
c

u
o e

c
c

g
k

l
o o

o
p

u
c

u
o e

S4

Figure 6: Cabinet TM modifications. Red indicates that a
transition has been deleted; green that one has been added.

Our method allows the learned policy to be manipulated
to produce reliable new behaviors. We demonstrate this abil-
ity on a real-word platform, a Jaco arm. The Jaco arm is a
6-DOF arm with a 3-fingered hand and a mobile base. An
Optitrack motion capture system was used to track the hand
and manipulated objects. The system was implemented us-
ing ROS (Quigley et al. 2009). The Open Motion Planning

Lunchbox Cabinet
φl1 φl2 φl3 φl4 φc1 φc2

Successes
out of 20 20 20 19 19 20 17

Table 2: Performance of Jaco robot in executing learned
lunchbox and cabinet tasks

Library (Şucan, Moll, and Kavraki 2012) was used for mo-
tion planning. The motion capture system was used to trans-
late the positions of the hand and objects into a 2D grid, and
an LVIN model trained on simulated data was used to gen-
erate a path satisfying the specifications.

We modified the learned TMs of the lunchbox and cabinet
domains. We call the original lunchbox specification φl1. We
tested three modified specifications – pick up the sandwich
first, then the banana (φl2); pick up the burger first, then the
banana (φl3); and pick up the banana, then either the sand-
wich or the burger (φl4). These experiments are analogous to
the ones in Araki et al. (2019b) and are meant to show that
though significantly less information was given to our model
in the learning process, it can still perform just as well.

We also modified the learned cabinet TM (φc1) – if we
know that the cabinet is locked, we have the agent pick up
the key first before checking the cabinet (φc2). The modi-
fications to the TM are shown in Fig. 6. The TM must be
modified so that the agent will get the key (gk) before check-
ing the cabinet (cc). So in the initial state S0, cc is set to go
to the trap state so that the agent will avoid it; gk is set to
transition to S2, indicating to the agent that it should get the
key first. In S2, we then modify the TM so that gk is no
longer the goal but rather cc is – in other words, the agent
will then head to the cabinet and check it. Finally, in S4,
once the agent has checked the cabinet, it must unlock the
cabinet and it does not need to get the key, so we set gk to
the trap state so the agent will be certain to unlock the cabi-
net and not try to get the key. These modifications, as shown
in our experiments, successfully change the behavior of the
agent to always get the key before checking the cabinet.

Each specification was tested 20 times on our experimen-
tal platform; as shown in Table 2 there were only a few fail-
ures, and these were all due to mechanical failures of the
Jaco arm, such as the manipulator dropping an object or los-
ing its grasp on the cabinet key.

6 Conclusion
This work addresses a challenge in the field of imitation
learning, which is how to learn a model of the expert’s be-
havior that is interpretable and manipulable. Our solution is
to represent the rules of the environment as a high-level au-
tomaton; by using a nonparametric Bayesian model to learn
the automaton, we can infer the structure of the automaton
from expert trajectories without being given any information
about the automaton. We demonstrate the effectiveness of
our technique on several domains, showing how the learned
transition matrices can be interpreted and manipulated to
produce predictable new behaviors.

Acknowledgments
We are grateful to the many people who gave us invalu-
able advice on this project, including Leslie Kaelbling, Scott
Linderman, Keyon Vafa, and David Blei. This material is
supported by NSF grant 1723943, ONR N00014-18-1-2830,
and the Under Secretary of Defense for Research and Engi-
neering under Air Force Contract No. FA8702-15-D-0001.
K.V. is supported by an NSF Graduate Research Fellow-
ship. Any opinions, findings, conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the funding agencies.

References
Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. ICML ’04 International
Conference on Machine Learning.
Araki, B.; Vodrahalli, K.; Leech, T.; Vasile, C.-I.; Don-
ahue, M.; and Rus, D. 2019a. Additional investiga-
tions of deep bayesian nonparametric learning of rules
and plans from demonstrations with a learned automaton
prior. Available at https://kiranvodrahalli.github.io/research/
publications/aaai20 supp.pdf.
Araki, B.; Vodrahalli, K.; Leech, T.; Vasile, C. I.; Donahue,
T.; and Rus, D. 2019b. Learning to plan with logical au-
tomata. Robotics: Science and Systems 2019.
Arrivault, D.; Benielli, D.; Denis, F.; and Eyraud, R. 2017.
Sp2learn: A toolbox for the spectral learning of weighted au-
tomata. In International Conference on Grammatical Inference,
105–119.
Baier, C., and Katoen, J. 2008. Principles of model checking.
MIT Press.
Burke, M.; Penkov, S.; and Ramamoorthy, S. 2019. From
explanation to synthesis: Compositional program induction
for learning from demonstration. arXiv:1902.10657.
Chen, Z.; Linderman, S. W.; and Wilson, M. A. 2016.
Bayesian nonparametric methods for discovering latent
structures of rat hippocampal ensemble spikes. In 2016 IEEE
26th International Workshop on Machine Learning for Signal Pro-
cessing (MLSP), 1–6. IEEE.
Clarke, E. M.; Grumberg, O.; and Peled, D. 2001. Model
Checking. MIT Press.
Codevilla, F.; Miiller, M.; López, A.; Koltun, V.; and Doso-
vitskiy, A. 2018. End-to-end driving via conditional im-
itation learning. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), 1–9. IEEE.
Damianou, A., and Lawrence, N. 2013. Deep gaussian pro-
cesses. In Artificial Intelligence and Statistics, 207–215.
Daumé III, H.; Langford, J.; and Marcu, D. 2009. Search-
based structured prediction. Journal of Machine Learning
75:297–325.
Duret-Lutz, A.; Lewkowicz, A.; Fauchille, A.; Michaud, T.;
Renault, E.; and Xu, L. 2016. Spot 2.0 — a framework
for LTL and ω-automata manipulation. In Proceedings of the
14th International Symposium on Automated Technology for Veri-
fication and Analysis (ATVA’16). Springer.

Fox, E.; Sudderth, E. B.; Jordan, M. I.; and Willsky, A. S.
2011a. Bayesian nonparametric inference of switching dy-
namic linear models. IEEE Transactions on Signal Processing
59(4):1569–1585.
Fox, E. B.; Sudderth, E. B.; Jordan, M. I.; and Willsky, A. S.
2011b. A sticky HDP-HMM with application to speaker di-
arization. Annals of Applied Statistics 5(2 A):1020–1056.
Gordon, D.; Fox, D.; and Farhadi, A. 2019. What Should I
Do Now? Marrying Reinforcement Learning and Symbolic
Planning. arXiv:1901.01492.
Hasanbeig, M.; Abate, A.; and Kroening, D. 2018.
Logically-correct reinforcement learning. arXiv preprint
arXiv:1801.08099.
Ho, J., and Ermon, S. 2016. Generative adversarial imitation
learning. In Advances in Neural Information Processing Systems,
4565–4573.
Icarte, R. T.; Klassen, T. Q.; Valenzano, R.; and McIlraith,
S. A. 2018. Teaching multiple tasks to an rl agent using ltl.
International Conference on Autonomous Agents and Multiagent
Systems.
Johnson, M. J.; Duvenaud, D.; Wiltschko, A. B.; Datta,
S. R.; and Adams, R. P. 2016. Composing graphical models
with neural networks for structured representations and fast
inference. Advances in neural information processing systems
29:2946–2954.
Karkus, P.; Hsu, D.; and Lee, W. S. 2017. Qmdp-net:
Deep learning for planning under partial observability. In
Advances in Neural Information Processing Systems 30. Curran
Associates, Inc. 4694–4704.
Li, X.; Ma, Y.; and Belta, C. 2017. Automata guided hier-
archical reinforcement learning for zero-shot skill composi-
tion. arXiv:1711.00129.
Linderman, S. W.; Johnson, M. J.; Miller, A. C.; Adams,
R. P.; Blei, D. M.; and Paninski, L. 2017. Bayesian Learn-
ing and Inference in Recurrent Switching Linear Dynamical
Systems. Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics 54:914–922.
Paxton, C.; Raman, V.; Hager, G. D.; and Kobilarov, M.
2017. Combining neural networks and tree search for
task and motion planning in challenging environments. In
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 6059–6066.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.;
Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. Ros: an open-
source robot operating system. In ICRA workshop on open
source software, volume 3, 5. Kobe, Japan.
Rhinehart, N.; McAllister, R.; and Levine, S. 2018. Deep
Imitative Models for Flexible Inference, Planning, and Con-
trol. arXiv:1810.06544.
Ritchie, D.; Horsfall, P.; and Goodman, N. D. 2016.
Deep amortized inference for probabilistic programs. arXiv
preprint arXiv:1610.05735.
Ross, S.; Gordon, G.; and Bagnell, J. 2011. A reduction of
imitation learning and structured prediction to no-regret on-
line learning. Proceedings of the Fourteenth International Con-
ference on Artificial Intelligence and Statistics 15:627–635.

Shah, A.; Kamath, P.; Li, S.; and Shah, J. 2018. Bayesian
Inference of Temporal Task Specifications from Demonstra-
tions. Neural Information Processing Systems (NIPS) 411–420.
Shah, A.; Li, S.; and Shah, J. 2019. Planning with uncertain
specifications. arXiv:1906.03218.
Şucan, I. A.; Moll, M.; and Kavraki, L. E. 2012. The Open
Motion Planning Library. IEEE Robotics & Automation Maga-
zine 19(4):72–82. http://ompl.kavrakilab.org.
Tamar, A.; Wu, Y.; Thomas, G.; Levine, S.; and Abbeel, P.
2016. Value iteration networks. In Advances in Neural Infor-
mation Processing Systems 29, 2154–2162.
Taylor, S.; Kim, T.; Yue, Y.; Mahler, M.; Krahe, J.; Ro-
driguez, A. G.; Hodgins, J.; and Matthews, I. 2017. A deep
learning approach for generalized speech animation. ACM
Transactions on Graphics (TOG) 36(4):93.
Ulusoy, A.; Smith, S. L.; Ding, X. C.; Belta, C.; and Rus,
D. 2013. Optimality and robustness in multi-robot path
planning with temporal logic constraints. The International
Journal of Robotics Research 32(8):889–911.

