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Machine Learning (ML) introduces a dangerous
double standard for data protection

• Data access through traditional code is carefully controlled.
• ML models can leak user data [4, 3, 12]. Yet they are used to
make predictions for all users, shipped to everyone’s
devices [2, 7, 8], and sometimes shared [7, 8, 11].

Differential Privacy (DP):
A rigorous tool to bound data exposure

DP randomizes a computation over a dataset (e.g. training one model)
to bound the leakage of individual entries in the dataset through the
output of the computation (the model). Each new DP computation
increases the bound over data leakage, and can be seen as consuming
part of a fixed privacy budget.
Formally, a randomized algorithm A : D → Y is (ε, δ)-DP if for any
datasets d, d′ differing in one record, and for any S ⊆ Y :

P (A(d) ∈ S) ≤ eεP (A(d′) ∈ S) + δ.

The rich DP literature provides:
• A wealth of DP ML training algorithms (e.g., [1, 9, 10, 5]).
• Empirical [4, 12] and theoretical [6] evidence that DP prevents
leaks from ML models.

Two practical challenges of DP in ML applications

Challenge 1: running out of privacy budget. DP is typically
studied in two settings:
• The static database model, where no new data is ever added.
• The streaming model, where all updates are online and old data is
never revisited.

In each case, an ML application will run out of privacy budget or data.
Challenge 2: the privacy/utility tradeoff. DP adds noise to ML
training algorithms, reducing utility. For a fixed number of training
examples, the more privacy, the less utility.

Can we make Differential Privacy practical for ML applications?

• ML workloads consist in many algorithms operating on growing databases.
• Algorithms both incorporate new data and reuse old data, often times adaptively.
• Sage leverages this adaptive reuse of old data coupled with new data to address the preceding two
challenges.

The Sage architecture

Block composition to avoid running out of privacy budget

Sage introduces block composition, a new privacy accounting method that both allows efficient training on growing
databases and avoids running out of privacy budget as long as the database grows fast enough.

Theorem. The ML application’s total privacy loss is upper-bounded by the maximum privacy loss of any block:
|PrivacyLoss(Growing Database)| ≤ max

k
|PrivacyLoss(dk)|.

Sage’s access control leverages block composition to enforce an (εg, δg)-DP guarantee over all models released by
the application. Data blocks with exhausted budget are retired, while new data is used to train new models.

Privacy-adaptive training to control the privacy/utility trade-off

Privacy-adaptive training relies on two mechanisms to release high quality models with high probability:
1 A statistical test of model quality that is DP, and accounts for DP noise to give reliable results.
2 An iterative method that retrains models on increasing privacy budgets/data sizes until the model meets
programmer-specified quality criteria.

End-to-end performance of Sage

Summary and future work

1 DP literature focused on individual ML algorithms, on static
databases (no new data) or online streaming (single use data).

2 ML workloads operate on growing databases: models incorporate
new data and (adaptively) reuse old data.

3 Sage is the first to adapt DP theory and practice to ML workloads
on growing databases, for data protection.

Using DP for data protection introduces a new global resource: the
privacy budget. Identifying principled approaches to allocate this re-
source is an open problem that systems researchers are uniquely posi-
tioned to address.
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