Learning to Plan with Logical Automata

Brandon Araki1,*, Kiran Vodrahalli2,*, Thomas Leech1,3, Cristian-Ioan Vasile1, Mark Donahue3, Daniela Rus1

1MIT; 2Columbia University; 3MIT Lincoln Laboratory; *Equal contributors

Overview

GOAL: Learn from demonstrations not just a low-level policy but also a high-level policy that is *interpretable* and *manipulable*.

Interpretable: The structure and weights of the learned policy are grounded directly in a formal language.

Manipulable: A human operator can easily modify the learned policy to perform similar but different policies.

Representation of Rules

Rules:

- Pack sandwich or burger; Then pack banana

Formal logic (LTL):

- \((\Diamond \text{Packed}) \land (\Diamond \text{Sandwich}) \land (\Diamond \text{Burger}) \land (\Diamond \text{Banana}) \)

Finite State Automaton (FSA):

- States: S0, S1, S2, S3, G
- Transitions:
 - From S0: Pack sandwich or burger; then pack banana
 - From S1: Pack banana; then pack only burger

Transition Matrix (TM):

- Transition probabilities

Logic-based Value Iteration Networks (LVIN)

Case Study: Lunchbox Packing

- **Learned FSA:**
 - Pack sandwich or burger; Then pack banana

- **Modified FSA:**
 - Pack banana; Then pack only burger

Case Study: Driving

- **Ground-truth FSA:**
 - Initial state
 - At red light
 - Reached goal

- **Unsafe Fragment of Learned FSA:**
 - "Ignore red light" (r, 0.1)

- **Safe Modified Fragment of Learned FSA:**
 - "Stop at red light" (r, 1.0)

What Makes LVIN Different?

- Interpret the high level of a hierarchical model as a FSA/logical specification
- *Interpretable*
- Incorporate the FSA into value iteration so that changes to the FSA result in changes to the policy
- *Manipulable*
- Interpretable and manipulable policies enable the crafting of safe policies