
Mapping Between Natural Movie fMRI Responses and
Word-Sequence Representations

Kiran Vodrahalli, Po-Hsuan Chen, Yingyu Liang, Janice Chen, Esther Yong, Christopher Honey, Kenneth A. Norman, Peter J. Ramadge,
Sanjeev Arora

Princeton Computer Science, Princeton Neuroscience Institute, Electrical Engineering; Johns Hopkins University, Psychology; University of Toronto, Psychology

Objectives

• Given a textual description of a movie, what is an accurate way to represent the
narrative context as it changes over time?

• To what extent can we map between semantic word representations of the movie
and fMRI readings of people watching the movie?

Overview

Several researchers have attempted to find relationships between word featurizations and
fMRI activation in the brain. One popular method due to [4] gathers fMRI data across
several subjects corresponding to story text. We study the Sherlock fMRI dataset [2], which
consists of fMRI recordings of 17 people watching the British television program “Sherlock”
for 45 minutes. In addition, we use externally annotated, second-level-resolution, English
text scene descriptions of the movie. In this poster, we
1 Construct 100-dimensional semantic context vectors for the annotations [1]
2 Apply SRM [3] to construct shared 20-dimensional embedding of originally
high-dimensional fMRI subject data

3 Learn linear maps from fMRI → text and text → fMRI with ridge regression and the
Procrustes problem

4 Evaluate with scene classification (84% over a 20% chance rate) and scene ranking
(90% over a 50% chance rate) tasks for five different brain ROIs

Model Description

There are three components to our model. To construct a shared space for the fMRI
data, we use the Shared Response Model (SRM) [3], a probabilistic latent variable model
for multisubject fMRI data under a time synchronized stimulus. SRM learns orthogonal-
column maps Wi such that ‖Xi−WiS‖F is minimized over {Wi}, S, where Xi ∈ Rv×t is
the ith subject’s fMRI response (v voxels by t repetition times) and S ∈ Rk×t is a feature
time-series in a k-dimensional shared space.
To featurize the descriptions of the Sherlock movie, we use the Wikipedia corpus to cal-
culate word co-occurrence values. A matrix factorization objective then yields low-rank
semantic vectors whose geometry clusters similar words. In order to combine these repre-
sentations into vectors for each annotation, each of which is several sentences, we apply
a weighted averaging scheme [1]. We learn linear maps from fMRI → text and text →
fMRI.
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Figure 1: Model Visualization

Experiments

• Scene Classification: We evenly segment the time points into 50 segments and learn
a map using the first 25 segments. Then for each predicted held-out segment, we rank
via Pearson correlation with the true held-out segments and report the proportion of
the time the correct true held-out segment is ranked within the top 5 most correlated
segments (20% chance).

• Scene Ranking: This task is nearly identical, except we report
1− average normalized rank (1 is highest, 0 is lowest, 0.5 is average random chance).

We compare several pipeline choices in these metrics:
• SRM versus averaging
• Applying a weighted averaging for annotation vectors versus an unweighted average
• Subtracting out the mean of the annotation vectors
• Solving the Procrustes problem (orthogonal constraint) to learn map versus using ridge
regression (`2 constraint).

Results
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Figure 2: Best Bidirectional Accuracy Scores for Each Brain Region of Interest for both Scene Classification
and Ranking (std. err. over different average subsets < 0.01)

Comparison on the Classification Task fMRI → Text Text → fMRI
20-dim SRM / Avg 1.57± 0.10 1.00± 0.03
Weighted / Unweighted Semantic Vectors 1.17± 0.04 1.06± 0.03
Temporal Zero Mean / No Zero Mean 1.09± 0.04 1.57± 0.11
Procrustes / Ridge 1.42± 0.09 0.85± 0.06

Table 1: Average Improvement Ratio for Various Comparisons
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Figure 3: DMN Bidirectional Accuracy Scores for Scene Classification and Ranking. The acronyms stand for
combinations of methods, with the following key: S/A = SRM/Average, W/U = Weighting/No Weighted,
T/N = Temporal Zero Mean/No Temporal Zero Mean, P/R = Procrustes/Ridge (std. err. over different
average subsets < 0.01)

We now list our main findings:
• Top accuracy of 84% on the fMRI → text scene classification task using the Default
Mode Network region of the brain (SRM, weighted, Procrustes, no mean subtraction)

• DMN has best performance for both fMRI → text and text → fMRI
• SRM versus averaging improves performance by 1.57× on average, but only
considerably improves accuracy over averaging if with averaging the result is bad (by as
much as a factor of 2.67)

• Temporal zero mean is the only algorithmic step which seems to make a big difference
on average for the text → fMRI problem, but does not affect the fMRI → text problem

• Procrustes regularization universally outperforms Ridge regression, on average by a
factor of 1.42×. Top six methods use Procrustes.

• Weighted combination of word vectors proves average of 1.17× improvement for fMRI
→ text; top three methods use weighted word vectors.
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