
Learning to Plan with Logical Automata

GOAL: Learn from demonstrations not just a low-level policy but 
also a high-level policy that is interpretable and manipulable.

Interpretable: The structure and weights of the learned policy are 
grounded directly in a formal language.

Manipulable: A human operator can easily modify the learned 
policy to perform similar but different policies.
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 Rules can be encoded as a Finite State Automaton (FSA)

 Relevant features of the environment can be detected

 Number of FSA states is known

 Environment outputs current FSA state
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• Interpret the high level of a hierarchical model as a FSA / logical specification
• Interpretable

• Incorporate the FSA into value iteration so that changes to the FSA result in 
changes to the policy
• Manipulable

• Interpretable and manipulable policies enable the crafting of safe policies
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