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Objectives

= Given a textual description of a story, what is an
accurate way to represent the story context as it
changes over time?

= To what extent can we decode semantic descriptions
of a story from fMRI readings?

Overview

Several researchers have attempted to find relationships be-
tween word featurizations and fMRI activation in the brain.
One popular method due to [6] gathers fMRI data across
several subjects corresponding to story text. Here we ad-
dress the multi-view nature of finding meaning in the brain.
Our specific goal is to determine if an fMRI shared space can
be learned across subjects that correlates well with semantic
word embeddings.

We study the Sherlock fMRI dataset [3], which consists of
fMRI recordings of 17 people watching the British television
program “Sherlock” for 45 minutes.
externally annotated, second-level-resolution, English text
scene descriptions of the movie.

Using these annotations and the English Wikipedia corpus,
we employ unsupervised methods to construct semantic con-
text vectors using global co-occurrence matrix factorization
and sparse coding [1, 2]. We then use the unsupervised
Shared Response Model (SRM) [4] to construct a shared
embedding space across the 17 subjects for eight distinct
brain regions of interest (ROI).

Finally, we construct maps between semantic embedding
space and the fMRI shared embedding space of our dataset
using ridge regression and Procrustes’ orthogonal regulariza-
tion. The models are validated by assessing context vector
quality, calculating fMRI reconstruction, and performing bi-
nary and scene classification.

In addition, we use

Contributions

The setup of this work is novel in a few ways: First, we
assume that many subjects viewing the same stimulus will
have a consistent internal representations of the events of
the movie and model accordingly. This constraint allows us
to make use of additional information due to other subjects
to both de-noise and find relevant dimensions of brain activ-
ity. Second, we are attempting to decode descriptions of an
audio-visual stimulus while other works which decode text
typically use a single-concept stimulus (like a picture of a
cat). Therefore in this work, we are truly operating with
the meaning of both the word descriptions and the fMRI
activation.

Constructing Semantic Vectors

To featurize the descriptions of the Sherlock movie, we use
the Wikipedia corpus to calculate word co-occurrence values.
Weighted singular value decomposition then yields low-rank
semantic vectors whose geometry clusters similar words and
creates linear algebraic analogy relationships [1]. Recent
work has applied sparse coding to these word vectors to
get fine-grained 100-dimensional representations of specific
word senses called atoms [2]. To construct a single seman-
tic context for each time point, we decompose the associ-
ated sentences into (atom, weight) pairs, and run k-means
(k = 4) on the 100-dimensional atom vectors with weights
> A. The final context vector is the weighted average of
the means.
After generating 100-dimensional context vectors for each
time point in the movie, we check the quality of the vectors
by finding nearby vectors of fine-grained meaning, which re-
sult from the sparse coding step [2]. For instance, consider
an example annotation of a scene in Sherlock: “Donovan
looks up at the reporters and continues: ‘Preliminary inves-
tigations...” Lestrade looks distressed. Donovan continues:
suggest that this was suicide. We can confirm that
this...”. Nearby word vectors correspond to words like inves-
tigation (corr. = 0.78), suicide (corr. = 0.74), CNN and
Reuters (corr. = 0.71), and police (corr. = 0.70). The
other context vectors have similar quality to this example.

Model Description

There are three components to our model. To construct a
shared space for the fMRI data, we use the Shared Response
Model (SRM) [4], a probabilistic latent variable model for
multisubject fMRI data under a time synchronized stimulus.
From each subjects’s fMRI view of the movie, SRM learns
projections to a shared space that captures semantic aspects
of the fMRI response. Specifically, SRM learns orthogonal-
column maps W; such that || X; — W,S||r is minimized over
{W;}, S, where X; € R"*!is the 1" subject’s fMRI response
(v voxels by t repetition times) and S € R**! is a feature
time-series in a k-dimensional shared space.
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Figure 1. Model Visualization

To learn a map from the semantic context space to the
shared fMRI response space, we use ridge regression. For
the other direction, we solve the Procrustes problem and
learn an orthogonal linear map from shared fMRI response
space to the semantic context space, in order to decode.

Experiments

= Assessing Context Vector Quality: We examine the
time-time correlation matrix of the semantic context
vectors, to check that all vectors are completely
uncorrelated or completely correlated with each other.
There should also be a block-structure along the
diagonal signifying different related scenes.
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Figure 2: Semantic Vector Time-Time Correlation Matrix Visualization

« Reconstruction Error: To align the fMRI and context
vectors, we apply ridge regression to learn a linear map
from the context vectors to the shared fMRI space. We
then predict S from the context vectors and compute the
Pearson correlation (S, S). For comparison, we try ridge
regression from the context vectors to the individual
fMRI responses X; and compute correlation (X}, )A(Z>

« Binary Classification: We segment the time points
into 50 evenly sized sections, and train linear maps from
fMRI — text and text — fMRI on 48 of the sections.
Then, we use Pearson correlation to match the images of
the maps with the held-out values. Success at this task is

50%.

- Scene Classification: This task is a harder
generalization of binary classification. We use the same
segmentation and this time learn a map using only half
of the time points. Then, we rank the held-out time

points via Pearson correlation and report the average
top-1 (4% chance) and top-5 (20% chance) ranks.

We found that 20-dimensional shared fMRI space and 100-
dimensional semantic space gave the best overall results,
and we report only these.

Results
ROIs [5] 20-dim SRM raw fMRI
Ventral Language Network 0.15 0.06
Auditory Network 0.11 0.05
DMN (A/B) Network 0.11/0.08 0.04/0.03
Dorsal Language Network 0.10 0.03
Occipital Lobe 0.08 0.04
Early Visual Cortex 0.08 0.04

Table 1: Comparing corr([;’, S) and avg. corr()A(Z-,XZ-)

Binary Classification (chance 50%, SRM dim 20, Context dim 100; all errors < 1%

Mask Type DMN-A DMN-B Ventral Lang. Dorsal Lang.
Text -> fMRI (ridge) 0.83 0.76 0.8 0.79
Text -> fMRI (procrustes) 0.71 0.68 0.63 0.69
fMRI -> Text (ridge) 0.59 0.6 0.56 0.56
fMRI -> Text (procrustes) 0.7 0.67 0.68 0.61
Mask Type Auditoryal+ Erezal Occipital Lobe v1+

Text -> fMRI (ridge) 0.69 0.71 0.67 0.6
Text -> fMRI (procrustes) 0.6 0.6 0.66 0.61
fMRI -> Text (ridge) 0.57 0.57 0.6 0.57
fMRI -> Text (procrustes) 0.59 0.6 0.66 0.6

Figure 3: Binary Classification Experiment Results

Scene Matching (top-1/ top-5), chance 4%/ 20%, SRM dim 20, Context dim 100; all errors < 1%

Mask Type DMN-A DMN-B Ventral Lang. Dorsal Lang.
Text -> fMRI (Ridge) 0.26/0.50 0.17/0.45 0.18/0.50 0.24/0.48
Text -> fMRI (Procrustes) 0.08/0.38 0.08/0.47 0.11/0.34 0.12/0.43
fMRI-> Text (Ridge) 0.05/0.26 0.12/0.34 0.05/0.21 0.06/0.26
fMRI-> Text (Procrustes) 0.08/0.38 0.12/0.49 0.08/0.29 0.09/0.43
Mask Type Auditoryal+ Erezal Occipital Lobe v1+

Text -> fMRI (Ridge) 0.07/0.37 0.10/0.4 0.10/0.42 0.08/0.35
Text -> fMRI (Procrustes) 0.05/0.24 0.05/0.25 0.06/0.26 0.04/0.23
fMRI-> Text (Ridge) 0.06/0.24 0.08/0.29 0.09/0.28 0.05/0.24
fMRI-> Text (Procrustes) 0.05/0.24 0.05/0.25 0.07/0.26 0.04/0.23

Figure 4: Scene Classification Experiment Results

Conclusion

The first experiment reveals a significantly lower testing re-
construction error when the fMRI shared space is used, im-
plying that the distributed context embeddings capture some
extrinsic notion of meaning that extends beyond a corpus
into real-world stimuli.

The binary classification and scene matching experiments
demonstrate that using ridge regression for text — fMRI
and Procrustes for MRl — text yield the best results. No-
tably, the DMN and language regions outperform the other
areas by a fair margin, supporting previous work which sug-
gests that these brain regions encode semantic meaning [3].
DMN-A achieves 83% accuracy at binary classification from
text — fMRI, outperforming previous work by Mitchell et.
al. [6] which achieved 747 accuracy at the same task.
DMN-A also achieves 70% accuracy at binary classification
from fMRI — text.

The top-5 rank scene matching results is 50% for DMN-A
(text — fMRI) and 49% (fMRI — text) for DMN-B. There-
fore, we can semi-reliably decode fMRI into semantic space,
which is a promising start to decoding thoughts induced by
natural stimuli.
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