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Objectives

= What is a good way to represent brain signals due to real
world stimula as they change over time? Particularly,
what models allow for the identification of different time
scales in the brain which can be learned?

» Does using temporal information over a window of time
improve the performance of linear maps going between
fMRI space and a textual meaning space?

Overview

Several researchers have attempted to find relationships between
word featurizations and fMRI activation in the brain [4, 5, 7].
We study the Sherlock fMRI dataset [2], which consists of fMRI
recordings of 17 people watching the British television program
“Sherlock™ for 45 minutes. In addition, we use externally anno-
tated, second-level-resolution, English text scene descriptions of
the movie. In this work, we identify a temporal decay model
for combining fMRI information at multiple timepoints which is
both interpretable and successful in a prediction task. In this
poster, we follow the work of [6] and

o Construct 100-dimensional semantic context vectors for the
annotations [1] as in [6]

@ Apply SRM [3] to construct shared 20-dimensional
embedding of originally high-dimensional fMRI subject data

as in [6]
© Learn temporal weight parameters as part of fMRI — text
and text — fMRI regression problems

Model Description ([6])

There are three components to our model. To construct a shared
space for the fMRI data, we use the Shared Response Model
(SRM) [3], a probabilistic latent variable model for multisub-
ject fMRI data under a time synchronized stimulus. SRM learns
orthogonal-column maps W; such that || .X; — W;S||Fr is mini-
mized over {W;}, S, where X; € R"*! is the i'" subject’s fMRI
response (v voxels by ¢ repetition times) and S € R**! is a
feature time-series in a k-dimensional shared space.

To featurize the descriptions of the Sherlock movie, we use the
Wikipedia corpus to calculate word co-occurrence values. A ma-
trix factorization objective then yields low-rank semantic vectors
whose geometry clusters similar words. In order to combine these
representations into vectors for each annotation, each of which
is several sentences, we apply a weighted averaging scheme [1].
We learn linear maps from fMRI| — text and text — fMRI, using
multiple timesteps.
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Figure 2: Multiple Timesteps: A visualization of X e Rrxktl)

Experiments

« Scene Classification: We evenly segment the time points
into 50 segments and learn a map using the first 25
segments. Then for each predicted held-out segment, we
rank via Pearson correlation with the true held-out segments
and report the proportion of the time the correct true
held-out segment is ranked within the top 1 most correlated
segments (47 chance).

- Scene Ranking: This task is nearly identical, except we
report 1 — average normalized rank (1 is highest, 0 is lowest,
0.5 is average random chance).

Temporal Weighting Models

In fMRI — Text tasks, X € R = fMRI space and Y € R"™*!
= Text space, where n and m are the dimensions of embeddings
in these spaces and T’ is the number of timepoints. In Text —
fMRI, the variables are flipped.

No Previous Timesteps This model is the simplest, and uses
no previous timepoint information. We learn W &€ R"™*":

WX =Y (1)

Weighted Average In this model, we assume that the past
timesteps are important, and that the ideal representation is a
linear combination of past timesteps. We learn W € R™*" and
convolution matrix ® € R"*! such that

WXb=Y (2)

where column @, is defined by &4(7) = ¢, if i =t —j, 1if i =1,
and 0 otherwise. However in practice, the optimal weights set
® = I, which reduces to the no previous timesteps case.

Full Temporal Model [6] We learn TV & R™ (k41 gych
that

WX =Y where X € RkHXT (3)

For a visualization of X, see Figure 2. The key feature of this
model is that weighting parameters for every feature at every
timestep in the linear regression model are learned.

Temporal Decay Model We now specify n different decay
weights A = [\, --- , \,] for each of the fMRI features in the
fMRI — Text setting (likewise m in Text — fMRI). We formu-
late the problem setting

WX =Y (4)

where W € R™*" (), € R<mk+H1) X ¢ REHDXT and vV e
R™*" We define a concatenation C}, of k diagonal matrices I';

Ok — [FQ, Fl, s ,Fk] where

JA
e b=k (j— i)\, L
and Z; = > "7 (normalization)

Z@' 7 =t

[5(i, 1) =

In this setting, we learn a unique decay parameter \; for every
feature, which controls the weight at each time step for each
feature via an exponential decay function.

Results
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Figure 3: Comparing the performance of using previous timesteps with tem-
poral decay to using no previous timestep information for the fMRI — Text
classification (chance rate 4%) and ranking (chance rate 50%) tasks. We use
the DMN region for this figure. The histogram is over all possible selections
of parameters, as explored in [6], including regression model (Procrustes or
ridge regression), dimension reduction method (PCA, SRM, SRM-ICA), and
number of previous timesteps (ranging from 0 —30) used. Using around 5—8

previous timesteps is optimal.
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Figure 4: Comparing the performance of using previous timesteps with tem-
poral decay to using no previous timestep information for the Text — fMRI
classification (chance rate 4%) and ranking (chance rate 50%) tasks. We use
the DMN region for this figure. The histogram is over all possible selections
of parameters, as explored in [6], including regression model (Procrustes or
ridge regression), dimension reduction method (PCA, SRM, SRM-ICA), and
number of previous timesteps (ranging from 0 — 30) used. Using no previous

timesteps is optimal.

Effect of Using Previous Time Steps with SRM-ICA
1.0

0.8}

~ - = —

o
o

Accuracy

- fMRI to Text Scene Ranking (50% chance)
- Text to fMRI Scene Ranking (50% chance)
— fMRI to Text Top-1 Scene Classification (4% chance)
Text to fMRI Top-1 Scene Classification (4% chance)

©
N

0 5 10 15 20 25 30
Number of Previous Time Steps Used in Regression

Figure 5: Performance over number of previous timepoints used for the DMN

region on all four tasks.

Discussion
fMRI — Text | Text — fMRI
Full Temporal ([6]) 64% 20%
Temporal Decay (this work) 64% 28%
No Previous Timesteps 44% 56%

Table 1: Comparing the best performances on the classification task (4%
chance rate) for our three temporal models in the DMN region. We note
that temporal decay does at least as well as the full temporal model in both

settings, though it seems to hurt in the Text — fMRI case.

We now list our main conclusions:

« The temporal decay model performs at least as well as the
full temporal model, but with many fewer parameters to learn
(only (m + 1)n compared to mn(k + 1)). In the temporal
decay model, we learn a single decay parameter for each
feature. It seems critical that we allow for variation in decay
weights across features, while it is less important to control
exactly how variation in weights occurs across time:
Assuming an exponential decay model suffices.

« Building on this point, the weighted decay model (with
mn + k parameters) does not work at all. In the weighted
average model, we learned a single weight parameter for each
timepoint. Variation over weights in time without allowing
variation over features is useless.

« In the fMRI — Text case, the decay weights correspond to
measures of timescale for each of the features, leading us to
a more neuroscientifically interpretable model, as well as a
way for potential future approaches to characterize time
scales in different parts of the brain.

« fMRI — Text performs better in raw scores than Text —
fMRI. This result may be due to the fact that the semantic
annotation representations tend to be more stationary,
implying that Text — fMRI is a one-to-many problem, which
is considerably harder to solve than the many-to-one problem

of MRl — Text.

« fMRI — Text benefits from using previous timepoint
information, while Text — fMRI does not. Stationarity of the
text representations may lead to unneccessary additional
parameters in the model (no new information is added by
considering the previous time points, since they are similar
enough). This result may reflect a deficiency in the
annotation data: Humans who summarize the annotation
already perform some aggregation over timescales as a result
of their natural ability to understand narratives. Future work
should edit the annotations to be more fine-grained.
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