A temporal decay model for mapping between fMRI and natural language annotations

Kiran Vodrahalli, Cathy Chen, Viola Mocz, Christopher Baldassano, Uri Hasson, Sanjeev Arora, Kenneth A. Norman

Princeton Computer Science, Princeton Neuroscience Institute

	Temporal Weighting Models	Discussion		
Objectives	In fMRI — Text tasks, $X \in \mathbb{R}^{n imes T} =$ fMRI space and $Y \in \mathbb{R}^{m imes T}$		$fMRI \rightarrow Text$	$Text \to fMRI$
 What is a good way to represent brain signals due to real world stimula as they change over time? Particularly, what models allow for the identification of different time scales in the brain which can be learned? 	= Text space, where n and m are the dimensions of embeddings in these spaces and T is the number of timepoints. In Text \rightarrow fMRI, the variables are flipped. No Previous Timesteps This model is the simplest, and uses no previous timepoint information. We learn $W \in \mathbb{R}^{m \times n}$:	Full Temporal ([6]) Temporal Decay (this work) No Previous Timesteps	64% 64% 44%	20% 28% 56%
 Does using temporal information over a window of time improve the performance of linear maps going between fMRI space and a textual meaning space? 	WX = Y (1) Weighted Average In this model, we assume that the past timesteps are important, and that the ideal representation is a linear combination of past timesteps. We learn $W \subset \mathbb{D}^{m \times n}$ and	Table 1: Comparing the best performances on the classification task (4% chance rate) for our three temporal models in the DMN region. We note that temporal decay does at least as well as the full temporal model in both settings, though it seems to hurt in the Text \rightarrow fMRI case.		
Overview Several researchers have attempted to find relationships between	convolution matrix $\Phi \in \mathbb{R}^{T \times T}$ such that $WX\Phi = Y$ (2)	We now list our main conclusions:		

Several researchers have attempted to find relationships between word featurizations and fMRI activation in the brain [4, 5, 7]. We study the Sherlock fMRI dataset [2], which consists of fMRI recordings of 17 people watching the British television program "Sherlock" for 45 minutes. In addition, we use externally annotated, second-level-resolution, English text scene descriptions of the movie. In this work, we identify a **temporal decay** model for combining fMRI information at multiple timepoints which is both interpretable and successful in a prediction task. In this poster, we follow the work of [6] and

- **①** Construct 100-dimensional semantic context vectors for the annotations [1] as in [6]
- Apply SRM [3] to construct shared 20-dimensional
 embedding of originally high-dimensional fMRI subject data as in |6|
- ^{\odot} Learn temporal weight parameters as part of fMRI \rightarrow text and text \rightarrow fMRI regression problems

Model Description ([6])

There are three components to our model. To construct a shared space for the fMRI data, we use the Shared Response Model (SRM) [3], a probabilistic latent variable model for multisubject fMRI data under a time synchronized stimulus. SRM learns orthogonal-column maps W_i such that $||X_i - W_iS||_F$ is minimized over $\{W_i\}, S$, where $X_i \in \mathbb{R}^{v \times t}$ is the i^{th} subject's fMRI response (v voxels by t repetition times) and $S \in \mathbb{R}^{k \times t}$ is a

where column Φ_t is defined by $\Phi_t(i) = \phi_i$ if i = t - j, 1 if i = t, and 0 otherwise. However in practice, the optimal weights set $\Phi = I$, which reduces to the no previous timesteps case. **Full Temporal Model [6]** We learn $\hat{W} \in \mathbb{R}^{m \times n * (k+1)}$ such that

$$\hat{W}\hat{X} = Y$$
 where $\hat{X} \in \mathbb{R}^{n*(k+1) \times T}$ (3)

For a visualization of \hat{X} , see Figure 2. The key feature of this model is that weighting parameters for every feature at every timestep in the linear regression model are learned.

Temporal Decay Model We now specify *n* different decay weights $\lambda = [\lambda_1, \dots, \lambda_n]$ for each of the fMRI features in the $fMRI \rightarrow Text$ setting (likewise m in Text $\rightarrow fMRI$). We formulate the problem setting

$$VC_k\hat{X} = Y$$
 (4)

 $\mathbb{R}^{m \times T}$. We define a concatenation C_k of k diagonal matrices Γ_i

 $C_k = [\Gamma_0, \Gamma_1, \cdots, \Gamma_k]$ where $\Gamma_j(i,i) = \frac{e^{j\lambda_i}}{Z_i} \text{ and } Z_i = \sum_{j^*=t}^{t-k} e^{(t-j^*)\lambda_i} \text{ (normalization)}$ (5)

In this setting, we learn a unique decay parameter λ_i for every feature, which controls the weight at each time step for each feature via an exponential decay function.

Results

full temporal model, but with many fewer parameters to learn (only (m+1)n compared to mn(k+1)). In the temporal decay model, we learn a single decay parameter for each feature. It seems critical that we allow for variation in decay weights across features, while it is less important to control exactly how variation in weights occurs across time: Assuming an exponential decay model suffices.

• The temporal decay model performs at least as well as the

- Building on this point, the weighted decay model (with mn + k parameters) does not work at all. In the weighted average model, we learned a single weight parameter for each timepoint. Variation over weights in time without allowing variation over features is useless.
- In the fMRI \rightarrow Text case, the decay weights correspond to measures of timescale for each of the features, leading us to a more neuroscientifically interpretable model, as well as a way for potential future approaches to characterize time scales in different parts of the brain.
- fMRI \rightarrow Text performs better in raw scores than Text \rightarrow fMRI. This result may be due to the fact that the semantic annotation representations tend to be more stationary,
- implying that Text \rightarrow fMRI is a one-to-many problem, which is considerably harder to solve than the many-to-one problem of fMRI \rightarrow Text.
- $fMRI \rightarrow Text$ benefits from using previous timepoint information, while Text \rightarrow fMRI does not. Stationarity of the text representations may lead to unneccessary additional

feature time-series in a k-dimensional shared space.

To featurize the descriptions of the Sherlock movie, we use the Wikipedia corpus to calculate word co-occurrence values. A matrix factorization objective then yields low-rank semantic vectors whose geometry clusters similar words. In order to combine these representations into vectors for each annotation, each of which is several sentences, we apply a weighted averaging scheme [1]. We learn linear maps from fMRI \rightarrow text and text \rightarrow fMRI, using multiple timesteps.

Figure 1: Model Visualization

Figure 3: Comparing the performance of using previous timesteps with temporal decay to using no previous timestep information for the fMRI \rightarrow Text classification (chance rate 4%) and ranking (chance rate 50%) tasks. We use the DMN region for this figure. The histogram is over all possible selections of parameters, as explored in [6], including regression model (Procrustes or ridge regression), dimension reduction method (PCA, SRM, SRM-ICA), and number of previous timesteps (ranging from 0-30) used. Using around 5-8previous timesteps is optimal.

parameters in the model (no new information is added by considering the previous time points, since they are similar enough). This result may reflect a deficiency in the annotation data: Humans who summarize the annotation already perform some aggregation over timescales as a result of their natural ability to understand narratives. Future work should edit the annotations to be more fine-grained.

Acknowledgements

The dataset is online [2] and the code used in this paper is available on GitHub. Additionally, we note that we used http://brainiak.org/ for some of the implementations of algorithms used in this paper. This work was funded by a grant from the Intel Corporation, NIMH R01MH112357 awarded to U. Hasson and K. Norman; NIH grants R01-MH094480 and 2T32MH065214-11; NSF grants CCF-1527371, DMS-1317308, Simons Investigator Award, Simons Collaboration Grant, and ONRN00014- 16-1-2329 awarded to S. Arora.

References

[1] S. Arora, Y. Liang, and T. Ma.

A Simple but Tough-to-Beat Baseline for Sentence Embeddings. International Conference on Learning Representations (ICLR) 2017, 2017.

[2] J. Chen, Y. C. Leong, C. J. Honey, C. H. Yong, K. A. Norman, and

Concatenating Previous Timepoints

Figure 2: Multiple Timesteps: A visualization of $\hat{X} \in \mathbb{R}^{n*(k+1)}$.

Experiments

- Scene Classification: We evenly segment the time points into 50 segments and learn a map using the first 25segments. Then for each predicted held-out segment, we rank via Pearson correlation with the true held-out segments and report the proportion of the time the correct true held-out segment is ranked within the top 1 most correlated segments (4% chance).
- Scene Ranking: This task is nearly identical, except we report 1 - average normalized rank (1 is highest, 0 is lowest, 0.5 is average random chance).

Figure 4: Comparing the performance of using previous timesteps with temporal decay to using no previous timestep information for the Text \rightarrow fMRI classification (chance rate 4%) and ranking (chance rate 50%) tasks. We use the DMN region for this figure. The histogram is over all possible selections of parameters, as explored in [6], including regression model (Procrustes or ridge regression), dimension reduction method (PCA, SRM, SRM-ICA), and number of previous timesteps (ranging from 0-30) used. Using no previous timesteps is optimal.

Effect of Using Previous Time Steps with SRM-ICA

Figure 5: Performance over number of previous timepoints used for the DMN region on all four tasks.

U. Hasson.

Shared memories reveal shared structure in neural activity across individuals.

Nature Neuroscience, 20:115-125, 2017.

[3] P.-H. Chen, J. Chen, Y. Yeshurun, U. Hasson, J. V. Haxby, and P. J. Ramadge.

A Reduced-Dimension fMRI Shared Response Model.

The 29th Annual Conference on Neural Information Processing Systems (*NIPS*), 2015.

[4] A. G. Huth, W. A. deHeer, T. L. Griffiths, F. E. Theunissen, and J. L. Gallant.

Natural speech reveals the semantic maps that tile human cerebral cortex.

Nature, 532:453-458, 2016.

[5] T. M. Mitchell, S. V. Shinkareva, A. Carlson, K.-M. Chang, V. L. Malave, R. A. Mason, and M. A. Just.

Predicting Human Brain Activity Associated with the Meanings of Nouns.

Science, 320:1191-1194, 2008.

[6] K. Vodrahalli, P.-H. Chen, Y. Liang, C. Baldassano, E. Yong, C. Honey, U. Hasson, P. Ramadge, K. Norman, and S. Arora. Mapping between fmri responses to movies and their natural language annotations. Neurolmage, 2017.

[7] L. Wehbe, B. Murphy, P. Talukdar, A. Fyshe, A. Ramdas, and T. Mitchell. Simultaneously Uncovering the Patterns of Brain Regions Involved in Different Story Reading Subprocesses. PLOS ONE, 9, 2014.