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Problem Statement

= Model: Observe n features-response pairs {(z;, ;) ", C R x R drawn i.i.d. from
the following model:

z; ~ N(0,P),

yi:f(xi)v f(:l?):H

= Goal: Design an algorithm to accurately estimate the unknown function f with
small sample complexity (n) and small run-time. Moreover, the unknown function
f may depend on only k£ out of the p features, with £ << p. This models the
problem of feature selection in machine learning and statistics.

= Efficiency requirement: Design algorithms that are attribute-efficient and require
n = poly(log(p), k) samples and poly(n, p, k) run-time.

Contributions

© We design an attribute-efficient algorithm for learning f(x) using sample size
n = O(k* - poly(log(p), log(k))) and runtime poly(n, p, k) time. The algorithm does
not have access to ®. We only assume ®;; =1 for all i € [p] and max;; |P; ;| < 1.

® The key algorithmic technique is to apply a log-transform to the features and
response, and reduce the problem to a sparse linear regression problem.

® We analyze how the covariance matrix changes after the log-transform, showing that
the log-transform eliminates linear dependencies between two or more features.

Algorithm

We use Lasso for concreteness, but any #; minimization method works.

Algorithm 1 Learn Sparse Monomial

Require: data matrix X € R"*?, responses y € R", regularization parameter ¥ > 0
1. Apply log (| - |) transformation to data and responses, element-wise: X < log (| X|)
and § < log (|yl). . )
2: Solve Lasso optimization problemi B <+ argmingep 5-|| X8 — yl|3 + 9|81
3. Select variables: S < {j € [p|] : 8; # 0}.
4 return S and B

The Restricted Eigenvalue Condition (REC)

The following concept is essential to analyzing the performance of the Lasso estimator,
and is the main focus of our analysis.

Definition

For T C [p] and ¢y > 0, define C(qy, T) := {v € R? : ||v||x = 1, [|[ore||l1 < qollvr]1}.
T" is commonly taken to be the non-zero support .S of the sparse vector to recover. We
say the (qo, T, A)-restricted eigenvalue condition (REC) is satisfied by matrix A € R™*?
if Mqo, T, A) := mince(g, 1) = || Av]|3 > 0. When gy and T" are apparent from context

and |T'| = s, we will simply write A(s, A).

Performance of the Lasso

The following well-known result about the performance of the estimator Wy (¥) is
due to [2]; the specific form we state is taken from [3].

Theorem

Consider the model Aw + n = b, and suppose the support S of w € RP has size k,
and the measurement matrix A € R"*? satisties (qy, S, A)-REC with qy = 3. For any
¥ > 0 such that ¥ > (2/n)|| Al ]|, the Lasso estimate 104 (1)) satisfies

39V k
k,3,9,A)

||w — wLasso<19)H2 S 5\(

Outline of Analysis

We show REC holds with high probability on the log-transformed Gaussian data in two
steps:

» Demonstrate the population REC holds.
= Analyze the fluctuation of the empirical REC.

Main Theorem

Theorem

Let € (0,1) be an arbitrary confidence parameter. Suppose the covariance matrix ¢
satisfies ®;; = 1, Vi € |p| and max,; |®; ;| < 1 — €. Then, the log (| - |)-transformed
design matrix X = log (| X|) for X taken from the model with true support |S| = k
satisfies

€

~ 1 - 1
A [k \/—ﬁX = 5jlog(16k) 2
with probability 1 — o, provided that

k*log(2k)
| € 0

In the above display, C is a universal constant.
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Proof Sketch

= We first derive a closed form series expression for the population covariance using a
Hermite basis expansion.

= We use this expression to derive a closed form series expression for the population
restricted eigenvalue.

= We lower-bound the terms of the REC series with a restricted variant of the Gershgorin
circle theorem.

= We finish by showing the log-transformed features are sub-exponential and apply a
concentration inequality from [5] to the REC quantity.

Characterizing Covariance of Log-Transformed Gaussians

Let © ~ N(0, D) where ®;; =1 for all i € [p], and

z = log(|z]), ¥ = E.[22"], Y= % 20,07

Then:
© var(z;) = m°/8.

® The function a — log(|a|) admits the following expansion in the Hermite polynomial

basis { H;};>0:
(=12t — 1)
(20)!

log(|a|) = X %gcaHy(a), cy =

__ Yoo 2 ®2l
® Elzizj] = L2y P

0 ¥ =cl,,+ 52,50, where 1,,, is the p X p matrix of all 1's.

Related Work

« For k-sparse parity functions, there is an attribute-efficient algorithm with run-time
O(p*/?) due to Dan Spielman [4], and an attribute-inefficient improper learner with
sample complexity n = O(p'~'/*) and run-time O(p*) for the noiseless case with an
arbitrary distribution over {—1,41}” due to [4]. There is also an
O(p"** poly (1/(1 — 2n))-time (but attribute-inefficient) algorithm of [6].

« [1] considers the problem of learning s-sparse polynomials of degree d with additive
noise over real-valued data, but the data must come from a product distribution.

Discussion

We summarize the conceptual contributions of the paper:

©® Blessing of non-linearity: The assumptions on the correlation structure needed to
learn a class of sparse non-linear functions are less restrictive than those needed to
learn sparse linear functions.

® The minimum eigenvalue of the log-transformed data covariance matrix is strictly
positive with high probability, regardless of initial rank. Thus, nonlinear data
transformations can destroy low-rank covariance structure.
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