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Problem Statement

• Model: Observe n features-response pairs {(xi, yi)}ni=1 ⊂ Rp × R drawn i.i.d. from
the following model:

xi ∼ N (0,Φ), yi = f (xi), f (x) = Πj∈Sx
βj
j .

• Goal: Design an algorithm to accurately estimate the unknown function f with
small sample complexity (n) and small run-time. Moreover, the unknown function
f may depend on only k out of the p features, with k � p. This models the
problem of feature selection in machine learning and statistics.

• Efficiency requirement: Design algorithms that are attribute-efficient and require
n = poly(log(p), k) samples and poly(n, p, k) run-time.

Contributions

1 We design an attribute-efficient algorithm for learning f (x) using sample size
n = O(k2 · poly(log(p), log(k))) and runtime poly(n, p, k) time. The algorithm does
not have access to Φ. We only assume Φi,i = 1 for all i ∈ [p] and maxi6=j |Φi,j| < 1.

2 The key algorithmic technique is to apply a log-transform to the features and
response, and reduce the problem to a sparse linear regression problem.

3 We analyze how the covariance matrix changes after the log-transform, showing that
the log-transform eliminates linear dependencies between two or more features.

Algorithm

We use Lasso for concreteness, but any `1 minimization method works.
Algorithm 1 Learn Sparse Monomial
Require: data matrix X ∈ Rn×p, responses y ∈ Rn, regularization parameter ϑ > 0
1: Apply log

(
| · |

)
transformation to data and responses, element-wise: X̂ ← log

(
|X|

)

and ŷ ← log
(
|y|

)
.

2: Solve Lasso optimization problem: β̂ ← arg minβ∈Rp
1

2n‖X̂β − y‖
2
2 + ϑ‖β‖1.

3: Select variables: Ŝ ← {j ∈ [p] : β̂j 6= 0}.
4: return Ŝ and β̂.

The Restricted Eigenvalue Condition (REC)

The following concept is essential to analyzing the performance of the Lasso estimator,
and is the main focus of our analysis.

Definition

For T ⊂ [p] and q0 > 0, define C(q0, T ) := {v ∈ Rp : ‖v‖2 = 1, ‖vT c‖1 ≤ q0‖vT‖1}.
T is commonly taken to be the non-zero support S of the sparse vector to recover. We
say the (q0, T, A)-restricted eigenvalue condition (REC) is satisfied by matrix A ∈ Rn×p

if λ̃(q0, T, A) := minv∈C(q0,T )
1
n‖Av‖

2
2 > 0. When q0 and T are apparent from context

and |T | = s, we will simply write λ̃(s, A).

Performance of the Lasso

The following well-known result about the performance of the estimator ŵLasso(ϑ) is
due to [2]; the specific form we state is taken from [3].

Theorem

Consider the model Aw + η = b, and suppose the support S of w ∈ Rp has size k,
and the measurement matrix A ∈ Rn×p satisfies (q0, S, A)-REC with q0 = 3. For any
ϑ > 0 such that ϑ ≥ (2/n)‖ATη‖∞, the Lasso estimate ŵLasso(ϑ) satisfies

‖w − ŵLasso(ϑ)‖2 ≤
3ϑ
√
k

λ̃(k, 3, S, A)
.

Outline of Analysis

We show REC holds with high probability on the log-transformed Gaussian data in two
steps:
• Demonstrate the population REC holds.
• Analyze the fluctuation of the empirical REC.

Main Theorem

Theorem

Let δ ∈ (0, 1) be an arbitrary confidence parameter. Suppose the covariance matrix Φ
satisfies Φi,i = 1, ∀i ∈ [p] and maxi6=j |Φi,j| < 1− ε. Then, the log

(
| · |

)
-transformed

design matrix X̂ = log
(
|X|

)
for X taken from the model with true support |S| = k

satisfies

λ̃

k,
1√
n
X̂

 ≥
1
5

√√√√√√√√√
ε

log(16k) + 2
,

with probability 1− δ, provided that

n ≥ C · k
2 log(2k)
ε

· log2

2p
δ

 · log2

k log(k)

ε
log


2p
δ



 . (1)

In the above display, C is a universal constant.

Proof Sketch

• We first derive a closed form series expression for the population covariance using a
Hermite basis expansion.

• We use this expression to derive a closed form series expression for the population
restricted eigenvalue.

• We lower-bound the terms of the REC series with a restricted variant of the Gershgorin
circle theorem.

• We finish by showing the log-transformed features are sub-exponential and apply a
concentration inequality from [5] to the REC quantity.

Characterizing Covariance of Log-Transformed Gaussians

Let x ∼ N (0,Φ) where Φi,i = 1 for all i ∈ [p], and

z := log(|x|), Σ := Ez[zzT ], Σ̂ := 1
n

n∑
i=1
z(i)z(i)T .

Then:
1 var(zi) = π2/8.
2 The function a 7→ log(|a|) admits the following expansion in the Hermite polynomial
basis {Hl}l≥0:

log(|a|) = Σ∞l=0c2lH2l(a), c2l = (−1)l−12l−1(l − 1)!√
(2l)!

.

3 E[zizj] = Σ∞l=0c
2
2lΦ2l

i,j.
4 Σ = c2

01p×p + Σ∞l=1c
2
2lΦ(2l), where 1p×p is the p× p matrix of all 1’s.

Related Work

• For k-sparse parity functions, there is an attribute-efficient algorithm with run-time
O(pk/2) due to Dan Spielman [4], and an attribute-inefficient improper learner with
sample complexity n = O(p1−1/k) and run-time O(p4) for the noiseless case with an
arbitrary distribution over {−1,+1}p due to [4]. There is also an
O(p0.8k poly

(
1/(1− 2η)

)
-time (but attribute-inefficient) algorithm of [6].

• [1] considers the problem of learning s-sparse polynomials of degree d with additive
noise over real-valued data, but the data must come from a product distribution.

Discussion

We summarize the conceptual contributions of the paper:
1 Blessing of non-linearity: The assumptions on the correlation structure needed to
learn a class of sparse non-linear functions are less restrictive than those needed to
learn sparse linear functions.

2 The minimum eigenvalue of the log-transformed data covariance matrix is strictly
positive with high probability, regardless of initial rank. Thus, nonlinear data
transformations can destroy low-rank covariance structure.
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