
High-Dimensional Probability
Roman Vershynin, UC Irvine

Scribe: Kiran Vodrahalli
05/29/2018 — 06/06/2018

Contents

1 Introduction 1
1.1 Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Hoeffding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Sub-gaussian random variables . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Sub-exponential distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Bernstein’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Concentration of norm of a random variable 7
2.1 Grothendieck’s Inequality and SDPs . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The relation to semidefinite programming . . . . . . . . . . . . . . . . . . . 11

3 Covariance Estimation and Random Matrices 13
3.1 Background on Covering and Packing Arguments . . . . . . . . . . . . . . . 13

4 MISSED (Covariance and random matrices?: FILL IN WITH RISHABH
NOTES 15

5 Matrix Bernstein 15
5.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Application to covariance matrix estimation . . . . . . . . . . . . . . . . . . 18
5.3 Application to community detection in networks . . . . . . . . . . . . . . . . 20

6 Stochastic Processes 22

1 Introduction

Most of the material for this course is from my HDP book. We will assume you don’t
know anything beyond standard probability. The first lecture will be really basic, not as
high-dimensional as you would hope. Starting from second lecture, we will do some stuff.
The first class is about concentration. The goal of this class, and also more generally of the
lecture series, is to get you up to speed with modern probabilistic methods for statistical
data analysis.

1.1 Concentration

Concentration is a big collection of tools that are available to control random variables
around their means. What we want is for a random variable X, whose expectation is µ – we
want to bound the deviation from µ. Typically we want to bound both left and right tails.
That is a big goal of concentration methods. We can develop some ideas by asking a very
simple question first.
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Example 1.1. A sloppy example.

Let us toss a fair coin n times and ask the probability that we get at least (3/4)n
heads. In undergrad probability class, we look at the binomial distribution of the sum of
indicators (if head, if tail). These are standard Bernoulli random variables. Then we reach

P {Sn > 3n/4} = P
{
Sn−n/2√

n/4
>
√
n/4

}
. This term is a sum of random variables, and by

central limit theorem we can compare to a standard normal variable. Thus we look at

P
{
g >

√
n/4
}

– then we can look at the table or use the fact that the tail of the standard

normal distribution decays very fast. This probability gets bounded by 1
2π

exp(−n/8) using
the lemma below.

Lemma 1.2. Tail of standard normal.
We have g ∼ N (0, 1). Then P {g > t} ≤ 1

2π
e−t

2/2. You can see the integral of the density is
bounded by the density.

Now this argument was sloppy – in the application of the central limit theorem. We were
very sloppy about the error. The error in the central limit theorem is about 1/

√
n. This

error does not decay exponentially fast, and it cannot – you can take simple example of
binomial distribution; it will not. So this is far too optimistic. We were far too sloppy here,
but we cannot repair it in this argument, since we have to add the error 1/

√
n, which kills

the exponential decay.

1.2 Hoeffding

So the central limit does not help to get exponential decay. We need to develop an alternative
approach – this is a complementary, non-asymptotic treatment of the central limit theorem,
if you will. How do we correct?

Theorem 1.3. Hoeffding’s inequality.
Let Xi be symmetric independent Bernoulli variables (±1 with equal probability). We claim
that P {

∑n
i=1 aiXi > t} ≤ exp(−t2/2‖a‖2

2).

Proof. The proof is due to Bernstein in 1914. It’s a very cool and simple idea. We will treat
the tail by looking at Chebyshev’s inequality. That won’t give us e−t

2
– that will only give

us reciprocal of the linear; not exponential. To recreate e−t
2
, we will just exponentiate both

sides before applying Markov. We will also pre-multiply both sides by a postiive parameter
λ, a handle that we will optimize later.

P

{∑
i

aiXi > t

}
= P

{
exp(λ

∑
i

aiXi) > exp(λt)

}

≤ E

[
e−λtexp(λ

∑
i

aiXi)

] (1)
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This is just an application of Markov’s inequality; and now we are left with the moment-
generating-function (MGF). MGFs are good! We can use independence of the Xi to break
up the product:

= e−λt
n∏
i=1

E
[
e−λaiXi

]
E [exp(λaiXi)] =

1

2
(exp(λai) + exp(−λai)) = cosh(λai)

(2)

This guy is called the hyperbolic cosine. It’s an even function, and is bounded by ex on
the positive reals and e−x on the negative reals. For any x, it holds that cosh(x) ≤ e−x

2/2.
Therefore, we get

≤ eλ
2a2i /2 (3)

Thus the probability we started to bound above is bounded by

≤ e−λt
n∏
i=1

exp(λ2a2
i /2)

= exp(−λt+
λ2

2

n∑
i=1

a2
i ) = exp(−λt+

λ2

2
‖a‖2

2)

(4)

Then we can optimize for λ > 0. Here, the minimum is where −t+ λ‖a‖2
2 = 0, so λ = t

‖a‖22
.

This yields the desired result.

Example 1.4. Application of Hoeffding.
Now we can get the probability of getting at least 3n/4 heads after flipping coin. You have
to do the correct scaling of the inequality; this gives you a bound of exp(−n/8). So, what
we guessed before is true! But not because of the central limit theorem. This is a rigorous
and non-asymptotic form of central limit theorem; which does not involve the error of the
central limit theorem, which can be harmful.

Remark 1.5. We can get both tails by paying a multiplicative factor of 2: P {|
∑

i aiXi| > t} ≤
2exp(−t2/2‖a‖2

2). This follows from union bound.

Remark 1.6. What about lower bounding the probability? Well, it’ll be 0 – so you can’t
here. (In general, this idea is anti-concentration).

Remark 1.7. If we use cosh directly, do we get something better? Maybe locally you can
have something better or a better constant – globally you can’t, because it must converge
to a Gaussian tail. Kind of strange, because this cosh inequality is kind of sloppy. So for
large n you can’t expect anything better, for small n perhaps you can. What really is going
on in the argument is that we are locally approximating cosh. Then, this estimate is not so
sloppy – it is actually tight.
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1.3 Sub-gaussian random variables

Now, for what random variables can we have an inequality like Hoeffding? Definitely for
±1. But the proof suggests more is possible. We only used it to calculate the MGF, but we
bounded it anyways. So we didn’t really need to compute it exactly. So what’s the largest
class of random variables we can calculate something like this for?

Consider that the sum is only one term. For Hoeffding to hold, you must have a “sub-
gaussian” tail for this term. Most of the time for modern research problems, people are
happy if they prove something for the class of sub-gaussian random variables. We will now
describe sub-gaussian distributions more rigorously.

Lemma 1.8. Sub-gaussian tail behavior.
Suppose X is a random variable. Then the following properties are equivalent:

(a) P {|x| > t} ≤ 2exp(−t2/K2) for all t ≥ 0. (tails)

(b) (E [|X|p])1/p = ‖X‖Lp ≤ K
√
p for all p ≥ 1. (moments)

(c) E [exp(λ2X2)] ≤ exp(K2λ2) for all |λ| ≤ 1/K. (MGF of X2)

(d) If X is mean 0, E [exp(λX)] ≤ exp(K2λ2) for all λ. (MGF of X)

Note that Gaussians satisfy all of these properties. Now what is the role of K? These
statements are equivalent, up to different constant factors of K. More formally, we should
write K1, K2, K3, K4 for each of the statements respectively. The constants Ki differ from
each other by an absolute constant factor. That depends on which direction you want to go
(e.g., K3 → K1 versus K1 → K4).

Proof. For an example, let us prove (1) =⇒ (2). Suppose you know the tails, how do you
get the moments? We have E [Z] =

∫∞
0

P {Z > t} dt for all Z ≥ 0. This is by integration by
parts. Now let’s prove (1) =⇒ (2).

E [|X|p] =

∫ ∞
0

P {|X|p > t} dt

≤ ... use (1) to finish the proof.

(5)

We can now do (2) =⇒ (3). I don’t have an easy proof of this. Suppose we know the
moments grow in a perscribed way, then can we compute the MGF? When we don’t know
what to do, we just do the Taylor expansion of the MGF. We have

E
[
exp(λ2X2)

]
= 1 + E

[
∞∑
p=1

(λ2X2)p

p!

]

= 1 +
∞∑
p=1

λ2pE [X2p]

p!

≤ 1 +
∞∑
p=1

(2λ2p)p

(p/e)p

(6)
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assuming K2 = 1 and using p! ≥ (p/e)p for anything. Then we get

= 1 +
∞∑
p=1

(2eλ2)p =
1

1− 2eλ2

≤ e4eλ2

(7)

for all |λ| ≤ 1/2
√
e. This holds only for these λ. The MGF is infinite outside for Gaussian

case. That’s my complicated way for proving (2) =⇒ (3) – if you have a better way without
Taylor series, let me know!

Definition 1.9. Sub-gaussian and sub-gaussian norm ‖ · ‖ψ2 .
We call random variables which satisfy these properties sub-gaussian. The smallest of
K1, · · · , K4 will be defined as the sub-gaussian norm for a random variable X. We have

‖X‖ψ2 ≤ inf
{
t > 0 : E

[
exp(X2/t2)

]
≤ 2
}

(8)

The standard choice is using the third definition. This is a standard definition in functional
analysis called the Orlicz norm. All constants K1, K2, K4 are ∼ ‖X‖ψ2 (up to an absolute
constant).

Remark 1.10. Centering (e.g., mean 0) is only needed for property 4 – for the others, it is
not necessary.

Sub-gaussian distributions are very good, and satisfy many properties that Gaussian
distributions satisfy, yet they are much more general.

Example 1.11. Examples and counter-examples of sub-gaussian r.v.s.
Gaussians, Bernoullis, bounded random variables are all sub-Gaussian. Exponential random
variable, χ2, and Cauchy are NOT. These are called heavy-tailed.

Now, what can we say about the class of sub-Gaussian random variables? Recall that
a sum of independent Gaussian random variables is Gaussian. The same holds for sub-
Gaussian random variables.

Lemma 1.12. Suppose we have independent X1, · · · , Xn are mean 0 sub-Gaussian random
variables. Then

∑n
i=1Xi is also mean 0 and sub-Gaussian random variable. More quantita-

tively,

‖
n∑
i=1

Xi‖ψ2 ≤ C ∗
n∑
i=1

‖Xi‖2
ψ2

(9)

for an absolute constant C.

This is much like the standard formula for the variance for independent random variables.
This is a more advanced version of it. The variance controls the second moment of X – now,
we’re controlling all the moments, not just the second moment. The ‖ · ‖ψ2 is a stronger
control of the size, and it satisfies the same thing.
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Proof. We will use property 4 of the sub-gaussian properties. We are claiming that the sum
is E [exp (λ

∑n
i=1 Xi)] =

∏n
i=1 E [exp(λXi)] by independence. We can then use property 4 to

get this is bounded by

≤
n∏
i=1

exp
(
Cλ2‖Xi‖ψ2

2

)
(10)

where the absolute constant C comes from the fact that the sub-gaussian norm is defined
from property 3, and K3 and K4 differ by some absolute constant C. This yields

= exp

(
Cλ2

N∑
i=1

‖Xi‖2
ψ2

)
(11)

Now by definition of sub-gaussian (property 4), we have

‖
n∑
i=1

Xi‖2
ψ2
≤ C

∑
‖Xi‖2

ψ2
(12)

Now, this is our extended form of the variance equality for independent r.v.s (sum of
variances equals variance of sum). But this immediately happens to imply the general
Hoeffding’s inequality!

Corollary 1.13. (General Hoeffding’s inequality).
If X1, · · · , Xn are independent, mean 0, sub-gaussian, then

P

{
|

n∑
i=1

Xi| ≥ t

}
≤ 2exp

(
− Ct2∑n

i=1 ‖Xi‖2
ψ2

)
(13)

where C is an absolute constant.

1.4 Sub-exponential distributions

Now, this doesn’t really work if you look at χ2 – but something like it should. How can
we widen the set of distributions? There’s a more general class of distributions called sub-
exponential. What happens if we take a normal and then square it? Let’s look:

P
{
g2 > t

}
= P

{
g >
√
t
}
≤ e−(

√
t)2/2 = e−t/2 (14)

So the square of a Gaussian looks approximately exponential. This is heavier tailed. But
still you can hope that you can re-do everything, and it is true.

Lemma 1.14. Sub-exponential equivalencies.
The following are equivalent:
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(a) P {|X| > t} ≤ 2exp(−t/K) for all t ≥ 0.

(b) (E [|X|p])1/p ≤ Kp for all p ≥ 1.

(c) E [exp (λ|X|)] ≤ exp (Kλ) for all |λ| ≤ 1/K.

(d) If E [X] = 0, then E [exp(λX)] ≤ exp(K2λ2), for all |λ| ≤ 1/K. Note the addi-
tional restriction on λ! This will end up being the reason for the mixing between the
sub-Gaussian and sub-exponential parts of the bound in Bernstein’s inequality. The
dependency on λ2 doesn’t change here – there is a quadratic cup locally regardless of
whether you are sub-gaussian or sub-exponential.

Definition 1.15. Sub-exponential r.v. and norm ‖ · ‖ψ1 .
We call such random variables sub-exponential. The sub-exponential norm is defined

‖X‖ψ1 = inf {t > 0 : E [exp(|X|/t)] ≤ 2} (15)

Again, we use definition 3.

Example 1.16. N (0, 1)2 is sub-exponential, as is the square of every sub-gaussian – this is a
triviality by the tail definition (property 1). Poisson is sub-exponential (its tail is t−t < e−t),
but not sub-Gaussian. Chi-square is sub-exponential. But not Cauchy, as usual. Cauchy is
just bad in general.

1.5 Bernstein’s inequality

Now we would like to show that something like Hoeffding holds for a larger class – in this
case, sub-exponential. Here is the theorem:

Theorem 1.17. Bernstein’s inequality.
Let Xi’s be independent, mean 0, sub-exponential random variables. Then we can bound the
tail

P

{
|

n∑
i=1

Xi| > t

}
≤ 2exp

(
−min

{
t2∑n

i=1 ‖Xi‖2
ψ1

,
t

maxi ‖Xi‖ψ1

})
(16)

Essentially it’s a mixture of two tails: A sub-gaussian tail and a sub-exponential tail. The
first term comes from Hoeffding/CLT. The second term is contributed by a single term in
the sum – is there any heavy tail?

Proof. Exercise: prove Bernstein’s inequality just the way we proved Hoeffding’s inequality.
Exponentiate both sides, apply Markov, find the MGF of each term. For sub-exponential,
we’ll use the bound from property 4. Now we only have a bound for λ in some neighborhood
– we optimize over λ in the neighborhood |λ| ≤ 1/K4 – same as before, minimize a quadratic,
except we have to stay in the neighborhood! That’s the reason for the second term in the
theorem, just maintaining the boundary.

7



High-Dimensional Probability
Roman Vershynin, UC Irvine

Scribe: Kiran Vodrahalli
05/29/2018 — 06/06/2018

Remark 1.18. There must be a sub-Gaussian part of the bound if there exists a second
moment – this is by central limit theorem. We can also imagine as follows: Think of central
limit theorem, taking n → ∞, larger and larger — the boundary in which we can make
the sub-gaussian approximation gets wider and wider as n → ∞, but there is always some
correction at the tails which is sub-exponential.

Remark 1.19. Ledoux and Talagrand work with heavy tails a lot. If you have ten moments
and nothing else. They don’t get sub-Gaussian behavior though.

2 Concentration of norm of a random variable

Now we will start to see some high-dimensional phenomena. Suppose you want to do a search
of high-dimensional space. Suppose you have a cube of unit size, and also suppose you have
your procedure that works in n dimensions. How does your procedure scale, if you have a
cube of size 2? The volume of the original cube is 1. As we scale by 2, the volume of the
doubled cube is 2n!! Much much larger than 1 — it scales exponentially. That is the basis
of many difficulties in statistical inference. You have to do something smart to overcome
this curse. First thing we will consider is take a random vector in high-dimensional space.
We would like to say with exponentially high probability, that vector will be on the sphere,
which is kind of non-intuitive. But it will mostly be on the sphere – e.g., concentration of
the norm.

Theorem 2.1. Concentration of the norm.
Let X be a random vector with independent, sub-gaussian coordinates in Rn. We want to
scale things properly, so the variance of each coordinate is 1. Then:

E
[
‖X‖2

2

]
= E

[
n∑
i=1

X2
i

]
= n (17)

So we should expect the norm to be approximately
√
n. We will show that the random vector

will be with very high probability be in the thin shell. We are claiming this random variable
is sub-gaussian:

‖‖X‖2 −
√
n‖ψ2 ≤ C max

i
‖Xi‖2

ψ2
(18)

Proof. This is basically a re-formulation of Bernstein’s inequality. It’s much easier to work
with norm squared: Let’s look at ‖X‖2

2−n, and take square roots in the end. Note that X2
i

is sub-exponential — in particular, ‖X2
i − 1‖ψ1 ≤ ‖Xi‖2

ψ2
. We have

‖X‖2
2 − n =

n∑
i=1

(X2
i − 1)

P
{
|‖X‖2

2 − n| > t
}
≤ 2exp

(
−C ∗min{t2/n, t}

) (19)
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applying Bernstein’s inequality. So now we have a concentration inequality for the squares.
Now we have to “take square roots”, since we really want deviation for the norm. This is
more like a delta-method. This will be an exercise for you guys, and you will end up with
something like

P
{
|‖X‖2 −

√
n| ≥ u

}
≤ 2exp

(
−cu2

)
(20)

for all u. And that is it! This is exactly the definition of sub-gaussian tail; if you do it
carefully, the constant will be the maximum (e.g., use Bernstein tail properly — the part
where it gets cut off).

Remark 2.2. Now how do we reason that everything is on the boundary? If u = 1000, we
get

P
{
|‖X‖2 −

√
n| ≥ 1000

}
≤ 0.01

So with high probability, the random variable will show up in the radius of
√
n: This is a

concentration of the norm.
Intuition: You can think of it in the following way: The volume of the inner part will

essentially deflate — there will almost be no volume inside, and the random variable will
avoid the inner part. You can think of χ2 distribution. If Xi’s are Gaussian, then X2

i is the
norm – we are stating the χ2 distribution concentrates like this. Another piece of intuition
you can give is that ‖X‖2

2 is a sum of independent random variables. The mean is n±O(
√
n)

– if you take the square root, you get ‖X‖2 =
√
n±O(

√
n) =

√
n ± O(1), actually. You

can therefore intuitively see what concentration of norm says. But it gives much more!
Exponential, sharp decay. For that, there is no good intuition.

2.1 Grothendieck’s Inequality and SDPs

Today, we will use high dimensional probability to prove Grothendieck’s inequality and look
at applications to semidefinite programming. This is a tool that’s starting to be appreciated
by machine learning and computer science communities, and it’s slowly coming to statistics.
This is a beautiful theorem of Grothendieck, which on the surface has nothing to do with
probability.

Theorem 2.3. Grothendieck’s inequality.
Consider an m× n real matrix aij, and assume the following holds: For any signs xi’s, yj’s
(.e.g, in {±1}); we have the quadratic form∣∣∣∣∣∑

i,j

ai,jxiyj

∣∣∣∣∣ ≤ 1 (21)

Then, the same happens if we vectorize this inequality – that is, we replace by xi’s, yj’s by
vectors, and where multiplication becomes a dot product instead. Specifically, for any `2 unit
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vectors ui, vj ∈ Rn, we have ∣∣∣∣∣∑
i,j

ai,j〈ui, vj〉

∣∣∣∣∣ ≤ K (22)

where K is an absolute constant that does not depend on anything. The best known value is
K ≈ 1.783. We know that 1.4 is a lower bound (1 is a trivial lower bound). We also know
that the best known upper bound is not the best possible — this problem is still open.

In the condition, we take maximal quadratic forms – but not quite, only over signs – this
is related to the cut norm in computer science. Before we prove this statement, let’s make
one remark.

Remark 2.4. Instead of insisting that xi, yj ∈ {±1}, we can require more: That the condi-
tion holds for any numbers which are bounded by 1. Since this is a convex function, and the
maxima are attained on the vertices of the discrete cube (±1), we can extend it as follows:

If
∣∣∣∑i,j ai,jxiyj

∣∣∣ ≤ maxi |xi|maxj |yj| for any xi, yj, then∣∣∣∣∣∑
i,j

ai,j〈ui, vj〉

∣∣∣∣∣&leqK max
i
‖ui‖2 max

j
‖vj‖2 (23)

for all ui, vj.

Remark 2.5. Since the conclusion holds for finite dimension spaces, and the dimension
doesn’t play a role in the bound, it actually turns out to be true for vectors in Hilbert spaces
– we will prove this.

Proof. First of all, the trivial reduction is that there exists K := K(A), perhaps depending
on the matrix, for which Grothendieck holds. This is trivial. Let K be the smallest such
number. We will now turn the statement into a random one.

Let g ∼ N (0, In). Let Ui := 〈g, ui〉, Vj := 〈g, vj〉. For simplicity assume ‖ui‖2 =
‖vi‖2 = 1. These are also normal random variables. We know that E [UiVj] = 〈ui, vj〉.
K =

∑
i,j ai,j〈ui, vj〉 =

∑
i,j ai,jE [UiVj]. We want to bound this quantity. By the assump-

tion of the Grothendieck inequality, we can convert the vector valued Grothendieck into the
single-dimensional Grothendieck. We’re going to do a recursive proof — we are going to give
some originally bad bound for K, and then use this bound further down the line to get an
equation for K which depends on K, which we will then optimize. Note that we show K is

finite because we have
∣∣∣∑i,j aij〈ui, vj〉

∣∣∣ ≤∑ |aij| =: K.

Thus, look at

E

[∑
i,j

ai,jUiVj

]
≤ R2 (24)

10
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where we’re assuming Ui, Vj ≤ R. However, this doesn’t quite work – normal vectors are not
bounded almost surely – we would get it automatically at this point! So what do you do if
you want to bound it – truncate it! The rest is just a truncation procedure.

Let’s introduce some level R, which we will optimize later. Then Ui = U−i + U+
i , where

U−i = Ui1 {|Ui| ≤ R} and U+
i = Ui1 {|Ui| > R}, and similarly for V −i , V

+
i . Then,

K = E

[∑
i,j

aij
(
U−i + U+

i

) (
V −i + V +

i

)]
= S1 + S2 + S3 + S4

(25)

We have S1 = E
[∑

i,j aijU
−
i V

−
j

]
≤ R2, by assumption of Grothendieck. So this one is easy.

Let’s do the second sum now: S2 = E
[∑

i,j aijU
+
i V

−
j

]
– we can’t just use Grothendieck

here. What we can do is apply Grothendieck on the random variables, which are actually
functionals and belong to Hilbert space. We have U+

i , V
−
j ∈ L2 of random variables. The

inner product is 〈U, V 〉L2 = E [UV ]. So we introduce a Hilbert space by defining this inner
product norm.

Now we have ‖U+
i ‖L2 = E

[(
U+
i

)2
]

= E [(g+)2] = E [g21|g| > R]. As an exercise, prove

that this value is ≤ 4/R2 – this is a crude bound. For V −i , we don’t need much. We just say
‖V −i ‖L2 ≤ ‖Vi‖L2 = 1. Then for Hilbert space L2, we get

E

[∑
i,j

aijU
+
i V

−
j

]
=
∑
i,j

aij〈U+
i , V

−
j 〉L2 ≤ K ·

√
4

R2
· 1 =

2K

R
(26)

We bound the other cross-term the same way, and the fourth term is even simpler – since
we truncate them a lot, they will be even smaller in L2 norm. So S3, S4 are similar. As a
result, putting everything together, we get

K ≤ S1 + S2 + S3 + S4 ≤ R2 +
6K

R
(27)

This holds for any R, so if we choose R = 12, for example, then we have K ≤ 144 + K
2

, and
we get a constant bound for K. This is a nice probabilistic / functional analytic proof.

Remark 2.6. To get the best bound, we can use the kernel trick. See the textbook, where
I do it in full.

Remark 2.7. Grothendieck was one of the best known mathematicians in the 50s, 60s,
70s. Before algebraic geometry, he did functional analysis. He wrote a paper called tensor
products in function spaces around 1954 in some obscure journal – he had a purely functional
theoretic motivation. In 1968, someone noticed it and it became headlines of research in
functional analysis, until it came to computer science in the 1980s.
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2.2 The relation to semidefinite programming

The Grothendieck inequality can be used as a black-box in relaxing computationally hard
problems to semidefinite programs. This is actually the link between NP-hard and not NP-
hard problems. A linear program where you maximize maxx〈a, x〉 over x ∈ polyhedron, or
generally, a convex set. You maximize until you touch the tip, and that’s a solution.

A semidefinite program is a subclass of convex programs – instead of x a vector, you have
a positive-semi-definite matrix X: You maximize maxX〈A,X〉, X � 0, 〈Bi, x〉 = bi. The
inner product of two matrices is just 〈A,X〉 =

∑
i,j AijXij = Tr(ATX). This is convex. You

have a linear functional over a convex set. It’s not hard to check that PSD matrices form a
convex set (in fact it is a cone). You intersect the cone with a linear subspace. This is called
the spectrahedron. SDPs are kind of slow polynomial time, but are not NP-hard.

Suppose you want to solve a combinatorially problem which is NP-hard. In particular, say
you want to maximize max

∑
i,j Aijxixj, with xi = ±1 for all i. This is hard and important.

We will in a second reduce this to the SDP max
∑

i,j Aij〈Xi, Xj〉 given that ‖Xi‖2 = 1
for all i. We will show that the solutions are approximately the same. The link will be
Grothendieck’s inequality. NP-hard corresponds to the assumption, and the vector-valued
Grothendieck corresponds to the SDP relaxation.

Let G denote the Gram matrix, so that Gij = 〈Xi, Xj〉. Thus we want to maximize
〈A,G〉, subject to Gii = 1 for all i. Also note that G is always PSD — this it can be solved.
Now we get the following theorem:

Theorem 2.8. SDP from Grothendieck.
We can relax the integer optimization problem (NP-hard problem) to an SDP; the error is
smaller than Grothendieck’s constant K, a constant multiplicative factor, which is about
1.783. Recall we want this constant to be as small as possible.

Remark 2.9. There is a form of Grothendieck where x = y;u = v. We can look at
〈Ax, y〉 = 〈Au, u〉 − 〈Av, v〉 where u = 1

2
(x+ y), v = 1

2
(x− y) — this is some polar identity.

So it doesn’t really matter whether you want to talk about different x, y or the same. Just
do polarization as pre-processing.

But how do we get from the vectors output by the SDP to the signs? It is not trivial,
but it is possible to do. It is not obvious. It’s still an open problem for doing this in
general. But there is a nice special case — max-cut for networks (Goemans-Williamson).
Let A be the adjacency matrix of the graph in question. We can describe the cut with a
±1 vector – they will encode the cut ({±1}n). How many edges are there? We look at
1
2

∑
xi=−xj Aij = 1

4

∑
i,j Ai,j(1 − xixj). This is the same kind of problem as we discovered

before.
Goemans and Williamson proposed randomized rounding, a scheme to get signs from

vectors. It’s super simple: They say, take the output vectors, and just project them onto a
random line. For instance, x3, x4, x5 will fall on one side, and the rest will fall on the other:
Call one side +1, and the other side −1. So just project onto a number line – will it work?
Indeed, it will. Formally, choose g ∼ N (0, In) and define xi = sgn〈Xi, g〉 ∈ {±1}n.
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Theorem 2.10. The SDP + randomized rounding gives us an expected 0.878 approximation
lower bound.
Note that this is better than Grothendieck constant, and that will not show up in our calcu-
lations. The expected max cut will be at least this good.

We need some theorems:

Lemma 2.11. (Grothendieck identity). For all u, v unit vectors, E [sgn(g, u)sgn(g, v)] =
f(〈u, v〉) by rotational invariance. In particular, this function is (2/π)arcsin (exercise).

Unfortunately, arcsin is not linear, so we have to linearize it. Otherwise, we’d be done
directly. We want 1 − 2

π
arcsin(t) = 2

π
arccos(t). We can linearize it by choosing the line

which lower bounds the curve between 0 and 1 — this is 0.878(1 − t). This is where the
linearization comes from.

Proof. Now we prove the theorem.

E [CUT(G, x)] =
1

4

n∑
i,j=1

Aij(1− E [xixj])

=
1

4

n∑
i,j=1

Aij(1− E [sgn〈Xi, g〉〈Xj, g〉])

=
1

4

n∑
i,j=1

Aij

(
1− 2

π
arcsin〈Xi, Xj〉

)

≥ 0.878
1

4

n∑
i,j=1

Aij(1− 〈Xi, Xj〉) = 0.878 · SDP-relaxation

(28)

Note in the second to last step we used Aij is non-negative.

Remark 2.12. Note that when you solve the SDP, the number you get in the SDP is a
bigger number (e.g., see the Grothendieck constant factor larger). However, the actual value
of the max-cut resulting from rounding is smaller.

Remark 2.13. Grothendieck relation to networks and SDPs has not been sufficiently ex-
plored. There are some papers which use it for min-cut (even though it’s a linear program
– we want an additional constraint on sizes of communities), for community detection. The
first paper was by Guedon and myself in 2013, the second paper is from Andrea Montanari
and co-authors in 2016.

3 Covariance Estimation and Random Matrices

3.1 Background on Covering and Packing Arguments

These notions are very helpful in discretizing hard problems.
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Definition 3.1. Epsilon Net.
Let T be a metric space (for instance, T ∈ Rn, ‖ · ‖2). Consider subset K ⊂ T . We want
to construct an epsilon net which will capture the geometry. A subset N in K is called an
epsilon net if for all x ∈ K, there exists a point y ∈ N which has d(x− y) ≤ ε. That is, the
balls of radius ε at each point in the net N will cover K completely.

Definition 3.2. Covering number.
The covering number N (K, d, ε) is the minimum cardinality of an epsilon net for K with
metric d and scale ε.

A dual notion to covering is packing:

Definition 3.3. Packing number.
Consider a subset N ⊂ T is called ε-separated if the points in it are at least ε apart:
d(x, y) > ε for all x 6= y, x, y ∈ N . We define P(K, d, ε) as the maximal cardinality of an
ε-separated set. If you draw balls of radius ε/2, they will not intersect (triangle inequality).

Packing numbers and covering numbers are almost equivalent to each other.

Lemma 3.4. P(K, d, 2ε) ≤ N (K, d, ε) ≤ P(K, d, ε).

Proof. We can easily prove the upper bound. Suppose we have a maximally ε-separated
set P . Then we want to conclude that we have a good covering. We want to show it’s
automatically an ε-net. What happens if it’s not an ε-net? Then we can find a point such
that there is no point in the net which is close to it. Thus we must have a point which is at
least ε away from every point in the set. If that were true, we could add it to our packing,
it’ll be a larger packing, and it’ll still be ε-separated — that’s impossible by maximality of
the packing.

Now how to construct an ε-net algorithmically? Pick a point, exclude everything in
the ε-neighborhood, then pick another point. Keep going — that way everything will be
ε-separated. If you keep going, you’ll construct a maximum ε-separated set, and by the
previous lemma you’ll get an ε-net. If the set is compact, there will be a finite cover, so
you’ll be fine. We are working with compact sets.

Now, what about specific volumes and fix an ε — how large is the ε-net for these objects?
That is our next bound. These volumetric bounds are usually easy and efficient, though there
can be better bounds.

Lemma 3.5. Covering number and volume (volumetric bounds).
Suppose we have a set K ⊂ Rn. Then

vol(K)

vol(εB)
≤ N (K, ε) ≤ P(K, ε) ≤

vol(K + ε
2
B)

vol( ε
2
B)

(29)

where A+B = {a+ b : a ∈ A, b ∈ B}, which is known as a Minkowski sum.
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Proof. First we prove the lower bound. If we have a covering, then K is completely inside
the union of the balls of the covering. So vol(K) ≤ # balls · vol(εB). The upper bound is
similar, except for slightly inflated balls. We are able to pack inside K a lot of disjoint balls,
with one exception — they are protruding a bit from K. So we can say inside K+ ε

2
B, there

are at least P(K, ε) balls.

Corollary 3.6. For the unit ball, you need(
1

ε

)n
≤ N (B, ε) ≤

(
3

ε

)n
(30)

for all ε < 1.

Proof. For the lower bound, just apply previous lemma directly, and use the fact that volume
scales with radius as rn, and cancel out the volumes.

For the upper bound, you get a (1 + ε
2
)-radius ball — this gives you

(1+ ε
2

)n

(ε/2)n
= (2

ε
+ 1)n ≤

(3/ε)n.

The takeaway from these estimates is that usually covering and packing numbers are
exponential in dimension — this is kind of bad news, the curse of dimensionality. But on
the other side, the probability bounds are exponentially good in dimension —- so sometimes,
these things cancel each other out and you can do good things. This is the blessing of
dimensionality in probability.

Next time — chapters 5, 6 of the book.

4 MISSED (Covariance and random matrices?: FILL

IN WITH RISHABH NOTES

5 Matrix Bernstein

5.1 Proof

Last time, we talked about Matrix Bernstein inequality. I’ll state it again:

Theorem 5.1. Matrix-Bernstein Inequality.
Let X1, · · · , Xn be independent, mean 0, n × n symmetric random matrices ‖Xi‖ ≤ K a.s.
where the norm is the operator norm. Then, we have

P

{∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ > t

}
≤ 2nexp

(
− t2/2

σ2 + kt/3

)
(31)

Here σ2 =′′ Var(
∑n

i=1Xi)
′′ ≤ ‖

∑n
i=1 E [X2

i ]‖.
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Again, note that we have the mixture of two tails: sub-gaussian and sub-exponential. The
n in the statement is actually optimal — you need an n. Just choose a symmetric random
matrix, and put a 1 somewhere on the diagonal — then you’ll see that n is necessary. These
examples are very discrete typically.

Remark 5.2. Tightness.
This inequality is tight for the Gaussian tail, by central limit theorem. For the exponential
tail, it is not tight, even for numbers instead of matrices. There are two regimes: You
either have Gaussian distribution limit (ClT) or Poisson in the limit. But Poisson is not
exactly e−t: Instead, optimal would be the Poisson tail, t−t. For random variables, we have
a strengthening — Bennet’s inequality. For matrices I don’t know, but probably we don’t
have it.

We noted we will prove this result using matrix calculus. We write down the spectral
decomposition X =

∑
i λiuiu

T
i , and extend functions f : R → R by applying them to

matrices as f(X) =
∑

i f(λi)uiu
T
i . After defining an ordering on matrices with �, it turns

out a lot of properties of functions on numbers pass up to matrices as well. Note that
we don’t always get inequality though – when matrices don’t commute, some things don’t
extend, for instance eX+Y 6= eXeY for noncommuting matrices (when things do commute,
they are exactly the same). We have the following great inequality:

Theorem 5.3. Golden-Thompson Inequality.

Tr(eX+Y ) ≤ Tr(eXeY ) (32)

We can use this and apply same approach, apply MGF etc. There’s another approach,
which is morally stronger than Golden-Thompson, which is Lieb’s inequality. In our proof,
we will use Lieb’s inequality:

Theorem 5.4. Lieb’s inequality.
Let H be an n × n symmetric matrix. Consider f(X) = Tr(exp(H + logX)). Then f is
concave on the space of positive-definite matrices. In the scalar case, we have linearity, e.g.
f(x) = eH+logx = xeH .

Note that this is a deterministic statement. But let’s move it to a probabilistic one for
matrices. Jensen’s inequality says that if X is a random matrix, then E [f(X)] ≤ f(E [X])
if f is concave. Let’s apply this for X = eZ . Therefore,

Corollary 5.5. Let H be an n× n symmetric matrix and Z be a random n× n symmetric
matrix. Then applying Lieb’s inequality,

E [Tr(exp(H + Z))] ≤ Tr
(
exp(H + log(E

[
eZ
]
))
)

(33)

This corollary will be our primary method in proving Matrix Bernstein. We’ll look at
the MGF on Z, and then chop off terms one at a time and iterate this inequality. Now let’s
do the proof of Matrix Bernstein.

16



High-Dimensional Probability
Roman Vershynin, UC Irvine

Scribe: Kiran Vodrahalli
05/29/2018 — 06/06/2018

Proof. Let S =
∑n

i=1Xi. We want to bound the operator norm. The operator norm of S is
the maximal eigenvalue: ‖S‖ = maxi |λi(S)| = max{λmax(S), λmax(−S)}. So we will look at
the maximum eigenvalues. How do we do that? We want

P {λmax(S) > t} = P
{
eλλmax(S) > eλt

}
≤ e−λtE

[
eλλmax(S)

] (34)

It’s still a mystery how to handle the maximum eigenvalue, we will replace it by the trace,
which is a sum of all eigenvalues. We have eλλmax(S) = λmax(eλS) by monotonicity. We don’t
know how to bound this, but we can bound ≤ Tr(eλS) since the trace is the sum of the
eigenvalues and the eigenvalues are non-negative, which is the case since we exponentiate.
We can then take expectations of both sides. We are almost ready to apply Lieb’s inequality.

E
[
Tr(eλS)

]
= EX1,··· ,Xn−1

[
Tr(exp(

n−1∑
i=1

λXi + λXn))

]

≤Lieb’s inequality E

[
Tr(exp(

n−1∑
i=1

λXi + log(EXn
[
eλXn

]
)))

] (35)

What we really do is condition on all random variables except the last one, and take Lieb’s
with respect to Xn, and then uncondition afterwards. Now we can again apply Lieb’s in-
equality in the same fashion to get

E

[
Tr(exp(

n−2∑
i=1

λXi + logE
[
eλXn−1

]
+ logE

[
eλXn

]
))

]
≤ Tr

(
exp(

n∑
i=1

logE
[
eλXi

]
)

)
(36)

Now this is a problem about the MGF of one random variable — in particular, it’s called
the cumulant, and this is not difficult since it does not involve a sum of random variables.
Let’s try to find a good bound on the cumulant. We have logE

[
eλX
]

for X mean zero and
‖X‖ ≤ K. The best way is to just do Taylor expansion of exponential and look at how the
terms behave. We get ez = 1+z+z2/2+ · · · . Then we can bound for |z| ≤ 1, ez ≤ 1+z+z2.
Let’s apply this to the matrix: eλx ≤ 1 + λx + λ2x2 if |x| ≤ K and λ ≤ 1/K. Now it’s an
exercise to see that this inequality lifts to the matrix case: eλX ≤ I+λX+λ2X2 for E [X] =
0, ‖X‖ ≤ K if λ ≤ 1/K. Now we need to take expected value: E

[
eλX
]
≤ I + 0 + λ2E [X2]

if λ ≤ 1/K. Then

log(E
[
eλX
]
) ≤ λ2E

[
X2
]

(37)
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Then, we plug it into the proof from before: Letting Z =
∑n

i=1 E [X2
i ],

E
[
eλλmax(S)

]
≤ Tr(exp(

n∑
i=1

λ2E
[
X2
i

]
))

= Tr(exp(λ2Z))

≤ nλmax(exp(λ2Z))

≤monotonicity nexp
(
λ2 · λmax(Z)

)
≤ nexp(λ2‖Z‖)
= nexp(λ2σ2)

(38)

noting that we lose a factor in the fact that we’re bounding the trace again by n times the
maximum eigenvalue, and σ2 is the matrix variance. So we finally have the MGF of the sum.
Now we can complete the proof:

P {λmax(S) > t} ≤ e−λtnexp(λ2σ2) = nexp(−λt+ λ2σ2) (39)

where |λ| ≤ 1/K: Then optimize to get the result.

Now suppose you’re not interested in tail bounds, just the expected value of the norm
of the sum — even this is not trivial. Currently, the best way to get that is to go through
matrix Bernstein. So what do we have? It’s trivial in the scalar case, it’s just the variance,
but not in the matrix case.

Corollary 5.6. Expectation.
We can expect the following dependencies on K and σ by examining the sub-Gaussian case
and the sub-exponential case.

E

[
‖

n∑
i=1

Xi‖

]
. σ +K (40)

If we are more careful, we remember there’s an n on the outside — that will need to be pulled
inside, and that creates a logarithmic dependence on n:

E

[
‖

n∑
i=1

Xi‖

]
. σ

√
log n+K log n (41)

It’s an exercise to check this precisely. The σ
√

log n is tight for sure (Gaussian maxima),
but the other term may not be.

5.2 Application to covariance matrix estimation

Now we will apply Matrix Bernstein in a few contexts: We’ll go back to general covari-
ance matrix estimation, trying to assume as little as possible about the distribution. What
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happened before is that we assumed that if X is distributed as a sub-gaussian in our data,
then

‖ΣN − Σ‖ ≤
√
n

N
+
n

N
‖Σ‖

where Σ = E
[
XXT

]
is covariance of X and ΣN = 1

N

∑N
i=1XiX

T
i is the sample covariance

matrix. Here n is dimension. The weak point in this is that we’re assuming the distribution
is sub-gaussian.

Now we will be able to do this for any distribution. Let’s try to imagine what we can do.
Maybe it’s too difficult to have no assumptions because of adversaries. So you can’t really
estimate anything. What we can assume is that if X is a random vector in Rn, we have
‖X‖2

2 . E [‖X‖2
2] almost surely (suppose the constant is something like 10).

Theorem 5.7. Let X be a random vector in Rn. If ‖X‖2
2 . E [‖X‖2

2] almost surely, then

E [‖ΣN − Σ‖] ≤

(√
n log n

N
+
n log n

N

)
‖Σ‖ (42)

Remark 5.8. Let us clarify the boundedness assumption: It’s an exercise to check that
E [‖X‖2

2] = Tr(Σ). If the covariance matrix is identity, this value is n. So our assumption is
really that ‖X‖2

2 . Tr(Σ) almost surely.

Proof. We have ΣN−Σ = 1
N

∑N
i=1(XiX

T
i −Σ). Then apply the corollary to Matrix-Bernstein

to get

E [‖ΣN − Σ‖] ≤ 1

N
(σ
√

log n+K log n) (43)

where σ2 = ‖
∑N

i=1 E
[
(XiX

T
i − Σ)2

]
and ‖XXT − Σ‖ ≤ K. The rest is a computation —

we need to bound σ2 and K. By triangle inequality,

σ2 = ‖
N∑
i=1

E
[
(XiX

T
i − Σ)2

]
≤ N‖E

[
(XXT − Σ)2

]
‖

= N · ‖E
[
(XXT )2

]
− Σ2‖ � E

[
(XXT )2

]
= E

[
XXTXXT

]
� E

[
‖X‖2

2XX
T
]

� Tr(Σ)E
[
XXT

]
= Tr(Σ)Σ

σ2 ≤ N · Tr(Σ)‖Σ‖
(44)

Now we need a bound on K: As an exercise, show

‖XXT − Σ‖ . Tr(Σ) (45)

Again, use triangle inequality on the norm and proceed. So we have everything we need: A
good bound on σ and K. Now we substitute back in to Matrix Bernstein to get

E [‖ΣN − Σ‖] . 1

N

(√
N · Tr(Σ) · ‖Σ‖

√
log n+ Tr(Σ) log n

)
(46)
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Then, noting that Tr(Σ) ≤ n‖Σ‖ gives us

.
1

N

(√
Nn‖Σ‖2

√
log n+ n‖Σ‖ log n

)
(47)

. ‖Σ‖

(√
n log n

N
+
n log n

N

)
(48)

So we were able to get N ∼ n log n as enough for covariance matrix estimation — all we
had to do in comparison to the subgaussian assumption is get an extra log n factor correction,
which is somewhat surprising.

Remark 5.9. Low-dimensional distributions.
We would hope that for actual low-dimensional distributions that it would not depend on
the true dimension. We usually care about covariance estimation for PCA, anyways, where
we kind of are hoping there is low-dimensional structure. If X is distribution as something

close to a pancake (e.g., low dimension), then r = Tr(Σ)
‖Σ‖ =

∑n
i=1 σi

maxi λi
. If the distribution is

supported on a d-dimensional subspace, then r ≤
∑d
i=1 λi

maxi λi
≤ d. This is natural, we call d the

intrinsic dimension. If the distribution is isotropic (Σ = I), then all eigenvalues are 1 and
r = n. The intrinsic dimension is stable compared to the usual linear algebraic dimension:
Suppose we have a couple outliers — of course algebraic dimension will be thrown off by this.
But the intrinsic dimension probably will not — because we are talking about the bulk of
eigenvalues. You can always assume what d is, and there’s also a straightforward approach
to estimate d by just calculating for different choices of d, and seeing how it changes (e.g.,
look for kinks in the spectrum curve). We can essentially replace all the n’s in the proof
above with r instead, whenever we make the upper bound of n · λmax for the trace, replace
n with r. Thus N ∼ r log n samples suffice, if you know intrinsic dimension is small.

Remark 5.10. What about log r dependence here? Intuitively, if n = r, then we could
say r log r (just represent everything in that space) — if we are more careful, can we get
the r if it’s intrinsic dimension? But it’s kind of open — don’t know how to do this in the
approximate case. But perhaps we have to pay for adaptation in some sense — we have to
estimate what r is. Not sure whether the true result should have any dependence on n.

Remark 5.11. You have to center the data matrix because throughout, we’ve been assuming
E [X] = 0. This does not affect the rate, because it is easier to estimate the matrix: The
rate is ‖E [X] − 1

N

∑N
i=1Xi‖ .

√
n
N

, which is at least as good as the rate for covariance
estimation.

Remark 5.12. The 4th moment assumption is enough to replace the strong assumption
‖X‖2

2 . E [‖X‖2
2] a.s. assumption. Under 2 + ε moments, you have this bound (Vershynin-

Srivastava). But the original assumption is not too strong. Our truncation level here is at
the level n. If you talk about 4th moments, you’re proposing to truncate at the O(1) level.
Note: truncation in referring to handling the split for what datapoints we can “throw away”
— analagous to the sub-exponential truncation approach to the proof.
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5.3 Application to community detection in networks

This is an especially active research area right now. We have two communities and the
network is a graph. More edges run inside each community (more tightly connected) than
across the communities. We’ll suppose there are n/2 nodes in each community.

One model for this setup is the Erdos-Renyi random graph model G(n, p) where you
have n edges and connect any vertices i, j by an edge independently with probability p. This
graph has no communities — it is homogeneous.

Second is a slight generalization of this, the stochastic block model (SBM), where you have
two communities: G(n, p, q). You connect nodes in the same community with probability
p, and across communities with probability q, with p < q. Each community has n/2 nodes.
There are many other models (e.g., preferential attachment). There are many algorithms
that input the network and output the communities. We will consider the basic spectral
algorithm.

Definition 5.13. Spectral algorithm for community detection.

(a) Input adjacency matrix A ∈ Rn×n symmetric.

(b) Look at eigenvalues λ1(A), λ2(A) and the corresponding eigenvectors.

(c) Look at coordinates of second eigenvector in decreasing order. Hopefully there is a
sharp threshold: Say one is community one, the other is community two.

This can be extended to more than two communities: You look at second and third eigen-
vectors together, and you’ll see clusters in the plane. Just run K-means.

It’s easy to see the second eigenvector is related to community detection. We want to
show first that adjacency matrix A is close to its expectation E [A]. For that we will use
Matrix-Bernstein. Note that E [A] will have all p for the first community and the second
community edges, and q otherwise. The first eigenvector is all 1s — this is useless (true if
the graph is connected). The second eigenvector will have +1 for one community and −1 for
the other (recall your spectral graph theory). We have λ1 = p+q

2
n, λ2 = p−q

2
n. We remark

that λ1 is the expected average degree of the network. So as long as the realized adjacency
matrix is close enough to E [A], our procedure will work. We care about how close the
adjacency matrix is to the expected adjacency matrix.

When can we be sure that this procedure works? e.g., when do we know vs(A) ≈
vw(E [A])? This is true if A ≈ E [A], and this is resolved by Davis-Kahan: The eigenvalues
and eigenvectors resulting from perturbation are good. We write a noisy version of the signal:

A = E [A] + (A− E [A]) (49)

We want to prove that the signal-to-noise ratio is large. In this case, we know that pertur-
bation works. We have ‖E [A] ‖ = λ1 = p+q

2
n = d, the expected average degree. Now we
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need the magnitude of the noise, hoping that ‖A− E [A] ‖ ≤ d. All we do is apply Matrix-
Bernstein for matrix A to compute the noise. We need to write A as a sum of random
matrices. We can decompose it into matrices, each of which is everywhere 0 with one entry
as 1 where there is one edge, everything else 0 except for the symmetric position where there
is also a 1.

A =
∑
i≤j

Xij

A− E [A] =
∑
i≤j

(Xij − E [Xij])

E [‖A− E [A] ‖] . σ
√

log n+K log n

(50)

where σ2 =
∥∥∥∑i≤j E [(Xij − E [Xij])

2]
∥∥∥ and K = maxij ‖Xij − E [Xij] ‖ ≤ 4 (look at the

amount of non-zero entries – should be 2, then square it). For σ2, you can get (exercise)
that σ2 ≤ p+q

2
n = d. Then we conclude

E [‖A− E [A] ‖] .
√
d log n+ log n (51)

So what’s our hope now? We want ‖A−E [A] ‖ ≤ 1
10
d. So we want

√
d log n+log n ≤ d

10
.

So this is true if d ≥ c log n, and we’re done. So, non-rigorously,

Theorem 5.14. Spectral clustering works if the expected average degree of the network is
≥ c log n.

It’s a result that this is actually sharp — cannot go below c log n with spectral clustering.
If the average degree is below log n, the network becomes very sparse and the distribution of
degree becomes wild. The degrees of the very popular people is over log n. So the algorithm
will think they are the communities, and the second eigenvector will pick super popular
people or those who do not have friends at all. These outliers will prevent spectral method
from working.

However, there are other algorithms which go below log n for sparser networks, all the
way down to d = O(1) — this is a very popular area right now. Basically do pre-processing,
and remove very popular people and so on.

6 Stochastic Processes

Stochastic processes are object of study in statistics. Here, we will be rigorous — we’ll use
stochastic processes as a tool, and we’ll learn about different tools available in stochastic
processes that we can put into action in the statistical universe.

Definition 6.1. Stochastic processes and Random Fields.
A stochastic process is a collection of random variables, ignoring measurability issues. They
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are not independent, but are on the same probability space. T is a set (think of it as time
— discrete or continuous). In the discrete case, think of a random walk. In the continuous
case, think of Brownian motion. In this class, we will not think of T as time. In particular,
interesting examples will arise where T ⊆ Rn. Such a random process is usually called a
random field.

We will mostly study random fields. Our main goal is to find uniform bounds on stochastic
processes. We will be interested in upper bounding expected suprema of random process
E [supt∈T |Xt|]. We will see why this quantity is very useful in applications.

The basic method of finding this suprema is chaining. This is probably where you would
go if you don’t know any other methods — it’s not optimal, but it works well.

Definition 6.2. Sub-gaussian increments.
Assume that our process {Xt}t∈T has sub-gaussian increments That is, ‖Xs − Xt‖ψ2 ≤
k · d(s, t) for any s, t ∈ T , where k is some constant. In order to do chaining, you need to
put a metric d on T . This is kind of a Lipschitz condition.

Remark 6.3. A full metric is not necessarily needed — you can drop the hypothesis that
d(t, s) = 0 =⇒ t = s.

If you don’t know what metric to put on T , then you can cheat a little and use ‖ · ‖ψ2 as
the metric. But then doing the chaining with this metric will be difficult.

Example 6.4. Gaussian process.
Let {Xt} be the process: all variables are jointly Gaussian. Define the metric to be d(s, t) =√

E [(Xt −Xs)2]. Then, you have sub-gaussian increments.

Now the main tool in bounding suprema of random processes is Dudley’s inequality.

Theorem 6.5. Dudley’s inequality.
Suppose {Xt}t∈T is a mean zero random process with sub-gaussian increments. Let d be the
metric, and let ε refer to the scale of the ε-net. Then,

E
[
sup
t∈T

Xt

]
≤ C · k ·

∫ ∞
0

√
logN (T, d, ε)dε (52)

where the RHS is the covering number.

Note that the right side is a geometric quantity which measures how large the set T is.
This measure will not be volume, but will be the covering number — how many balls cover
T in the metric, and that will be our measure of largeness. In fact, we will take into account
all covering numbers at all scales ε. Thus, if you know how to compute ε-nets of your set,
you know how to bound suprema of Gaussian processes.
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NAIVE. The proof is an advanced version of ε-net arguments. Previously, we had a ball
covering the set, take union bound over the centers. Let’s begin. Let’s assume with k = 1
w.l.o.g.

Let N be an ε-net of T (these are fixed in advance). Note that the net is always finite
(assume T is a compact set). Then every point t ∈ T , there exists π(t) ∈ N (this is like a
center of one of the balls covering T ) so that d(t, π(t)) ≤ ε by the definition of ε-net. Once
we have this, the increment condition implies that the r.v.’s Xt, Xπ(t) are close to each other:
‖Xt −Xπ(t)‖ψ2 ≤ ε. Then, we can write

E
[
sup
t∈T

Xt

]
≤ E

[
sup
t∈T

Xπ(t)

]
+ E

[
sup
t∈T

(Xt −Xπ(t))

]
≤ E

[
sup
z∈N

]
Xz + E

[
sup
t∈T

(Xt −Xπ(t))

] (53)

So now we have two subproblems. Since the set is finite, the first term is easier to solve.
Secondly, we have to bound the increment. By an exercise, if we suppose X1, · · · , XN ∼
N (0, 1), and we care about the maximum, we know that E

[
supi∈[n] Xt

]
≤
√

2 log(n) (worst-
case is when they are independent — this is known as Sidak’s lemma). The same holds
if Xi’s are not Gaussian, but just sub-gaussian. Therefore, the first term is bounded by
.
√

log |N | =
√

log(N (T, d, ε)). Unfortunately, we will be stuck in bounding the second
term. The only thing we know is that the increments are ε-sub-gaussian. It’s not clear how
to proceed after that.

However, what we can do is get unstuck by saying, “let’s continue” – choose a different ε
of a smaller scale, and approximate the remainder in that net. That error will be ε2 smaller
than the previous one. Then we’ll control that by looking at ε4 — we continue on in this
way — it’s called chaining, and we’ll get a multi-scale sum. This will be a Riemann sum,
and this yields the integral. In the end, we’ll not have any error — this is the key beautiful
idea of chaining.

BY CHAINING. Chaining is nothing more than a multi-scale ε-net argument. Let εk = 2−k

for k = 0, 1, 2, · · · . This defines the scales at which we will run the chaining. Choose εk-nets
Tk ⊂ T so that |Tk| = N (T, d, εk). Let’s also assume that the diameter of T is less than
1, just for scaling purposes. For scale 0, we can just take one point for T0. This is our
“reference point”. There will be more points at every scale for our ε-net. Eventually, you’ll
have everything as an ε-net. First of all,

E
[
sup
t∈T

Xt

]
= E

[
sup
t∈T

Xt −X0

]
Xt −Xt0 = (Xπ1(t) −Xπ0(t)) + (Xπ2(t) −Xπ1(t)) + · · ·

=
∞∑
k=1

(
Xπk(t) −Xπk−1(t)

) (54)
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You can visualize this as a walk which gets better and better approximations as you step
through time. Then, we take the supremum:

E
[
sup
t∈T

Xt

]
≤

∞∑
k=1

E
[
sup
t∈T

(Xπk(t) −Xπk−1(t))

]
(55)

This may be ugly, but it’s actually very tame – we are no longer taking suprema over the
whole set. We are only taking suprema over points in the net! Now we know how many
points there are. So this suprema can be replaced as follows:

E
[
sup
t∈T

Xt

]
≤

∞∑
k=1

E

[
sup

zk∈Tk,zk−1∈Tk−1

(Xzk −Xzk−1
)

]
(56)

Tk is a finer net, so it has more points: We have |Tk| · |Tk−1| ≤ |Tk|2. So we are taking
suprema over finite set, and second, the increment is small because of our increment condition
in Dudley’s inequality. It’s a subgaussian process, which states that any increment ‖Xs −
Xt‖ψ2 ≤ d(s, t). The distance is small because as we go through the chain, the lengths of the
step sizes converge to 0. Now we apply triangle inequality. We have πk(t) is close to t (εk),
and πk−1(t) is close to t (εk−1), so πk(t) − πk−1(t) ≤ εk + εk−1 ≤ 2εk−1. So by our exercise,

we have E
[
supzk,zk−1

]
(Xzk −Xzk−1

) ≤
√

log(|Tk|2). This is true if the random variables are

just sub-gaussian. But actually, they’re on scale ε — so we should multiply by εk−1 and the
bound εk−1

√
log(|Tk|2). Thus we get

E
[
sup
t∈T

Xt

]
≤

∞∑
k=1

εk−1

√
log |Tk|

=
∞∑
k=1

2−k
√

logN (T, d, 2−k)

(57)

It’s then a routine exercise to convert this into an integral — it’s by definition of Riemann
integral. Often in practice, it’s sometimes easier to use the sum in fact.

Remark 6.6. Sub-exponential random variables? If you have other tails, then you have
some different inverse where the tail shows up.

Example 6.7. Uniform law of large numbers.
Suppose we want to integreate f : [0, 1]→ R. By Monte-Carlo, we just draw X1, · · · , Xn ∼
Unif([0, 1]), and then classic law of large numbers says that the Monte-Carlo average con-
verges. We would like to fix the points in advance — can we integrate any function with
that design, that selection of points?? Well no — some adversary can come along and trick
us (but the function must oscillate a lot — e.g., it’ll be zero wherever we selected the points,
and put a lot of mass elsewhere). So maybe we can hope to do this over all Lipschitz func-
tions, for some fixed set of points. Here, the answer is yes — this is the uniform law of large
numbers, which follows easily from Dudley’s inequality.
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Theorem 6.8. Uniform Law of Large Numbers.
Take X1, · · · , Xn uniformly distributed from some distribution. We will bound the error

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E [f(x)]

∣∣∣∣∣
]
≤ C√

n
(58)

where F = {f : [0, 1] → R, |f(x) − f(y)| ≤ |x − y|}. Fix f(0) = 0 (starting point must be
fixed in order for the function to be bounded).

Proof. We have an empirical process (Xf )f∈F , where F is a function space. Let’s apply
Dudley:

‖Xf −Xg‖ψ2 =
1

n
‖

n∑
i=1

Zi‖ψ2 (59)

where Zi = (f−g)(Xi)−E [(f − g)(x)]. Each Zi is sub-gaussian since f−g is bounded since
it’s Lipschitz on [0, 1]. Thus ‖Zi‖ψ2 ≤ ‖f − g‖L∞ . Since Zi are independent, sub-gaussian

variables, the sum is also a sub-gaussian r.v. Thus, ‖Xf − Xg‖ψ2 . 1
n

(∑n
i=1 ‖Zi‖2

ψ2

)1/2 ≈
1
n
n1/2‖f − g‖L∞ = 1√

n
‖f − g‖L∞ . Then, we apply Dudley’s inequality for (F , ‖ · ‖∞). Then,

we want to compute the ε-net in the ‖·‖∞ norm. As an exercise, prove that N (F , ‖·‖∞, ε) ≤
(C/ε)C/ε — all you have to do is approximate the space by the mesh. Then you can just
stick that bound into the Dudley inequality, and finish. Formally the integral is to ∞, but
actually it just goes to 1 (the diameter is 1). You integrate∫ 1

0

√
C

ε
log(C/ε)dε

and this is integrable.
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