
Orthogonal Symmetric Tensor Decomposition Kiran Vodrahalli

1 Introduction

Tensors can be thought of as multi-dimensional arrays, which are useful for represent-
ing data which has multiple factors. Consider Netflix ratings. Each person has a score
for each movie, and perhaps these scores change over time – thus, we have a 3-tensor in
R#people×#movies×#timepoints.

Matrices are 2-tensors, and a lot of the ideas from matrix algebra have tensor analogues.
For instance, the singular value decomposition (SVD) has an analogue in terms of a tensor
factorization as a sum of rank−1 components. We identify a rank−1 component as x⊗ x⊗
· · · ⊗ x, for some vector x. In the matrix case, this corresponds to xxT .

We will see in the next section why tensor decomposition is an important tool: It gives
us the ability to model a broad class of latent variable models.

2 Tensor Decomposition Framework

In Anandkumar et. al., several latent variable models are expressed in terms of symmetric
orthogonal tensor decomposition.

Definition 2.1. Symmetric Orthogonal Tensor Decomposition.
A tensor A ∈

⊗pRn is called symmetric when its representation is invariant to permuta-
tions of its array indices. Symmetry occurs if A =

∑
i x
⊗p
i , where x⊗pi = xi ⊗ xi ⊗ · · · ⊗ xi, p

times. Such a decomposition is furthermore called orthogonal if the xi are all orthogonal. A
symmetric orthogonal decomposition therefore allows us to write a tensor as a sum of rank-1
terms:

A =
k∑

i=1

λix
⊗p
i

It turns out that we can show it is possible to learn such a decomposition efficiently.
Furthermore, symmetric orthogonal tensor decompositions provide an alternative way to
the typical expectation-maximization (EM) approach to learning latent variable models, the
subject of the review paper by Anandkumar et. al.

2.1 Case Study: Hidden Markov Models

Consider the case of a hidden Markov model which emits vectors. A hidden Markov model
(HMM) assumes that a sequential set of outputs is determined according to hidden states
(which can be vector-valued). Then, the vector output at a given time point is determined
only according to the hidden state. The HMM is called “Markov” since we make the as-
sumption P (ht|ht−1, ht−2, · · ·) = P (ht|ht−1) – that is, the next hidden state only depends on
the current hidden state.

This class of models is very flexible and has been applied to many settings in time se-
ries analysis, including for example text modeling, speech modeling, part-of-speech recov-
ery, and neuroscience. Suppose our sequence of vector valued observations is denoted by

1

x1, x2, · · · , xT ∈ Rn. Suppose in our case that the hidden states are discrete, and the chain
is y1 → y2 → · · · → yT , where each yt ∈ K, some constrained set of discrete labels of size
n. Let π ∈ ∆k−1 be the initial distribution over the hidden states. Let T ∈ Rk×k be the
stochastic transition matrix between states:

Pr [yt+1 = i|yt = j] = Ti,j, i, j ∈ K

Finally, we define the output matrix which determines the distribution of the outputs given
a current hidden state. We have O ∈ R|V |×k with |V | the size of the word vocabulary is
defined as

E[xt|yt = j] = Oej, j ∈ K
where ej is the standard basis vector for coordinate j in Rk.

Then, it is possible to recover the parameters of the Markov chain π, T,O by framing the
problem as a tensor decomposition problem.

Let us suppose that the Markov model we are trying to fit in this particular case corre-
sponds to learning a language model over triples of words (w1, w2, w3). Define the tensor T :
For every triple of words, we compute the proportion of the time that they are the first three
words of a sentence. This tensor is therefore a 3-tensor. Then, identifying indices i, j, k with
the words, we can write

Ti,j,k = Pr [x1 = i, x2 = j, x3 = k]

In this case, the xt can be represented with a one-hot encoding vector in the size of the
vocabulary of words |V |. By conditioning on the middle hidden state y2 = h, we can make
the output variables conditionally independent using the Markov property. Therefore, we
can write

Ti,j,k =
n∑

m=1

Pr [h = m] ∗ Pr [x1 = i|h = m] ∗ Pr [x2 = j|h = m] ∗ Pr [x3 = k|h = m]

where the sum is over the possible hidden states of the second output. Note that this is a
sum of products and therefore the tensor can be written as

T =
n∑

m=1

Pr [h = m] am ⊗ bm ⊗ cm

where am is the probability vector for each possible word x1 can take on, conditioning on the
hidden state being m. bm, cm are defined analagously.

Theorem 2.2. HMM Estimation. (due to Anandkumar et. al.)
Consider y1 → y2 → y3, a chain of three hidden states in the model. Then define h = y2.
Conditioning on h yields that the output random variables, x1, x2, x3, are independent. The
distribution of h itself is given by w = Tπ. Then, for all hidden state indices j,

1. aj = E[x1|h = j] = Odiag(π)T Tdiag(w)−1ej

2. bj = E[x2|h = j] = Oej

3. cj = E[x3|h = j] = OTej

where we note that since the embeddings x1, x2, x3 are one-hot, the expectation is just a
probability distribution over words.

2

2.2 Symmetrization and Orthogonalization

It turns out that this model can be expressed in the form of a symmetric orthogonal
tensor decomposition problem. The general strategy is to formulate the low-order moments
of the model parameters, estimate the low-order moments with the data, and solve to recover
the parameters.

2.2.1 Symmetrization

Now, we will write am, bm, cm such that they are the same in order to make the decomposition
symmetric. We then want to ensure that all am are orthogonal. Currently, we have a non-
symmetric tensor format. We can now “symmetrize” this result.

Theorem 2.3. Symmetrization (Anandkumar et. al).
First suppose that {aj}j, {bj}j, {cj}j are all linearly independent sets. Then, let

1. x̃1 = E[x3 ⊗ x2]E[x1 ⊗ x2]−1x1

2. x̃2 = E[x3 ⊗ x1]E[x2 ⊗ x1]−1x2

3. M2 = E[x̃1 ⊗ x̃2]

4. M3 = E[x̃1 ⊗ x̃2 ⊗ x3]

where M2,M3 are the second and third moments which we desire to use. Then,

M2 =
n∑

m=1

λmcm ⊗ cm

M3 =
n∑

m=1

λmcm ⊗ cm ⊗ cm
(1)

Note that here, the λm’s are probabilities and therefore non-negative.

Thus, it is now possible to recover the means cm.

2.2.2 Orthogonalization

Then, supposing that an orthogonal decomposition exists, and assuming the same second
and third moment structure as given by symmetrization, we can reduce the symmetrization
case to the orthogonally symmetric case:

Theorem 2.4. Orthogonalization.
Given

M2 =
n∑

m=1

λmcm ⊗ cm

M3 =
n∑

m=1

λmcm ⊗ cm ⊗ cm
(2)

for non-negative λm and linear independence of {cm}m, we can define µm such that the
estimation problem reduces to symmetric orthogonal tensor decomposition.

3

Proof. Take the SVD of M2 = UDUT since the matrix is real symmetric. Then define
W = UD−1/2, a whitening matrix. Define

µm =
√
λmW

Tµm (3)

a set of orthogonal eigenvectors. Then, interpreting the tensors as multilinear forms,

M2(W,W) = W TM2W =
n∑

m=1

µmµ
T
m = I (4)

and

M3(W,W,W) =
n∑

m=1

λm(W Tµm)⊗3 =
n∑

m=1

1√
λm

µ⊗3m (5)

Then we can apply techniques for learning orthgonal symmetric factorizations of tensors to
recover µm, which in term will allow us to recover the original cm and λm.

2.3 Symmetric Orthogonal Tensor Decomposition

We can solve the symmetric orthogonal tensor decomposition using the robust tensor
power method. This method is similar to the regular power method used in linear algebra
to identify top eigenvectors. The procedure for symmetric orthogonal tensor decomposition
is to extract a single component of the decomposition (µi) with each iteration of the method.
One iterates the method multiple times in order to recover the full factorization.

Theorem 2.5. Convergence of Tensor Power Method (Anandkumar et. al).
Let T ∈

⊗3Rn have an orthogonal decomposition as given above. For a vector θ0 ∈ Rn

(identified with the first component of the factorization which will be found), we suppose that
{|λmµT

mθ0|}m has a unique maximum, with an ordering dependent on the size of m. Then,
for t ∈ {1, 2, 3, · · · }, we update

θt =
T (I, θt−1, θt−1)

‖T (I, θt−1, θt−1)‖
(6)

where we again interpret T in terms of multilinear forms. This method, which is essentially to
calculate a “top eigenvector” and normalize repeatedly, is very similar in spirit to the regular
power method. This method quadratically converges to µi, the closest robust eigenvector to
the initialization θ0.

3 Citations

1. Anandkumar, Animashree and Ge, Rong and Hsu, Daniel and Kakade, Sham and Tel-
garsky, Matus. Tensor Decompositions for Learning Latent Variable Models. Journal
of Machine Learning Research 15 (2014) 2773-2832.

2. Ge, Rong. Tensor Methods in Machine Learning. Accessible at http://www.offconvex.org/.

4

http://www.offconvex.org/2015/12/17/tensor-decompositions/

	Introduction
	Tensor Decomposition Framework
	Case Study: Hidden Markov Models
	Symmetrization and Orthogonalization
	Symmetrization
	Orthogonalization

	Symmetric Orthogonal Tensor Decomposition

	Citations

