
What can ResNets Learn Efficiently?
Allen-Zhu and Li ’19

Kiran Vodrahalli
Simons Generalization: 06/19/19

1 Introduction

The main point of this paper is to point out that the number of samples a kernel method
(including Neural Tangent Kernels (NTKs)) requires to learn a composed hypothesis class
up to a certain error is strictly more than a 3-layer ResNet learned with SGD requires in the
multi-output regression regime – this amounts to a polynomial separation in the error (in a
distribution-free setting, we will see that in N samples, 3-layer ResNet gets `22 error α4, while
there exists a distribution and function class for which kernel methods require more samples
to merely get error α2). Their analysis also implies the same result for linear functions over
features. The main point is to illustrate the benefit of learning in a hierarchical fashion all
at once.

The good solution that the ResNet finds (in their analysis) is required to have a distance
away from the initialization bounded above in Frobenius norm as in the NTK analysis;
however, the distinction from this analysis and the NTK regime is that the amount of
overparameterization is significantly smaller — this allows the model which is learned to
perform better than NTK would. As an addendum, there is unpublished work which keeps
the overparameterization the same but increases the step size (no longer have infinitesmally
small steps) and also adds noise to the updates — it is possible to show a separation from
kernel methods here as well. Thus their work suggests that even if you analyze in the close-
to-initialization regime, residual nets have a better sample complexity than kernels for some
distributions and target concepts.

2 Concept Classes Considered

2.1 The learner

The learner is a residual net function Rd → Rk of the form

NN(θ;x) := A(σ(Wx+ b1) + σ(Uσ(Wx+ b1) + b2))

where W ∈ Rm×d, U ∈ Rm×m, A ∈ Rk×m, σ is ReLU, and b1, b2 ∈ Rm. θ = (W,U, b1, b2) are
learned with SGD, while A is left untrained from init for simplicity.

2.2 Hierarchical Concept Class to Learn (Improperly)

We state the simple form of the concept class:

H(x) = F (x) + αG(F (x))

where α ∈ [0, 1), G : Rk → Rk, F : Rd → Rk. Note that we require F and G to be expressed
as a two-layer network with smooth activations. In particular, for each output coordinate
r ∈ [k],

Fr(x) =

pF∑
i=1

a1,r,iFr,i(〈wr,i, x〉)

1

What can ResNets Learn Efficiently?
Allen-Zhu and Li ’19

Kiran Vodrahalli
Simons Generalization: 06/19/19

and

Gr(h) =

pG∑
i=1

a2,r,iGr,i(〈vr,i, h〉)

where a1, a2 ∈ {−1, 1}. Assume the data inputs are unit norm. We also have ‖F (x)‖2 ≤√
kpFCs(F), ‖G(F (x))‖2 ≤ kpFCs(F)pGCs(G), and that G is

√
kpGCs(G)-Lipschitz.

Here,

Cs(F) = C
∞∑
i=0

(i+ 1)|ci|

where F (z) =
∑∞

i=0 ciz
i is the Taylor expansion of F , C is a constant. When we consider

the concept class above, to calculate upper bounds on Cs(F), just take the maximum over
r ∈ [k].

Another similar measure which will show up in the amount of overparametrization (but
not the sample complexity) required for the network is given by

Cα(F) =
∞∑
i=0

Ci +

(
C

√
log(1/α)

i

)i
 |ci|

The idea here is that F is the simple class which accounts for most of the signal, and
G(F) is the hard part of the signal, which accounts for the “last 11% of the error”, which is
typically much harder to learn in practice.

The goal is to use the ResNet to improperly learn this class H in a distribution free
setting under the `22 risk:

E(x,y)∼D‖H(x)−NN(θ;x)‖22

2.3 Separation Concept Class

Consider the following concept class: Let

F (x) =
√
d(ei1 , · · · , eik)Tx

G(y) =

∏
j∈[k]

yj


i∈[k]

(the output is k-dimensional). Then the concept class is

{H(x) = F (x) + αG(F (x))}

This concept class will be used to show a separation in sample complexity between 3-layer
ResNets and kernels.

2

What can ResNets Learn Efficiently?
Allen-Zhu and Li ’19

Kiran Vodrahalli
Simons Generalization: 06/19/19

3 ResNets are good

The main theorem here says

Theorem 3.1. For every α ∈ (0, Θ̃(1/kpGCs(G))), with

δ > Θ̃(α4(kpGCs(G))4(1 +
√
kpFCs(F))2)

Then, there exists M = poly(Cα(F), Cα(G), pF , 1/α) such that for every m > M (over-
parametrization size) with high probability over the initialization and for

T = Θ̃(
(kpFCs(F))2

min(1, δ2)
)

and a specific choice of learning rate, the SGD algorithm satisfies

1

T

T−1∑
t=0

E(x,y)∼D‖H(x)−NN(θt;x)‖22 ≤ O(δ)

Thus, with sample complexity T , we can achieve population risk

≤ Θ̃(α4(kpGCs(G))4)

assuming that optimum error is 0.

First, assume U = V A. Then, we write down a decomposition:

NN(θ;x) = Aσ(Wx+ b1) + Aσ(V Aσ(Wx+ b1) + b2))

= SN(θ;x) + Aσ(V SN(θ;x) + b2)

where
SN(θ;x) = Aσ(Wx+ b1)

Proof. (sketch) This theorem is proved by suggesting that

(a) Nice theoretical properties hold for weight matrices with bounded spectral norm (not
far from random init). In particular, nonconvex interaction terms end up being negli-
gible and can be safely ignored without linearizing.

(b) There exist good weight matrices θ̂ with small Frobenius norm, where “good” means
that SN(θ̂;x) ≈= F (x) and Aσ(V SN(θ;x) + b2) ≈ αG(F (x)).

(c) Finally, look at the quantity 〈∇θloss(θt, zt), θt − θ̂〉 and show it is ≥ loss(θt, zt) −
error term. This error term in expectation is upper bounded by Θ̃(α4(kpGCs(G))4).
Since the top term can be shown to go to 0 for appropriately chosen learning rate,
we thus get an upper bound on the loss in terms of the error term. Then using
concentration arguments, one can show that the true error is close to the expectation.

3

What can ResNets Learn Efficiently?
Allen-Zhu and Li ’19

Kiran Vodrahalli
Simons Generalization: 06/19/19

4 Kernels are bad compared to 3-Layer ResNets

We now exhibit a specific distribution which shows a separation between 3-layer ResNets
and kernel methods in sample complexity.

Definition 4.1. Bad distribution.
Take x ∈ {±1/

√
d}d, the scaled Boolean cube. Fix d1 < d. Let the distribution be drawn

from x ∼ D := Unif({±1/
√
d}d1) × D2. Thus, the first d1 coordinates are drawn from the

uniform distribution over the Boolean cube, while the rest are drawn from an arbitrary
distribution D2. We will take D2 to also be uniform, though the lower bound holds for
arbitrary D2.

Applying the ResNet theorem from before (recall it was a distribution free statement),
we get that for overparametrization of order poly(d, 2k, 1/α) then with high probability over
the random init and optimum possible error 0, it requires

N = Θ̃(
k2d

α8
) samples

to get error
Ex∼D‖H(x)−NN(θ;x)‖22 ≤ Õ(α42O(k))

We can also re-write this in terms of error parameter ε = α42O(k). Then, the sample com-
plexity is

N = Θ̃(
k24O(k)d

ε2
)

and we see there’s an exponential dependence on k that goes away if you assume k is constant
(which is somewhat reasonable, k is the output dimension). This follows from calculating
Cs(F) = O(

√
d), pF = 1, Cs(G) = 2O(k), pG = 2k.

Now we want to compare to kernel methods. It is possible to construct a specific bad
distribution where the kernel method performs worse than the neural net, in that there is a
lower bound on the possible attainable error for kernel method that is larger than the error
a 3-layer ResNet can attain with a smaller number of samples.

The main theorem here states

Theorem 4.2. For all k, d,N such that 2 ≤ k ≤ d and sample complexity N ≤ 1
1000

(
d
k

)
∼

O(dk), for every α ∈ (0, 1), for every set of Mercer kernels K1, · · · , Kk : Rd×d → R, for
at least 99% of target functions H(x) in the previously defined concept class, for all kernel
regression functions

Ri(x) =
∑
n∈[N]

Ki(x, x
(n)) · wi,n for i ∈ [k]

where the weights can depend on α,X,K and training labels, R(x) must suffer from popula-
tion risk

Ex∼Unif({±1/
√
d}d)‖H(x)−R(x)‖22 > α2/16

4

What can ResNets Learn Efficiently?
Allen-Zhu and Li ’19

Kiran Vodrahalli
Simons Generalization: 06/19/19

Concretely, suppose we think of k as constant, d sufficiently large, and take α = O(1
d0.1

).
Then,

(a) 3-layer ResNet achieves regression error α3.9 on the distribution with NResNet = Õ(d1.8)
samples to learn any function in our special concept class;

(b) Kernel methods cannot achieve regression error α2/16 even with NKernel ≤ N
k/2
ResNet <<

o(dk) samples. So you need at least N
k/2
ResNet samples with Kernel method to achieve a

LARGER generalization error.

(c) Note that this distinction between α2 and α4 matters – α2 corresponds to the error
you would get if you were able to learn F but not αG(F) in square `2 error. Thus,
the separation is really saying the 3-layer ResNets can learn both error terms, while
kernels can only learn the first F term and fail to learn the more complex part.

One caveat here – note that the complexity constants (smoothness, norm bound) from
the ResNet theorem are getting hid as constant factors when k is taken to be constant.

5 Simliar result for Linear Regression over Features

When you consider the function class

L : Rd → Rk

where
Lj(x) = wTj φ(x)

where wj ∈ RD, and some feature mapping φ : Rd → RD. Then, a similar lower bound as in
the kernel case holds as well.

5.1 Computational separation

Any algorithm over D-dimensional features runs in time Ω(D) with the absence of extra
struture. Thus choosing D = time to run ResNet will establish a computational gap between
these methods for attaining error α3.9 for ResNet and error α2 for linear feature map.

6 Experiments

One experiment is to suggest that SGD on neural nets doesn’t find minimum norm solutions
in practice, which is one approach that can be taken to show neural nets generalize better
than kernel methods. They also validate that the model which theory predicts to do best in
fact does best on a toy example, plotting amount of overparametrization against test error.

5

What can ResNets Learn Efficiently?
Allen-Zhu and Li ’19

Kiran Vodrahalli
Simons Generalization: 06/19/19

7 Key Points and Future Directions

Some key points from the discussion:

(a) Just learning F gets you already to α2 error, and is a good starting point.

(b) Some high-level handwavy intuition: The hard function class and distribution for ker-
nels is possible to learn if you don’t try to learn them separately, but rather together
– F tells you what the correct subset of coordinates is, and if you know the correct
subset of coordinates, you can efficiently learn the parity function (as opposed to sparse
parity, which is hard when you don’t know the coordinates!). The kernel is running
into problems because it is not “learning F and then learning G(F) in an iterative
manner” – It tries to learn both things individually, and sparse parity is hard. In
essence, you need to extract that information of the correct subset from F first (which
is easy if you do it in the right order, since most of the signal is F). Also importantly,
however, is that you need to iterate this method, since you only get to see a corrupted
signal from F (corrupted by α(G(F))) – you can think of the neural net as repeatedly
learning F and then G(F), and starting another round with F and G initialized with
the solutions of the previous round, allowing both F and G to be learned well. This
behavior is in some sense equivalent to being able to learn F purely, and after having
learned F correctly, to learn G(F) purely, where “purely” means without any contam-
ination of the signals – thus, the neural net training procedure decouples the problems
of learning F and learning αG(F)) automatically.

Future work could involve many approaches to studying the power of function composi-
tion in efficient learning:

(a) Going beyond just 3 layers, and going beyond ResNets!

(b) Focusing on target function classes which are just compositions of functions (e.g.,
G(F (x)), not F (x) + αG(F (x))).

(c) Can we characterize the function classes and bad distributions which separate kernels
from neural nets? The sparse parity situation is not necessarily typical of real-world
practice, so it would be interesting to find separations more reflective of what practice
observes.

8 Bibliography

[1] Allen-Zhu, Zeyuan and Li, Yuanzhi. What Can ResNet Learn Efficiently, Going Beyond
Kernels?. ArXiv. https://arxiv.org/pdf/1905.10337.pdf.

6

https://arxiv.org/pdf/1905.10337.pdf

	Introduction
	Concept Classes Considered
	The learner
	Hierarchical Concept Class to Learn (Improperly)
	Separation Concept Class

	ResNets are good
	Kernels are bad compared to 3-Layer ResNets
	Simliar result for Linear Regression over Features
	Computational separation

	Experiments
	Key Points and Future Directions
	Bibliography

