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1 Generalization Theory

In machine learning theory, we are in the business of trying to identify conditions under
which classes of models and algorithms for learning work in the real world. Coming up with
a good theory is valuable for at least two reasons:
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(a) A good theory gives intuition for what will work in practice;

(b) With theory, we can give guarantees if certain conditions are satisfied that we will
end up with a “good” model (for some definition of “good”) in a reasonable amount
of time (for some definition of “reasonable”).

Of course, there are many more reasons to do theory. The main point of this spiel is to
motivate the study of generalization bounds in learning theory. Generally, we want to
claim that it is possible for a model to generalize beyond a training set to all future data. No
Free Lunch theorems tell us that we cannot hope to do this if we allow ourselves to consider
all possible models (there will always be some model which perfectly fits the training set but
is the worst possible model on everything outside of that training set). Therefore, we must
restrict the class of models we consider in some way. In the following treatment, we will
draw from textbooks and previous surveys (Shalev-Shwartz & Ben-David (2014); Bousquet
et al. (2004); Boucheron et al. (2005)).

1.1 Classic Approaches to Generalization Bounds

The classic results of learning theory make this notion of restriction precise. Adopting the
binary classification setting with labels {±1}, our goal is to bound the difference between the
the expected error on the whole distribution and the expected error on a finite data set of
size n sampled i.i.d. from the distribution. We will call the expected error the risk, denoted
by R. Specifically, we define

Definition 1.1. Empirical risk.
The risk for a function f on a dataset {(Xi, Yi)}ni=1 is given by

Rn(f) =
1

n

n∑
i=1

1 {f(Xi) = Yi}

We choose the 0− 1 loss to define risk in the classification setting.

For cases where we only consider a finite number of models, we have the following bound:

Theorem 1.2. Learning Finite Hypothesis Classes.
For a finite hypothesis class H = {h1, · · · , hN}, for all δ > 0 with probability ≥ 1− δ, for all
h ∈ H,

R(h) ≤ Rn(h) +O

√ logN + log 1
δ

2n


where R(h) denotes the population risk of hypothesis h and Rn(h) denotes the expected risk
on a dataset of size n for hypothesis h.
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This theorem essentially follows by concentration of measure (Hoeffding’s inequality/Chernoff
bounds) to ensure the expected risk is close to the population risk (think Law of Large Num-
bers) and an application of the union bound over all possible classifications of the data. Since
there are only N functions in our hypothesis class, the number of possible classifications is
bounded by N , and we get the logN term. However, we probably want to be able to consider
much larger sets of potential models (for instance, hyperplanes in Rd).

Remark 1.3. Bias-Variance.
Note that all that we have said so far is that we can bound the deviation of the risk on a
sample compared to the risk on the population (i.e., the variance). We have not yet said
anything about how good the population risk is yet. In the realizable setting, we assume
that there is a hypothesis h∗ ∈ H which attains 0 population risk (i.e., h∗ is unbiased). In
the agnostic setting, we allow for some bias in the hypothesis class (perhaps due to noise).
In either case, we compare the error to the best hypothesis in the class. Thus, we can
interpret the above theorem as a kind of bias-variance tradeoff.

Remark 1.4. Computational Efficiency.
The act of choosing the best hypothesis in class is known as the ERM algorithm, which
stands for empirical risk minimization. Note that finding the ERM is not necessarily efficient,
and depends on the hypothesis class. This is the optimization component of machine learn-
ing. We would like to have situations where we both have efficiency in the sampling regime
(statistical efficiency) and efficiency in the optimization regime (computational efficiency).

Remark 1.5. Regularization.
The term regularization refers to modifying the definition of risk (typically by adding some
additional penalty to the loss function). It can be thought of both in terms of computa-
tional efficiency (certain regularizers can improve the speed of optimization algorithms) and
statistical efficiency (defined correctly, we can think of regularization as limiting the model
class).

1.1.1 VC Dimension

The desire to prove bounds for infinite hypothesis classes motivates the definition of a dif-
ferent measure of complexity, the VC dimension. What we really cared about last time with
the union bound was the number of possible realizable classifications on the dataset. So, for
an infinite class, we’ll “project” the function class onto a finite sample of the dataset and
try to bound the number of possible classifications given the function class as the sample
size grows large. Intuitively, to match the bound for finite sample complexity, we hope for
growth which occurs polynomially in sample size so that we get some factor of log n in the
numerator as before (recall n = N there). Note that things would be hopeless in the case
of exponential growth: We would end up with a O(1) error bound, which implies that error
would be constant as we saw more data points, and thus not learn.
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Definition 1.6. VC Dimension.
The VC dimension of a hypothesis space H is the size of the largest set of data points for
which it is possible to assign a hypothesis from H to each possible classification of the data.

Remark 1.7. Shattering.
We say that a function class with VC dimension d shatters a set if ∃h ∈ H for each classifi-
cation).

Remark 1.8. Maximality of VC dimension.
Also note that VC dimension is a maximal property: It is not the case that a function class
with VC dimension d will shatter every set of points of cardinality ≤ d. Indeed, it is possible
to construct finite sets which function classes of infinite VC dimension cannot shatter.

The reason the VC dimension is a good measure of complexity is because it turns out that
for data sets larger than the VC-dimension, the size of the number of possible classifications
of the data only grows polynomially rather than exponentially in the size of the dataset.

Lemma 1.9. Growth function (Sauer-Shelah).
The maximum number of possible classifications for any dataset of size n by a hypothesis
class of VC dimension d is bounded by

d∑
i=0

(
n

i

)
≤
(en
d

)d
The other main ingredient necessary to obtain a generalization bound in the infinite

hypothesis case is a method to allow us to apply a union bound on a finite set of events.
It turns out we can bound the probability of the difference between R and Rn being large
by a constant factor of the probability that the difference between expected error on two
randomly sampled datasets is large. This trick allows us to apply concentration to the latter
probability instead. Then, we can consider two datasets of size n and evaluate the number
of possible classifications. By Sauer-Shelah, we know this quantity is bounded polynomially,
and we can apply union bound over the polynomial number of events to get the following
theorem:

Theorem 1.10. Learning Hypothesis Classes of Finite VC dimension.
For a (potentially infinite size) hypothesis class H with VC-dim(H) = d <∞, for all δ > 0
with probability ≥ 1− δ, for all h ∈ H,

R(h) ≤ Rn(h) +O

√d log n+ log 1
δ

2n


Notably, this theorem implies that for datasets of size n < d, one will not get a good

learning bound (intuitively, this is because there always exists a function in the chosen

4



Generalization from Margins: Connecting Boosting Theory to Neural Nets
Kiran Vodrahalli, Columbia DSI Seminar: 09/29/17

hypothesis class which completely matches the dataset). Thus, the VC dimension can be
seen as a quantity which controls the amount of data necessary to learn.

In particular, the VC dimension is a combinatorial notion of complexity of a hypothesis
class. Said another way, the above theorem tells us that more complex function classes
require more samples to learn.

1.2 VC dimension of Neural Networks

A very common function class used in practice nowadays is that of deep neural networks.
How does generalization work if we use VC dimension?

Theorem 1.11. VC dimension of deep networks.
As stated in Neyshabur et al. (2017a), the VC dimension of fully connected feedforward
neural networks with ReLU activation, d layers, and h units per layer is Θ̃ (d2h2), giving a
generalization bound of

R(fw) ≤ Rn(fw) + Õ

(√
d2h2

n

)
where fw is a neural net parametrized by weights w, and the ∼ hides log factors of failure
probability δ, n, d, h.

Modern neural networks can be extremely deep with a lot of units per layer. Let the

total number of parameters be p = dh. Thus, the bound essentially depends on
√

p2

n
. This

VC dimension bound only implies learnability when p ≤
√
n. Thus, this bound is not good

enough to explain the generalization of deep networks in practice, where p
n
>> 1 is typical

(Zhang et al. (2017)). At first glance, we might think something like convolutional networks,
which share weights, could mitigate this problem. Indeed, this gap might be a little better
(i.e., p ≈ dh

c
for some constant c based on how weight-tying proceeds). Nevertheless, c would

need to depend on the size of the dataset n in order for p
n

to be manageable. It is also worth
noting that the number of parameters even for convolutional nets in practice still satisfies
p
n
>> 1!

What can we do about this gap? It appears that classical learning theory is not enough
to explain generalization.

2 Non-Uniform Learning Bounds

When theory does not predict success in practice, and we observe success in practice, we
need to take a step back and check that our theoretical definition of success is actually what
we want it to be.

VC dimension bounds like those given in the previous section are referred to as uniform
learning bounds, since they simultaneously bound the fluctuation of the risk of all functions in
the hypothesis class simultaneously(essentially, bounding supf R(f)−Rn(f)). Furthermore,
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they are completely distribution independent – it does not matter what distribution the
data is drawn from as long as the data are drawn i.i.d. Thus, we are not incorporating any
information about the data itself into our learning bounds. For instance, it might be the
case that for the particular data we use to train a neural network, it might be easy for a
member of the neural network hypothesis class to generalize.

Broadly speaking, we can remedy this deficiency by drawing on techniques from non-
uniform learning.

Definition 2.1. Non-uniform learning bounds (non-formal).
There are several cases where uniform learning may fail to provide tight bounds, since

(a) (Assumptions about data). Uniform learning provides distribution independent bounds
(may be tighter bounds for most distributions, excluding only a few bad cases).

(b) (Assumptions about hypothesis class). We may want to use randomness in our defini-
tion of our hypothesis (i.e., the power of randomness in voting algorithms – we’ll come
back to this notion).

(c) (Assumptions about data and hypothesis class together). We may know that hypoth-
esis class H and data distribution D together satisfy certain properties which make
generalization easier.

There are other notions of non-uniform learning as well.

Roughly speaking, the solutions to the three problematic cases presented in the definition
are Rademacher complexity (and more complicated variants thereof, including VC entropy
and covering numbers), the PAC-Bayes framework, and margins, respectively. We will see
how these are all intricately related.

2.1 Rademacher Complexity

We begin by discussing Rademacher complexity, drawing from both Bousquet et al. (2004);
Boucheron et al. (2005).

Definition 2.2. Rademacher Complexity.
Let

g(σ, Z) = sup
h∈H

1

n

n∑
i=1

σih(Zi)

be the supremum of an empirical random process, where σ is a vector in {±1}n with i.i.d.
uniform coordinates (these are called Rademacher random variables) and Z = {Zi}ni=1 is a
i.i.d. selection of data points from the data distribution. Then, the Rademacher com-
plexity of a hypothesis class H of functions is given by

R(H) = Eσ,Z [g(σ, Z)]
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We use
Rn(H) = Eσ [g(σ, Z)|Z]

to denote the conditional Rademacher complexity.

Note that this definition involves an expectation over the draw of the data: Including the
data distribution directly is a departure from the previous classical setting we saw before.
We will give a generalization bound in terms of the Rademacher complexity, thus resolving
the first issue we wanted to solve. It turns out that it is even possible to give generaliza-
tion bounds in terms of the conditional Rademacher complexity, thus giving generalization
bounds that depend directly on the data observed.

2.1.1 Intuition

Before giving the generalization bounds, let us build some intuition. With some calculations
(Bousquet et al. (2004)), we can re-write the Rademacher complexity as

1

2
R(H) =

1

2
Eσ,Z

[
sup
h∈H

1

n

n∑
i=1

σih(Zi)

]

=
1

2
+ Eσ,Z

[
sup
h∈H

1

n

n∑
i=1

−1− σih(Zi)

2

]

=
1

2
− Eσ,Z

[
inf
h∈H

1

n

n∑
i=1

1− σih(Zi)

2

] (1)

Then, we recognize that treating {(Zi, σi)}ni=1 as though they were a training set {(Xi, Yi)}ni=1,
we precisely recover the definition of the empirical risk of h on a dataset with labels σ:

1

2
R(H) =

1

2
− EZ,σ

[
inf
h∈H
Rn(h(Z), σ)

]
Thus, we can observe that first, calculating Rademacher complexity is as hard as per-

forming empirical risk minimization (which can be NP-hard). Second, this interpretation
affords us another perspective as to what Rademacher complexity means: Essentially, Rn(H)
is maximized if are able to always perfectly fit any random selection of labels σ. Thus,

Claim 2.3. Rademacher complexity measures how much a function class H is able to fit
random noise.

Therefore, we see from another perspective the limits of uniform learning bounds. If
the Rademacher complexity of a function class is 1

2
, we have no hope of getting any kind

of uniform bound, since by the probabilistic method there will always exist a set of size
{n : n ∈ N} which can be shattered with functions from the class.
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2.1.2 Rademacher Calculus

There are furthermore several nice properties of Rademacher random variables which allow
us to get Rademacher complexities of function classes from the Rademacher complexities of
related function classes using minimal algebra. We state the rules from Boucheron et al.
(2005) in terms of sets of vectors A,B. In practice, we work with sets {f({Xi}ni=1) : f ∈ F}
for some function class F .

(a) Linear properties.

Rn (A ∪B) ≤ Rn(A) + Rn(B),Rn(c · A) = |c|Rn(A),Rn(A⊕B) ≤ Rn(A) + Rn(B)

c · A and A⊕B are the usual definitions for vector spaces.

(b) Convex hull.
Rn(A) = Rn(AbsConv(A))

where AbsConv is the absolute convex hull of A,
{∑N

j=1 cjaj :
∑N

j=1 |cj| ≤ 1, aj ∈ A
}

.

(c) Talagrand contraction (Lipschitz property). If φ : R → R has φ(0) = 0 and Lipschitz
constant Lφ, and φ ◦ A applies φ over the vector space,

Rn(φ ◦ A) ≤ LφRn(A)

2.1.3 Generalization Bound

Now we state the generalization bound for Rademacher complexity.

Theorem 2.4. Rademacher Generalization Bound.
For all δ > 0 with probability at least 1− δ,

∀f ∈ F ,R(f) ≤ Rn(f) + 2R(F) +

√
2 log 1

δ

n

and also with probability at least 1− δ,

∀f ∈ F ,R(f) ≤ Rn(f) + 2Rn(F) +

√
2 log 2

δ

n

Proof. We briefly describe the proof from Bousquet et al. (2004). The main new point
from what we saw before is the usage of bounded difference inequalities from empirical
process theory. Roughly, the idea is that you can bound the deviation of a functional of n
independent random variables from its mean in terms of a sum of bounded differences at
each coordinate. The bounded difference for the ith coordinate is an upper bound on how
the value of the function changes when all coordinates except the ith coordinate are fixed.
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These bounded difference type inequalities yield subgaussian concentration due to the fact
that entropy tensorizes. Here, the nonlinear functional is the supremum function. One can
use McDiarmid’s inequality (which follows directly from Azuma-Hoeffding) to ensure that
concentration happens (think Law of Large Numbers again) because the losses are bounded.
Then, we follow a similar path as in the VC dimension proof. We relate the distance
between the expected supremum and the empirical supremum to the distance between the
expected supremum of the difference between two randomly drawn datasets of equal size,
due to the fact that supremum is convex and Jensen’s inequality applies. It turns out
that this value is bounded above by a constant factor of the Rademacher average, because
f(Z ′i)−f(Zi) is a symmetric function and multiplying by ±1 does not change the distribution
of σi(f(Z ′i)− f(Zi)). These two steps give the first claim in generalization theorem.

In order to get the second claim (conditional Rademacher generalization), all we need to
is show that the conditional Rademacher average functional is very close to the population
Rademacher average functional. We simply apply McDiarmid’s bounded difference inequality
to the Rademacher functional to achieve this result.

It furthermore turns out that we can recover the VC dimension bounds from before with
the Rademacher complexity. Essentially, Rademacher complexity provides a route towards
deriving the uniform learning bounds purely through concentration inequalities. The fact
that this works allows us to improve upon the crude union bound and get tighter results.
This fact is discussed more in one of the remarks.

Remark 2.5. Symmetrization.
The argument we used in the generalization proof for VC dimension which relates the gap be-
tween population risk and empirical risk to the gap between two different draws of empirical
risk is called symmetrization. Essentially, the name comes from the fact that Rn(f)−R′n(f)
is a symmetric funtion under expectation (centered at zero, multiplying by −1 does not
change the distribution). In the VC dimension case, we used the argument to allow our-
selves to consider a finite set of possible classifications on a dataset of size 2n. This trick
allowed us to apply a union bound.

In the case for the Rademacher generalization bound, symmetrization falls out much more
naturally and there is no need for us to use a union bound to sneak the growth function
into the bound. Instead, we are able to directly bound using the definition of Rademacher
complexity, which enforces exactly the kind of symmetry we need.

Remark 2.6. Converting from loss function class to hypothesis class.
Since the Rademacher generalization theorem is in terms of the class of loss functions com-
posed with hypothesis functions, we want to re-write the bound in terms of the Rademacher
complexity of the original hypothesis class H of maps from the data space to {±1}. For-
tunately, most common classification loss functions `(h(Xi), Yi) can be easily expressed in
terms of Yih(Xi). If the loss function is Lipschitz in this quantity, we can apply the contrac-
tion property of Rademacher averages (Talagrand contraction) in order to only pay an extra
Lipschitz constant of the loss map in the generalization bound.
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Remark 2.7. Rademacher as a Fully-Concentration Based Approach to Generalization.
The main deficiency of our previous approach with the VC dimension was the fact that we had
to crudely use the union bound at the end to finish. The union bound ignores dependencies
between different classifications realized by the function class. However, the geometry of a
given function class might exist in such a way that the resulting classifications are extremely
dependent on each other, and thus actually, the growth function is much smaller than the
maximum possible number of classifications according to Sauer-Shelah. Thus, we would be
able to enjoy an improved bound.

The fact that the Rademacher approach exclusively uses concentration to derive the
bound allows for the possibility of using more refined techniques to get the bound, following
the intuition for the improvement above. This approach is the generic chaining. The main
idea is as follows: We want to characterize the geometry of the function class as it relates
to the projection onto data drawn from the data distribution. To do this, we can define
a random metric on the function space: We randomly draw n points i.i.d. from the data
distribution, and define the distance metric between two functions in the space to be the
average number of data points which the functions do not agree on (Hamming metric). Thus,
we now have some notion of dependency between functions. We now want a notion which
approximates the number of “distinct classifications”. If the union bound were tight, then
the maximum number of possible classifications would always exist (the upper bound in
Sauer-Shelah). However, if there are some dependencies, then it may be that we can find a
much smaller number of “representative functions” which are not too far away.

This notion of representative functions is encapsulated by the notion of an ε-cover. We
would like to find a finite number of functions such that an ε-ball in the random metric
around each of these functions covers the whole function class. The covering number of a
function class, a function of ε and the number of data points drawn in the random metric,
is the minimum size of such a cover. In other words, it acts as a proxy for the number of
achievable classifications. The generic chaining is an approach which takes this value into
account for all ε. It turns out one can bound the Rademacher complexity by this value,
providing another way to see how Rademacher complexity helps one take advantage of data
distribution specific properties (here encoded in the random distance metric of the covering
number).

2.1.4 Relevance of Rademacher Complexity

Now, how can we use this definition of complexity to understand neural network gener-
alization? Rademacher complexities are often used in margin bounds and PAC-Bayes
generalization bounds. We will delve briefly into each notion, and then see they are actually
very closely related.

2.2 PAC-Bayes

The PAC-Bayes framework is the answer to the second problem we identified with uniform
learning: We would like to be able to make assumptions about our hypothesis class. In
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particular, we want to use randomness to define a stochastic hypothesis, a non-deterministic
classifier. What motivates us to use randomness in this way? Simply put, it actually
makes our problem easier to solve. We can think of the problem in relation to voting-
based learning algorithms (which, notably, has a LOT to do with boosting, which we will
come to shortly). In particular, we compare the weighted majority (WM) algorithm to the
randomized weighted majority (RWM) algorithm.

2.2.1 The Power of Randomness

Consider the following problem: We have a finite set of experts who we can ask to help us
bet on a horse at the races (Freund & Schapire (1997); Blum (1998)). Suppose we want
to do as well as the best expert, over time. The classic approach is the Weighted-Majority
algorithm of Littlestone and Warmuth, which works as follows (in the 2-class setting):

(a) Assign a weight of 1 to each expert.

(b) Ask the experts to give their advice (for instance, bet on a given horse or not).

(c) Sum up the weights and normalize. Choose the choice with the larger weight.

(d) Experience the result. If you were correct, leave the weights as is. Otherwise, multiply
the weights of the experts who were wrong by a factor β where 0 < β < 1. Pick
β = 1/2.

If we let M∗
T be the mistake bound of the best expert after T rounds, then by doing a

potential analysis on the total weight, it is possible to bound the number of mistakes you
make.

Theorem 2.8. Weighted Majority Mistake Bound (Blum (1998)).

MT ≤ 2.41(M∗
T + logN)

where N is the number of experts.

This bound is good if M∗
T is constant with respect to T , since it implies you will also make

a constant number of mistakes forever. However, this bound is bad otherwise: You will do
considerably worse than the best expert, no matter how much time you spend. This result
basically means you are not learning from that expert. How can this unfortunate point be
resolved?

It turns out it is necessary to use randomness to be able to truly learn. Only a small
modification is necessary to the Weighted Majority algorithm: On the third step, do not just
pick the choice with larger weight. Instead, choose each option with probability proportional
to the weight of the expert’s votes. Thus, we have derived a voting algorithm. It turns out
with this simple modification, the following mistake bound becomes possible (Blum (1998)):
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Theorem 2.9. Randomized Weighted Majority Mistake Bound.

MT ≤
M∗

T ln(β) + ln(N)

1− β
The power that randomness brings to the table is essentially the ability to take benefit

from the average case. If there are only a few corner cases which are really bad which
are not typical, these will not occur often and thus the performance of our algorithm will
be much better on average. Intuitively, the randomized approach gains the most benefit
when the distribution over experts tends to be close to uniform. If the distribution readily
collapses to a single expert, the situation is almost identical to the deterministic algorithm
case. Additionally, we can think of adding randomness over the experts in terms of defining a
stochastic solution concept: We allow for convex combinations of experts now. This approach
can also be viewed as convexifying the problem into a learning problem over the simplex.

2.2.2 Randomized Weighted Majority and PAC-Bayes

The Randomized Weighted Majority algorithm described previously illustrates why the PAC-
Bayes framework is a good idea. The PAC-Bayes framework introduces a prior ρ (a weight
distribution) over the elements of hypothesis space (each hypothesis is an expert), and in-
dividually bounds the risk of specific hypotheses in terms of this prior. Of course, the PAC
setting we are dealing with is not online, and we do not care about mistake bounds (we
will make the connection between weighted majority and PAC-Bayes explicit later using the
work of Langford & Shawe-Taylor (2002)).

However, the intuition that we should try to learn a stochastic hypothesis is fruitful:
It enables us to end up with much tighter generalization bounds because we bound the
true error rate over a distribution of hypotheses rather than the supremum (as we would in
uniform learning) (Langford & Caruana (2001)). We want to consider the average case, not
the worst case. In particular, as Langford & Caruana (2001) puts it, we can think of PAC-
Bayes as re-distributing the work between theorist and experimenter, with more load placed
upon the experimenter. It is easier for the theorist to prove better bounds given access to
randomness, but the experimenter must now deal with a stochastic predictor function.

2.2.3 PAC-Bayes Generalization Bound

We follow the treatment in Boucheron et al. (2005) for explaining the non-uniform learning
bounds which are possible with PAC-Bayes. We associate each hypothesis class with a
prior π (a probability measure) and a probability measure ρ, which defines the stochastic
distribution over the hypothesis space. First, consider that the case where ρ does not depend
on the data is easy: The expected empirical risk with respect to ρ is a sum of independent
random variables whose expectation is the expected population risk with respect to ρ, and
thus one can apply Hoeffding directly.

The other case, where ρ does depend on the data, is harder. We proceed by performing
a modified union bound.
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The prior assigns weight π(f) for each f ∈ F , such that
∑

f∈F π(f) = 1. In this particular
case, one can apply a weighted union bound :

P

{
∃f ∈ F : R(f)−Rn(f) ≥

√
log(1/π(f)δ)

2n

}
≤
∑
f∈F

P

{
R(f)−Rn(f) ≥

√
log(1/π(f)δ)

2n

}
≤
∑
f∈F

π(f)δ = δ

(2)

the idea being that we pick the parameter t in Hoeffding’s inequality as a function of f . This
in turn leads to the following bound:

Lemma 2.10. PAC-Bayes Generalization Bound for individual f .
With probability at least 1− δ, for 0 < δ < 1,

∀f ∈ F ,R(f)−Rn(f) ≤
√

log(1/π(f)) + log(1/δ)

2n

Notably, the error bound for each f now depends on the prior weight for that f ! We can
now take expectation with respect to ρ and apply Jensen’s inequality. Let us quickly recall
the definitions of KL-divergence and entropy:

Definition 2.11. Entropy.
For probability distribution ρ,

H(ρ) =
∑
f∈F

−ρ(f) log ρ(f)

Definition 2.12. KL-Divergence.
For probability distributions ρ, π,

D(ρ‖π) =
∑
f∈F

ρ(f) log(
ρ(f)

π(f)
)

Then, noting that Eρ [log(1/π(f))] = D(ρ‖π) +H(ρ), we get the following theorem.

Theorem 2.13. PAC-Bayes Bound (Inefficient).
With probability at least 1− δ, for 0 < δ < 1,

∀ρ, ρ(R(f))− ρ(Rn(f)) ≤
√
D(ρ‖π) +H(ρ) + log(1/δ)

2n

where D(·‖·) is the KL-Divergence and H is the entropy.

The dependence on the entropy term is in fact unnecessary, and an improvement essen-
tially follows from the convex duality of relative entropy:

13
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Lemma 2.14. Convex-Duality of Relative Entropy.
For random variable Xf ,

ρ(Xf ) ≤ inf
λ>0

log π(eλXf ) +D(ρ‖π)

λ

We can thus bound the Applying Xf = [R(f)−Rn(f)]2+ and using Markov’s inequality
on P

{
π(eλXf ) ≥ ε

}
and then switching order of integration between π and the expectation

allows us to bound E
[
eλ[R(f)−Rn(f)]2+

]
≤ 2n choosing λ = 2n− 1 and integrating. This gives

us the bound

P
{
π(eλXf ) ≥ ε

}
≤ 2n

ε

which gives us the following result after selecting ε = 2n
δ

:

Theorem 2.15. PAC-Bayesian Bound.
With probability at least 1− δ, for 0 < δ < 1,

∀ρ, ρ(R(f))− ρ(Rn(f)) ≤
√
D(ρ‖π) + log(2n) + log(1/δ)

2n− 1

where D(·‖·) is the KL-Divergence and H is the entropy.

We can intuitively think of this bound as a refined union bound. There are some diffi-
culties with using this bound however. As we found intuitvely in the Randomized Weighted
Majority algorithm, we would get no benefit in cases where the distribution was very peaked
on given experts. The same is the case here: When ρ is concentrated on a single function,
this yields the deterministic case and the complexity of the bound blows up (for instance, if
the prior were uniform, we suddenly get a term proportional to the size of the function class
in the numerator). It is possible to fix this by adding more non-uniformity and assumptions
by allowing the prior to depend on the data. It is also possible to have a PAC-Bayes take
on the generic chaining mentioned earlier. Essentially, we look at the ε-covers for all scales
of ε and apply PAC-Bayes bounds at each level.

2.3 Margin Theory

The margin is a quantity that imposes constraints on both the function class and the data
simultaneously, and is an answer to our third issue with uniform learning. We follow the
introduction to margins given by Boucheron et al. (2005).

There are two main issues which we will see the margin helps us solve:

(a) In uniform learning, we require the VC dimension to be small to keep variance small.
However, limiting our hypothesis class may pose a problem with bias (there may be
no good h ∈ H).

14
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(b) Tangentially for us, ERM optimization is hard. We would like a way to approximate
this quantity in a computationally efficient manner.

These concerns motiviate the introduction of a cost function, mentioned briefly before.
We have been so far considering classifiers h ∈ H which are functions which map from the
input space to {±1}, and we have evaluated the risk directly in terms of ED [1 {h(Xi) 6= Yi}].
Now we consider the relaxation of this notion.

First, consider a hypothesis space G whose elements no longer map to {±1}, but now
map to the reals. Then, consider the hypothesis space H whose elements map to {±1} by
composing G with the sign indicator function R→ {±1}

sgn (x) =

{
1 if x ≥ 0

−1 otherwise

Formally, we are now considering hypothesis in the function space

H = sgn (G)

We write elements hg ∈ H to associate them with their original function g ∈ G. The risk
(and its empirical version) remain the same under this definition, but we can now write the
risk in terms of function class G instead of H:

R(hg) = P(X,Y )∼D {sgn(g(X) 6= Y )} ≤ E(X,Y )∼D [1 {g(X)Y < 0}] = E(X,Y )∼D [sgn (−g(X)Y )]

where the term g(X)Y < 0 iff the signs of g(X) and Y are different (i.e., we make an error).
Given this definition of risk, we can formulate yet another function class F whose elements
are functions fg : X × {±1} → R where fg(X, Y ) = −g(X)Y , where X is the input space.

Definition 2.16. Cost function.
Considering the setting described above, we are ready to define cost function φ : R→ R+

such that φ(x) ≥ 1 {x > 0}. We are then concerned with the cost functional

Cφ(g) = E(X,Y )∼D [φ(−g(X)Y )]

and its empirical version Cφn(g) (defined analogously to the empirical risk). We see that the
cost functionals are upper bounds on the risk functionals R(g) ≤ Cφ(g) and Rn(g) ≤ Cφn(g).
We can now associate with cost C the composed function class φ ◦ F in a manner analogous
to the way the risk R is associated with function class H.

Example 2.17. Examples of cost functions.
φ1(x) = ex, φ2(x) = log(1 + ex), φ3(x) = [1 + x]+ are all common choices for loss functions.
Notably, they are all convex and correspond to widely used settings in machine learning.
φ1 corresponds to boosting, φ2 corresponds to logistic regression, and φ3 corresponds to the
hinge loss (used in SVM).
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As you might expect, we can now prove a generalization bound for cost functions using
Rademacher variables. The main point to focus on is that the Lipschitz constant Lφ of the
cost will pop out thanks to the Rademacher calculus, as we alluded to before. Thus, we have
an explicit notion of how smoothness affects sample complexity.

Theorem 2.18. Generalization for cost functions.
Consider choosing a hypothesis gn ∈ G after having seen dataset {(Xi, Yi)}ni=1 drawn i.i.d.
from data distribution D. Suppose that φ(−g(x)y) ≤ B, a constant and let Lφ be the Lipschitz
constant of the class. Then, with probability at leaset 1− δ,

R(gn) ≤ Cφn(gn) + 2LφR(G) +B

√
2 log(1/δ)

n

Proof. We can see that the theorem essentially directly follows from the Rademacher com-
plexity bounds we saw before in addition to an application of the contraction lemma. Spec-
ficially,

R(gn) ≤ Cφ(gn)

≤ Cφn(gn) + sup
g∈G

(Cφ(g)− Cφn(g))

≤ Cφn(gn) + 2R(φ ◦ F) +B

√
2 log(1/δ)

n

(3)

The B comes outside the square root because McDiarmid’s inequality has concentration
proportional to exp(−1/B2), and we see from contraction that Lφ will come out of the
Rademacher term. There is no issue converting R(F) back to R(H) as that was just the
re-organization of what is essentially the same function space. Since the sgn function is
Lipschitz bounded as well, we get the desired result.

Now let us consider how we might use these facts to do better than the uniform learning
setting. We saw with PAC-Bayes how it is a good idea to consider stochastic classifiers.
In the case that it is possible to linearly combine members of the hypothesis class G that
we choose, we can do something very similar and combine classifiers in a weighted voting
scheme as we saw earlier.

Definition 2.19. Weighted Voting in Hypothesis Class.
Take linearly-combinable hypothesis class G and define for parameter λ > 0

Gλ =

{
g(x) =

N∑
j=1

cjgj(x) :
N∑
j=1

|cj| ≤ λ, gj ∈ G∀j ∈ [N ]

}

Note that this is just the absolute convex hull which we saw before. Using the Rademacher
calculus (and normalizing by λ), we see that we only pay an extra factor of λ in the
Rademacher complexity term for this class.
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Moreover, we saw before that the Rademacher complexity is bounded by the VC dimen-
sion generalization error term. Thus, it follows that

Lemma 2.20. Weighted voting generalization term bound.

Rn(Gλ) ≤ λRn(G) ≤ λ

√
2d log(n+ 1)

n

where d is the VC dimension of G.

We can plug this all in to get the full generalization bound:

Theorem 2.21. Weighted Voting Classifier Generalization Bound.

R(gn) ≤ Cφn(gn) + 2Lφλ

√
2d log(n+ 1)

n
+B

√
2 log(1/δ)

n

Now we can finally motivate the definition of margin.

Definition 2.22. Margin.
Define the cost function

φγ(x) =


0 if x ≤ −γ
1 if x ≥ 0

1 + x/γ otherwise

for some fixed positive parameter γ, called the margin. Here, B = 1 and Lφγ = 1/γ.
Visually and intuitively, we can think of this cost function as a smoother version of the 0−1
loss. We essentially pay linearly more cost the more positive distance we move away from
x = −γ until we get to x = 0, the boundary. If x = g(x)y, then we can interpret x = 0 as the
point where our classifier starts misclassifying things. The term margin thus refers to this
gap between correct and incorrect classification. Thus, we are now in some sense sensitive
to how sure we are about our classification.

Armed with this definition, we can define an upper bound to the cost functional Cφ called
the margin error.

Definition 2.23. Empirical margin error.
For margin γ, we define

Rγ
n(g) =

1

n

n∑
i=1

sgn (−(g(Xi)Yi − γ))

Note that the margin error is increasing in the margin γ. We can intuitively think of the
margin error as classifying the misclassified pairs (Xi, Yi) in addition to those which are
correctly classified with small confidence.
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Finally, we can connect the margin back to Rademacher complexity theory and plug in
the Lipschitz constant to get a margin bound.

Theorem 2.24. Margin Generalization Bound.
For any γ > 0 with probability at least 1− δ,

R(gn) ≤ Rγ
n(gn) + 2

λ

γ

√
2d log(n+ 1)

n
+

√
2 log(1/δ)

n

As γ grows, the first term increases while the second decreases. This bound is very useful
whenever a classifier has a small margin error for a large γ, and can be checked empirically.

Thus, we have been able to combine notions of data dependence and assume things about
the function class in order to come up with a generalization bound in terms of the margin.

Remark 2.25. Margin as a Lipschitz notion.
We can think intuitively about the notion of margin as a measure of inverse Lipschitzness,
as we see in the definition of φ. We are only dealing with 0− 1 classification here, but it is
possible to define analogues in a whole host of other settings, including linear regression.

Consider linear regression, where we try to learn a hyperplane parametrized by normal
vector w. We have that ∇x〈w, x〉 = wT , and thus ‖∇x〈w, x〉‖ = ‖w‖2. if ‖w‖2 ≤ L, then
L can function as the Lipschitz constant, and we thus get that the margin is proportional
to 1

L
≤ 1
‖w‖2 . The support vector machine (SVM) literature focuses on the classification

with such hyperplanes, and can be thought of as a maximum margin technique: Part of the
objective is to ensure there is a large margin from the decision boundary.

Remark 2.26. Connecting PAC-Bayes and Margins.
We already might have some notion that PAC-Bayes and margins are connected based on
the way we ended up coming up with a margin bound. Langford & Shawe-Taylor (2002)
demonstrate that building a stochastic classifier for getting a PAC-Bayes bound is always
possible if some margin γ holds for the dataset.

3 Explaining Boosting

The various non-uniform learning concepts we have discussed are very applicable to ex-
plaining the performance of popular successful classifiers. Back in the late 1990s, the hot
algorithm of the day was AdaBoost, and the boosting framework in general. In particular, it
shares several similarities with the deep network craze going on presently. The most common
central theme between these two eras is the at-first baffling mystery: Boosting algorithms
tended to fit the training data extremely well while still generalizing. Notably, we tend to see
this is the case today on large image datasets with deep neural networks (refuting a some-
times common belief that the difficulty of deep learning is due to difficulty of optimization,
at least in several common vision settings).
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3.1 Freund & Schapire’s Original Result

First, we briefly describe the AdaBoost algorithm Freund & Schapire (1997); Schapire et al.
(1998), also making reference to Feng et al. (2012). It can be thought of as a generalization
of the Randomized Weighted Majority Algorithm we saw earlier. We think of our experts as
“weak learners”, which satisfy PAC learning guarantees only for error ε ≥ 1/2− γ (that is,
the best error they can get is 1/2− γ) for some 1/2 > γ > 0. A weak learning algorithm is
guaranteed to output a hypothesis which is a weak learner. We assume i.i.d. draws from the
distribution of the data, unlike RWM. But very similarly to RWM, AdaBoost combines the
weak hypotheses by summing up their probabilistic predictions, and then downweighting the
weights of the incorrect hypotheses by a given factor. The full algorithm proceeds as follows,
given a sequence of n labeled examples {(Xi, Yi)}Ni=1, a distribution D over the examples, a
weak learning algorithm, and an integer T corresponding to a number of iterations (Schapire
et al. (1998)):

(a) Let D1(i) = D(i) for i ∈ [N ]. We initialize weights according to a prior over the
examples. Now proceed for t = 1→ T :

(b) Give the weak learning algorithm the data set and distribution Dt to generate a weak
hypothesis ht.

(c) Calculate the error at time t:

εt = Pi∼Dt {Yi 6= ht(Xi)}

(d) Multiplicatively update the prior distribution over examples:

Dt+1(i) = Dt(i)
exp (−Yiαtht(Xi))∑N

i=1Dt(i)exp (−Yiαtht(Xi))
= Dt(i)

exp (−Yiαtht(Xi))

2
√
εt(1− εt)

where αt = 1
2
ln((1− εt)/εt).

(e) After T iterations, output the hypothesis

h(x) =

∑T
t=1 αtht(x)∑T

t=1 αt

There are a few things which are immediately obvious: 1) Boosting takes advantage of
the power of probability, 2) there is a clear notion of margin, 3) the connection to random-
ized weighted majority is in the multiplicative updates of the distribution. Also notably,
AdaBoost can be viewed as minimizing the convex exponential cost function. Another thing
that is interesting to note is that we add a ht at each time iteration, increasing the complex-
ity of the hypothesis. The fact that we do a convex combination of these hypotheses should
be very reminiscent of the Rademacher margin bounds we recently proved.
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Furthermore note that at round t, AdaBoost places the most weight on the data points
(X, Y ) such that the margin of the combined classifier y

∑t−1
t′=1 αt′ht′(x) is smallest (margin

can be written as yf(x) =
∑

i:y=hi(x)
αi −

∑
i:y 6=hi(x) αi).

To analyze this algorithm, Schapire et al. (1998) bounds P {yh(x) ≤ 0} to show general-
ization.

Theorem 3.1. Boosting Generalization (Schapire et al. (1998)).
For any δ > 0 with probability at least 1 − δ over the random choice of training set with n
examples, for base classifier hypothesis class H with VC dimension d, every voting classifier
f
∑

i αihi satisfies:

PD {yf(x) ≤ 0} ≤ inf
θ∈[0,1]

P{xi,yi}ni=1
{yf(x) ≤ θ}+O

 1√
n

√
d log2(n/d)

θ2
+ log(1/δ)


This can be summarized as the generalization error being at most

P {margin(x, y) ≤ θ}+ Õ

(√
d

nθ2

)

(from Reyzin & Schapire (2006)).

In this theorem, we again see the choice of tradeoff for what margin θ to choose is at the
heart of the problem. We can interpret the theorem as stating that if the voting classifier
generates a good margin distribution (most training examples have large margins so that
P {yf(x) ≤ θ} is small for not too small θ), then the generalization error is also small.

We can view this generalization theorem in terms of a particular quantity: the margin
distribution.

Definition 3.2. Margin Distribution.
The quantity P {yf(x) ≤ θ} is known as the margin distribution. It is a distribution over
margin values θ since that probability is the fraction of training examples whose margin is
at most θ.

However, it is possible (see Feng et al. (2012)) to prove a generalization theorem which
only depends on the minimum margin:

Definition 3.3. Minimum Margin.
The minimum margin of voting classifier f is the smallest margin over the training exam-
ples. It can be represented by

max
θ

P {yf(x) ≤ θ} = 0

In fact, a paper by Breimen pointed out that the resulting generalization bound based
on minimum margin distributions is sharper than the original margin bound which we saw
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here (Feng et al. (2012)). If θ in the Schapire theorem is taken to be the minimum margin,
Breimen’s theorem is much better. Thus, he claimed his bound implied that the minimum
margin is what governs the generalization error. Yet, the minimum margin algorithm (called
arc-gv) he developed (which essentially modifies the way αt is set to take into account the
minimum margin) performs much worse than AdaBoost, calling the margin explanation of
boosting into doubt.

3.2 Why the Margin Explanation Still Holds

It turns out that the main reason Breimen was wrong is due to the fact that his algorithm
was subtly increasing the complexity of the base classifiers, and thus of the VC dimension,
in a manner that counteracted potential benefits from boosting (Reyzin & Schapire (2006)).
Thus, it is truely the margin distribution which controls the generalization error of boosting
(Gao & Zhou (2013)).

4 How do Neural Networks Generalize?

4.1 Rethinking Generalization

Zhang et al. (2017)

4.2 Margins to the Rescue

Bartlett et al. (2017)

4.3 PAC-Bayes

Neyshabur et al. (2017a)

4.4 What Remains: Missing Pieces

4.4.1 Connections to Optimization

Neyshabur et al. (2015, 2016, 2017c)
Neyshabur et al. (2017b)

4.4.2 Properties of the Data

5 Further work

5.1 Residual Nets == Boosting?

Huang et al. (2017)
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5.2 Regression Based Efforts

6 Conclusion: Why do Deep Nets Generalize?

Here are some main takeaways:

(a) Always be aware of the limitations of your theoretical framework with respect to prac-
tice.

(b) Data matters for generalization power of neural nets.

(c) Don’t forget the past!!
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