
CS Colloqium

Finding Structure with Randomness March 28, 2016

Lecturer: Joel A. Tropp Scribe: Kiran Vodrahalli

Contents

1 Introduction 1

2 Two-stage Low-rank Approximations 2

3 The Role of Spectral Decay 4

1 Introduction

I’m with the department of computing and mathematics at CalTech: Computing, Mathematics, and
Control and Dynamics. See jtropp@cms.caltech.edu, http://users.cms.caltech.edu/ jtropp. You can
see this talk in a survey paper from 2011.

I’m going to start out by motivating the topic: Matrix Decompositions. I like to explain this
with a notorious list of the top ten algorithms of all time. When you look at this list, you see
familiar things: The Simplex Algorithm, the Fast Fourier Transform, Quick Sort. Technically this
is a list of algorithms of the second half of the 20th century, and some of these don’t really pass
that test, like the FFT which was invented by Gauss. The ”Decompositional Approach to Matrix
Computations” doesn’t really look like an algorithm though.

The Decompositional Approach section says, it’s not my problem! It’s my job to give you tools
to solve your problem. The tool is matrix decomposition. Decomposition is useful because they
allow you to solve many problems with the same framework. For instance, if you want to solve a
linear system, you might take an LU decomposition of the matrix. This lets you solve a lot of linear
systems at low cost. You might also use it to compute the determinant. One thing I would like to
highlight is these decompositions lead to black-box software, which is a good tool. Once you have
it, you can do lots of great things. This approach actually has its roots here with von Neumann. He
invented the LU decomposition, performed rounding-error analysis, and did a very complete study
of this method. Only several years later did they build a computer to try it out.

What’s wrong with classical approaches to matrix decomposition? Nothing, provided the ma-
trices aren’t too big (perhaps on the order of 100s of megabytes). But once you get into large
examples, things stop working so well, since these things scale cubically. We also have a lot of new
computational architecture, which people didn’t envision in the 50s-80s. There’s a lot more effort
in distributed computing. Data transfer dominates the cost of the algorithms, not the arithmetic
which is what they were optimized for in the first place. For instance, pivoted QR decomposition
requires you to have random access to the columns, which is hopless if the columns are stored in
different places.

So I’m going to talk to randomized approximations which are much more scalable. These are
simple and robust. Classical algorithms are fidgety and don’t work well in all these settings.

The reason these are useful are multiplication rich. The most difficult operation is matrix
multiplication, which we are very good at. As a result, you can get near peak throughput on
matrix-matrix multiplications. Thus, algorithms built out of these things can use the computational
platform a lot better rather than algorithms built out of other primitives.

1



2 Two-stage Low-rank Approximations

The reason we consider low-rank decompositions is that they’re one of the most important ways
of approximating a matrix. Given a large matrix A ∈ Rm×n, let r << m,n. This is the rank of
the approximation. If we can approximate A ≈ BC, rank(BC) ≤ r. There are huge savings in the
number of degrees of freedom. If you succeed in this approximation, you have necessarily identified
structure in the matrix. That’s the only way you could have reduced the number of degrees of
freedom this dramatically. This plays a huge role in a lot of areas. This is a simpler model for
truncated SVD and so on. Once you have such a thing, you can do a lot of other approximations
which are useful or important. You can compute leading singular vectors, spanning sets of rows
and columns, leading eigenvectors, etc.

I will focus on finding ‖A − BC‖2 ≤ tol in the spectral norm (2-operator norm) since it nails
down all these properties. Frobenius norm bounds are easier to obtain, but useless in a lot of
settings.

Example 2.1. Truncated SVD. We want

A = UΣV ∗

where U, V ∗ are orthonormal, and Σ is r × r diagonal matrix. If you can approximate A this way,
you have necessarily found structure.

Let us construct a two-stage randomized SVD algorithm. The first goal when computing a matrix
approximation is to find a matrix Q with orthonormal columns where the number of columns is
relatively small. We want this to capture most of the action of the matrix A. We want the low-
dimensional range subspace to be well aligned with the subspace where A is busiest (the dominant
left-singular vectors of A). So let’s say we use a randomized algorithm to get A ≈ QQ∗A where
Q has orthonormal columns. Even if we through away everything in A that’s in the kernel of Q, we
don’t lose much.

We already have a low-rank approximation of A if we solve this problem, since A is fat and Q
is tall: B = Q,C = Q∗A (using the notation from before).

Now we will form the decomposition by using basis Q to reduce the problem size, apply classical
linear algebra to the reduced problem, and then finally obtain truncated SVD in factorized form.

First, we have to find the range with a target rank. We want to find m × r matrix Q with
orthonormal columns such that

‖A−QQ∗A‖2 ≈ min
rank(B)=r0

‖A−B‖2

We will use a randomized algorithm which is efficient to find Q: One matrix-matrix multiplication
(O(m× n× r)) and then O(r2n) additional work.

We want to do a randomized range finder. The intuition is to pull out a random vector ω1,
mtuliply that into A: Aω1 should be oriented . Now we do it again: Aω2, which is in the range
of A, but probably not pointing in the same direction. Do this k times, now we have k vectors in
the range of A, which tend to be aligned along the major axes of the ellipsoid. Because they’re
random, with probability 1 they have no linear dependencies, and their images also have no linear
dependencies, so then you get a basis. Now all you have to do is orthgonalize them. Now we can get
a basis when A is rank-deficient. If it’s not rank deficient, we may have to add some more vectors
because of perturbations outside of the low-rank plane. Thus, the algorithm is, given m×n matrix
A and a number r of samples.

1. Draw n× r a random matrix Ω.

2



2. Form Y = AΩ (the range image).

3. Find orthonormal basis Q for the range of Y .

This is the first step of subspace iteration with a random start. What is different is that I’m
asserting this is not an iterative algorithm. I’ll justify why you can stop after only 3 steps. If you’re
interested in the history you can check out my survey paper.

For implementation issues, we can pick r samples adaptively with a randomized error estimator.
It’s hard to figure out what the numerical rank of a matrix is. So how does r compare with target
rank (how many extra samples do you need?) You usually only need 5 or 10 extra samples. How do
we pick Ω? Standard Gaussian works fine. To compute orthogonal basis, you can use Gram-Schmidt
or Householder reflectors.

Theorem 2.2. Error Bound for Random Range Finder.
The matrix A is m× n with m ≥ n, target rank is r0, σr0+1 = minrank(B)=r0 ‖A−B‖, and Ω is an
n × (r0 + s) standard Gaussian. Then, the randomized range finder algorithm yields an (r0 + s)-
dimensional orthobasis Q with

E[‖A−QQ∗A‖] ≤
[
1 +

4
√
r0 + s

s− 1

√
n

]
σr0+1

If σr0+1 is small, you’ll do well. Is
√
n thought of as small? Yes and No, depending on the

application. In more detail:

E[‖A−QQ∗A‖] ≤
[
1 +

√
r0

s− 1

]
σr0+1 +

e
√
r0 + s

s

∑
j>r0

σ2j

1/2

This bound is good only if the spectrum decays somewhat. This bound is also somewhat optimal.
It basically depends on what part of the spectrum that you miss. This is not so good for getting
minimal errors. Also, this concentrates extremely well; this is typical behavior (it’s just messy to
display). The probability of a substantially larger error is negligible.

How do we do adaptive error estimation? In practice, you’ll estimate the error as you go along,
and stop when we reach a target. We form the error estimator:

errest = max
1≤j≤10

‖(I −QQ∗)Aωj‖

The probability of being worse than this error estimator is

P{‖(I −QQ∗)A‖ ≥ 10 · errest} ≤ 10−10

Once we’ve found Q, we get B = Q∗A, which is “fat”. Now since B is small, we can use classical
linear algebra to compute an SVD of B = Q∗A. So now we can write

A ≈ QQ∗A = Q(Q∗A)

= Q(UΣV ∗)

= (QU)ΣV ∗
(1)

Thus we can write A ≈ (QU)ΣV ∗ to get an approximate SVD with lower bounds on how good it
is. The main cost in the algorithm is Q∗ ×A. The cost of the SVD is r2n, which is cheap.

If it’s a sparse matrix, we need m×n×1 vector multiplies in sequence. Performing multiplies in
sequence is onerous, and these methods are fragile, so there are lot of limitations to this approach.
There are also classical methods for matrices which require random access, which makes it less easy
to implement in the large-scale setting. Even though we haven’t saved work, we’ve organized the
work in a much more efficient fashion which eliminates methods of classical algorithms.

3



3 The Role of Spectral Decay

The random range finder works when the spectrum of A decays quickly. The problem is this
behavior is not common in data analysis problems. Examples: Matrix is contaminated with noise:
A = A0 + N with ‖N‖ ∼ ‖A0‖. The matrix spectrum also decays slowly: The tail is very big. If
so, the randomized range finder gives unreliable results.

The remedy is to use subspace iteration. However we view this as a terminating finite algorithm
which ends after a small number of steps. We apply the same algorithm to (AA∗)qA for a small q,
and you just get an extra factor of qr2n, and 2q + 1 matrix multiplies. So we should be concerned
about what q is. We argue that it’s very small, i.e. q = 2, 3. This is very different from the classical
analysis of subspace iteration.

The error bound changes to

E[‖A−QQ∗A‖] ≤
[
1 +

4
√
r0 + s

s− 1

√
n

]1/(2q+1)

σr0+1

which suggests that even small powers are effective.

Example 3.1. Graph Laplacian.
This is an image processing example. We look at which 9 × 9 image patches look alike, and there
are 9000 patches, which gives us a 9000× 9000 sparse symmetric matrix, which is several hundred
megabytes. We want to compute eigenvalues and eigenvectors of this moderately large matrix to
learn something about the images.

We see that the low-rank approximation does very well, and you only need q = 3 to get very
close to the optimal, calculated via classical methods.

Example 3.2. Eigenfaces.
Here we have dense 105 pixel photos to compute eigenfaces. Unless you’re very careful, Matlab will
choke or you’ll get a bad estimate. Our method works (the power method is necessary since the
spectrum doesn’t decay naturally). You also get very good estimate for the singular values as well.

4


	Introduction
	Two-stage Low-rank Approximations
	The Role of Spectral Decay

