
COLT: Linear Algebra in Machine Learning

Lecturer: Ravi Kannan Scribe: Kiran Vodrahalli

Contents

1 Introduction 1

2 Low-rank Approximation with Additive Error 2
2.1 Sketch of a matrix . 3

3 Continuing AAT Story 4

4 Spectral sparsifiers of AAT 4

5 Randomized Algorithm for general tensors 5

6 The random sign matrix 5
6.1 Distributed Data . 5

7 Answers to some questions from audience 6

1 Introduction

Ravi Kannan was one of the pioneers of random methods, the real shocker was approximating
the volumes of convex bodies, he’s worked on spectral methods, sketching, linear algebraic
methods, and a wonderful book on the foundations of Data Science.

I’ll give a high-level picture of the use of linear algebra. I’m impressed the amount of
detail this audience can absorb online. I have one or two semi-complete stories, and otherwise
it’s a survey.

Let’s start with a flashy intro. If I went back 25 years and asked a randomed theory person
which methods would get scaled and applied to problems in 25 years: SVD and other linear
algebra algorithms, network flows, shortest paths, other graph algorithms; sophisticated data
structures; optimization – the answer would often have been the middle two in the 90s. But
what has panned out is (1) and (4). The most importance reason for this: So many decades of
continuous mathematics and developments in randomized algorithms. The theory community
rather more focused on discrete than continuous. Machine learning stuff has turned out to
be very important. Working on discrete problems you’re handicapped! There’s a lot more
you can draw on for continuous techniques.

I’m going to focus a lot on randomized algorithms; this helps quite a bit. It helps in
discrete problems too, but not as much.

As for SVD in learning, it is widely used (topic modeling, clustering, etc.). It’s folklore
that if you have amixture of spherical Gaussians and you want to find the subspace spanned
by the means, the SVD subspace is the subspace of component means. So SVD helps you find

1

that space, then you project to it and do some algorithm. Non-negative Matrix Factorization
(NMF) is similar in spirit to SVD, but you have non-negative values in the factors.

For people in theory, algorithms can toss coins (randomized algorithms), but the data is
worst-case. You want to assert expected running time for the worst case input is at most
something.

The other case is the data tosses coins, the algorithm may be deterministic, this is average-
case analysis. Here we’ll focus on (1) more than (2). Random sampling will be used for very
large matrices. They tend to be peculiar matrices for a specific model, so it better work for
the worst case - we don’t care about many random matrices.

Why randomized algorithms? Modern data matrices are massive, and you want to sample
to reduce size to save on time. Space is also important. You assume that the data doesn’t fit
into random-access memory (this is big data). A simple form of random algorithm computes
on samples of the rows/columns of a matrix. You need a proven error guarantee, and secondly,
you must be able to sample quickly. It defeats the purpose if the sampling itself takes more
time or space than the original problem. We’ll be slightly more relaxed and allow multiple
passes, not just one pass. Towards the end, we’ll see situations where the data is distributed
among various servers. Randomization will help reducing communication between servers.
There are two scenarios: The entire matrix exists somewhere, and the algorithm draws
samples from the existing matrix. In the other situation, only a sample of entries may be
known (i.e. Netflix challenge). So you in fact only have a sample of the matrix. You’d think
that the same methods apply to both, but you need to know something about the probability
distribution via which things were chosen. If it were adversarial, not as much you can do. So
we pretend the matrix is somewhere and we’re drawing samples. You have an m × n data
matrix A with n,m large. You do s i.i.d. trials, pick a random column of A and scale it.
Then we throw away the big matrix and only compute the sampled and scaled n× s matrix.

I won’t talk about every problem every time. The first and simplest problelm is matrix
multiplication. We will talk about calculating AAT ; this is a very nice question. This is
one of our stories. More generally we want to multiply AB. We also want to do low-rank
SVD. We’ll look at matrix sketches (compact representations of a matrix). We’ll look at
graph sparsification, linear regression, and the spectral norm of tensors. Now recall there’s
no free lunch, samples can only get approximate answers. We want to pin down what the
approximation is. We’ll prove bounds.

2 Low-rank Approximation with Additive Error

We seek a rank k approximation A∗ to A with ‖A − A∗‖F ≤ best possible + ε‖A‖F . The
first is the best possible error, due to SVD, and the second error is due to sampling.

The first theorem is

Theorem 2.1. s = poly(k/ε) samples are sufficient provided that sampling is done with
probabilities proportional to the squared length of the columns.

Now, this is only interested if ε‖A‖F < best possible SVD error. This holds for PCA matri-
ces. This is from the paper “Length-squared sampling” by Frieze, Kannan, Vempala (1998).
There are many improvements via Drineas, Mahoney, Sarlos, Deshpande, Rademacher.

2

An alternative scheme is to draw a sample of entries, set others to zero. Sparsity gain
rather than reduction in dimensions (Achlioptas, McSherry).

Why length-squared? We have AAT =
∑

j colj(A)rowj(A). You can estimate the whole
sum by taking a sample of j and summing them. So you do i.i.d. trials. Each trial is
not uniform. What are good pj (number of samples to choose)? It turns out that uniform
sampling is no good (E.g. all but one column of A is all zeros). An unbiased estimator
X = 1

pj
colj(A)rowj(A). By calculus length-squared minimizes the variance of this estimator.

With an average of s samples:

E[‖AAT − ˆAAT‖F] ≤ ‖A‖
2
F√
ε

We’ll see in a minute how we actually know the lengths. This whole thing holds if we know
pj with constant factors. In general, the data handling picture is the data is too large to be
stored in RAM. We measure RAM time, space and the number of passes (the way to access
the matrix: a sequential read of the entire matrix). You’d rather not read through the whole
matrix too many times though. So the first path, you can compute probabilities by taking
sum of squares of each row / column, and the second pass you sample. So in RAM you only
hold a sample number. If you have a picture of the matrix you can do it with one pass, but
we won’t go into that.

An approximate low-rank approx. can be caried out even in the streaming model. Also,
one can first do length-squared sampling to pick s columns, then again do length-squared
smapling to pick s rows to form s× s matrix and only use O(1) RAM space. This proof gets
more complicated.

2.1 Sketch of a matrix

How do we sketch a matrix? Suppose we form a sample of rows; can’t form a sketch in
this way since don’t know anything about other rows. But we can sample rows and sample
columns, then this gives a complete sketch of the matrix. Suppose A has rank k, small.
Then a sample of 100k rows should pin down the row space of A. But still don’tknow for an
unsampled row what linear cominbation it is. Suppose we pick a sample of 100k columns,
then if the rows are in general position, then each row should be a unique linear combination,
so this pins down linear combinations.

Theorem 2.2. Length-squared samples of rows and length-squared sample of columns suffices
to form a sketch of the matrix A ∈ Rm×n. C is m × s matrix formed by sampling/scaling
the columns of A. R is a

√
s×n is formed by sampling

√
s rows according to length-squared.

Given just C,R, we can find a s×
√
s matrix U such that

E[‖A− CUR‖22] ≤
c‖A‖2F√

s

You can’t get the error in terms of the spectral norm. This kind of thing fails for high-
rank matrices like identity which cannot get anything good. We can say something for the
Frobenius norm too (something else), but we talk about the spectral norm here. There are a
lot of papers by Bourtsides and Woodruff (2015). All this is saying is that a sample of rows
and sample of columns is good enough.

3

Traditional SVD, given data matrix A, finds best rank k approximation Ak to A. Two
issues are computation time and the fact it’s not interpolative.

3 Continuing AAT Story

Say you have a probability distribution P on Rd with mean 0. The variance-covariance
matrix is M : Mij = EP [xixj]. A is a d×∞ matrix with each column a sample weighted by
probability. The variance along v is vTAATv = |vTA|2.

Now our question is the sample complexity: How many i.i.d. samples according to P
suffice to estaimte variance to relative error along every direction?

We want to sample a finite, scaled submatrix B of A so that for all v, |vTB| = (1±ε)|vTA|.
So you want a direction along which the error is very small. It becomes difficult to do this if
the entire variance lies in one plane.

Previously we saw that length-squared sampling gives a certain error. Rudelson and Ver-
shynin using a beautiful technique of “decoupling” from probability and functional analysis.
They proved that

E[‖AAT − Estimate‖2] ≤
c‖A‖F‖A‖2√

s

Now there are some works by Tropp which use the matrix Hoffding-Chernoff inequalities
which give you this result in a more elementary way. For log-concave probability densities
on Rd, O(d) samples suffice (Pisier and Bourgain).

4 Spectral sparsifiers of AAT

Spielman and Srivatsava get a graph G with n nodes and m edges, where AG is a node-edge
incidence matrix. We want a sparser sub-graph H so that all cuts are approximately right
(Karger). A stronger condition than cuts is the same question as approximating variance-
covariance matrix from before. Rudelson-Vershynin implies that ||vTAG|2 − |vTAH |2| ≤
cb‖A‖22‖v‖2√

s
.

Now take W the n× n left pseudo-inverse of A: WA is an isometry on the column space
of A. Sample columns of A according to length-squared probabilities from WA. Let pj be the
length squared of col j of WA and divide by ‖WA‖2F . Repeat this s times with probability

pj and scale by 1/pj to form n × s matrix B. Then for all v, |vTB|2 = (1 ± σ
√
n√
s

)|vTA|2 by
Rudelson and Vershynin. Then you can sparsify for any matrix A.

But computing pj involves finding W which is time consuming. Spielman and Srivatsava
showed that for Laplacian matrices this can be done in linear time. For graphs, these results
seem to be electrical resistances. An open question is are there other classes of interesting
matrices for which pj can be computed easily?

Pre-conditioned length-squared sampling leverage scores. Rudelson-Vershynin theorem
can be used to assert that O∗(rank(A)) samples suffice. Can we save on rank(A)? Yes.
First if we can do SVD to find Ak, the best rank k approximation to A then use pre-
conditioned length-squared probabilities of Ak, we can do with O∗(k) samples. Drineas,
Mahoney and Muthukrishnan say that with poly(k/ε) sample columns of A drawn according

4

to pre-conditioned length-squared probabilities on Ak, we can get an interpolative approx-
imation A′ to A with the following relative error: ‖A − A′‖F ≤ (1 + ε)‖A − Ak‖F . An
alternative way to get the same theorem: Draw a sample r = poly(k/ε) sample columns of A
with probabilities proportional to the square of the volume of the simplex spanned by them.
Deshpande, Rademacher and Vemapala did Volume Spanning via Determinental processes.
Suppose you’er searching for “jaguar” - there are two senses, the animal and the car. The
car is more often.

If you did length-squared sampling you’d get the car a lot. The trouble with this algorithm
is that it may take nr time. There was a linear time algorithm yesterday now!

5 Randomized Algorithm for general tensors

Suppose A is n1×n2×· · ·×nr symmetric. We want to maximize
∑

i,j,k,...Aijk...xixjxk... over
unit length vector x.

Theorem 5.1. For any fixed ε > 0, can find in polynomial time a y satisfying∑
i,j,k,...

Aijk...yiyjyk... ≥ MAX possible− ε‖A‖F

The algorithm requires length-squared sampling (Kannan and Vempala).

6 The random sign matrix

A nice result in the last few years. Let’s look at a particular matrix called the count-sketch
matrix. It has a single non-zero entry in each column which is ±1 with probability 1/2 each
in a random row. This was studied in the context of streaming. Clarkson and Woodruff in
STOC (2013) (won best paper) showed that for A any m × n matrix, m >> n. Then S is
a t × m count-sketch matrix with t = poly(n/ε) independent of m. With high probability
simultaneously for all x ∈ Rn. Then |SAx| = (1±ε)|Ax|. SA can be computed in linear time.
Then LRA just on SA suffices. Ss are subspace embedding matrices. They’re preserved for
every x.

Another paper by Clarkson and Woodruff showed that low-rank approximation, regres-
sion, matrix multiplication, etc which is linear in the number of non-zeros. Many problems
can be done like this. There’s another paper by Clarkson and Woodruff in the space optimal
streaming algorithm. Last year, there were optimal algorithms for CUR.

6.1 Distributed Data

Now, how to deal with distributed data? Suppose r servers each has an m× n matrix with
m >> n, server i has matrix A(i). We want to compute with A = A(1) + A(2) + · · · + A(r).
We want to compute with a random projection of A (use PA where P ∈ Rs×m random
matrix). Server i can find PA(i) locally and communicate this s × n matrix to a central
processer. Communication is O(snr) avoiding m except servers need to compute on the
same P , which is random! So you need O(smr). Alon, Mataias and Szegedy suggests the
use of pseudo-random P . Then in this context, Kane, Mekha, Nelson let x be a fixed vector,

5

then to get |PAx| ≈ |Ax|, you only need O(log n)-way independence. Need to communicate
only the O(log n) bit-seed to all servers. To ensure |PAx| ≈ |Ax| for all x ∈ Rn, poly(n)-way
independence suffices.

7 Answers to some questions from audience

For linear regression, you project using these methods and then do regression in the lower
dimensional space. One of the big open questions is to get a log(1/ε) dependence using these
random methods. It’s not known that we can’t do it.

6

	Introduction
	Low-rank Approximation with Additive Error
	Sketch of a matrix

	Continuing AAT Story
	Spectral sparsifiers of AAT
	Randomized Algorithm for general tensors
	The random sign matrix
	Distributed Data

	Answers to some questions from audience

