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1 Overview

Use the Bayesian game setting and apply information theory to bound the changes in entropy. Then apply
this to regret by bounding the expectation of the sum of the losses by this information inequality and apply
Cauchy-Schwarz. Then use a lemma on ability to distinguish between convex functions randomly sampled
(via posterior distribution) over a convex space K to let you use pidgeon-hole to find a x̂ for use in the
ε-greedy Thompson sampling to pick an optimal strategy.

2 Convex Bandit Setting

We have t = 1, 2, · · · , T and K ⊂ Rn a convex body. The player chooses some xt ∈ K. Then the adversary
chooses some lt : K → [0, 1] where lt is convex and 1-Lipschitz. The player then suffers some loss lt(xt)
and only sees the loss for their play. We define performance by looking at regret RT =

∑T
t=1 lt(xt) −

minx∈K
∑T

t=1 lt(x). We can define minimax regret as RT = infplayersupadversaryE[RT ]. You can think of
this as choosing the best thing in advance.

3 History

Kleinberg ′04 got RT ≤ n3T 3/4, and FKM ′04 got RT ≤
√
nT 3/4. In 2015, we have the best bound. The

strategy to get these results is just the stochastic gradient descent strategy: xt+1 =
∏
K (xt − η∇lt(xt)) from

Robbins-Monroe in 1951. Here, nature does not provide the randomness, you do.
The only thing we want know is that we are going to replace ∇lt with gt, where E[gt] ≈ E[∇lt(xt)].

We can use the divergence theorem to get gt = (n/δ)lt(xt + δu)u where u is uniform on Sn−1. The
expectation Eu[gt] = ∇l̄t(xt) where l̄t(x) = Eb∈ball[lt(x+ δb)]. This is just a smoothing operation. Now it
is really simple, you use the usual bound of gradient descent. You need to control the norm ‖g1‖22 ≤ (n/δ)2.
This is still the best bound in some sense as it is polynomial time. After this there has been a long line of
work trying to improve this under various conditions. If you assume loss functions are smooth, you can get
RsmoothT ≤ T 2/3. If you are strongly convex, you get this same bound. Then recently Elad Hazan proved
RsmoothandstronglyconvexT ≤

√
T . But this is all the same algorithm roughly - the core idea is the same.

You add a little bit because you need to play with certain thing. Linear functions are important though: For
linear loss functions, then we know much more. We have minKRlinearT = Θ(n

√
T ). Most of the work has
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been going in this direction. What was open was general convex functions. But most of the work focused
on the linear case. You can formulate all of these problems like shortest path etc, which are linear in their
representation. What is so special about linear? The gradient is the same everywhere, so you can get an
extremely strong estimator for the gradient everywhere. We can now say that we understand the linear case
very well. Not completely: We still don’t have complete understanding of how the set K comes in: You can
maybe do better for specific K, but the bound is tight for the worst case.

4 New stuff: Convex Bandits

I will now tell you why I am interested. How can you squeeze as much as possible out of limited information.
We didn’t know whether you can get

√
T regret in the general case. The theorem I am going to tell you is

that you can. Even in dimension 1, this was open.

Theorem 4.1. Bubeck, Dekel, Kren, Peres ′15 for n = 1, Bubeck and Eldan ′15 (full generality).

RT ≤ n11
√
T

For the stochastic case, this also works.

Proof. 1. Step 1. RT = supadversary,distributionµon(l1,··· ,lT )infplayerE[RT ] by the minimax theorem
which you can apply because we assume the oblivious case. The adversary is choosing a distribution
of the loss sequences, and the player is choosing as before. The player is playing after the adversary.
Now we can adapt to the distribution. This is a Bayesian game. Now we are going to bound this:
We are going to provide a Bayesian strategy with

√
T regret: But this doesn’t get you a strategy for

the primal problem. This is going to be a computational strategy with T T after discretizing all the
solutions (losses, etc.) - then just find it (so this is still computable).

2. Step 2. We are going to apply Russo and Van Roy information ratio: We define nt(x) is expected
instantaneous regret at time t to x. Let x∗ ∈ argminx

∑T
t=1 lt(x). To be clear, consider this a random

variable: We are going to use some prior distribution of the past. Thus we can have a posterior
distribution given everything we have seen so far. Then

nt(x) = Eton(xs,ls(xs)s<t
[lt(x)− lt(x∗)] = Et[lt(x)|x∗]

which is for fixed x, thus only randomness is in adversary. We are not really taking expectation over t,
the subscript t denotes a posterior distribution over t. We can write x∗|(xs, ls(xs))s<t. We can write
this posterior just fine. This is the expectation of what we can expect to gain after playing x. There
could be some variability in that lt(x) which is irrelevant to x∗. Thus we are going to average out all
this noise and just look at what we get from x∗. x∗ is a random variable because adversary has not
revealed its lt. Even at T , x∗ is a random variable. Then we look at the conditional variance

vt(x) = Vart [Et[lt(x)|x∗]]

The inner expectation is a variable of x∗, and the variance is taken over x∗. Let us re-write this quantity.
The following lemma is amazing

Lemma 4.2. Russo and Roy ′14.

E[

T∑
i=1

vt(xt)] ≤
1

2
H(x∗)
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If we have an ε-net over K, then n∗ = minε−netH(x∗) ≤ log |ε− net| ≈ n log(1/ε).

Proof. Let us introduceα(t) = Pt{(x∗ = x)}. Then vt(x) =
∑

z αt(z) (Et[lt(x)|x∗ = z]− Et[lt(x)])2 ≤
1
2

∑
z αt(z)Entropy (Lt(lt(x)|x∗ = z)||Lt(lt(x))) = It(x∗, lt(x)), recognizing the mutual informa-

tion. You can view mutual information between x and y as how much decreasing entropy you get.
We have 1

2It(x
∗, lt(x)) = 1

2 (Ht(x
∗)−Ht(x

∗|lt(x))). And now the magic happens: This gives
E[vt] ≤ Ht+1(x

∗)−Ht(x
∗) which gives us the required telescoping sum.

So this is a kind of information theoretic view of optimization. The adversary has some prior, I will
adapt some to this prior, this is a Bayesian game, how do I analyze it? Information theory. All of these
results are completely universal: Any Bayesian game, how does entropy progress. No convexity or
bandits appeared. So two things left: I need to tell you how to use this for convexity and bandits.

3. Assume that we have a strategy such that Et[nt(xt)] ≤
√

Et[vt(xt)]. Then you can just sum these
things (which will be your regret) and apply Cauchy-Schwartz. If you have this, then your expected
regret is bounded by

√
(T/2)H(x∗) =

√
(T/2) logK, where K is the size of the ε-net (you don’t

really need to discretize, it just simplifies the discussion). If you have this, then you are done. So the
only question is can prove your inequality. Russo showed that Thompson sampling Pt{xt = z} =
αt(z) for any z, called ”probability matching”. This is the first bandit strategy - more general than
multiarmed bandit strategy. The probability you play z is equal to the posterior distribution on z (the
probability that it is optimal). Then Et[nt(xt)] ≤

√
KEt[vtxt]. Then the new idea is to not use

Thompson sampling. This is ε-greedy meets Thompson sampling. xt = argminnt(x) the best point
with probability 1 − ε or some x̂ with probability ε. We can tune this ε by tuning the posterior. Now
how do you pick this exploration point? First we show that ε is good, and the next twenty pages are
about x̂. How do you select it? Here is where convex geometry comes into play (this is also general,
and was not previously known):

Theorem 4.3. Let f : K → R+ convex and 1-Lipschitz. Fix ε > 0. Then there exists a distribution
µ on K such that for all g,K → R, convex, 1-Lipschitz s.t. exists z ∈ K with g(z) ≤ −ε such that
µ({x : |f(x) − g(x)| ≥ ε(1/n3)}) > 1

n7 log(1/ε)
. You can view this as a statement about hypothesis

testing. Thus we can differentiate between the two. You do not only care about minimizing f , you
care about exploring f also. Remember that this is the Bayesian setting: f is what we have seen so
far. f is the conditional expectation of the loss given the past. What you are trying to do is find a
good sigma algebra (subspace on which you are projecting, enhance your posterior distribution, make
your posterior as informative as possible, which is orthogonal to being at any given time step) also.
The proof is constructive, but at some point we use the probabilistic method. This basically says that
a convex function must be mostly everywhere smooth (like in Rademacher’s theorem, use Poincare’s
inequality: Use small balls to cut off parts of the space - multi-scale argument). The adversary can try
to hide in the non-smoothness of the function, in the end it is much more by hand.

Once you have µ, you can use pidgeon-hole to find a good x̂. You should think of g as the expectation
of the loss - the key point of this theorem is can we tell the difference betweeen what I can see and what
I expect. Convexity allows you to move from εn to the log term. You can’t sample from µ efficiently.
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