
ManOpt

Lecturer: Nicholas Boumal Scribe: Kiran Vodrahalli

Contents

1 Introduction 1

2 Optimization on Manifolds 1
2.1 Convergence guarantees for Riemannian Gradient Descent 3

3 Max-Cut Optimality 4

1 Introduction

I prepared a story with two parts. One is optimization on manifolds. The second part is
optimization on manifolds to solve semidefinite relaxations.

Optimization on manifolds is nonlinear programming, and is concerned with solving min-
imization for smooth f . What is particular about the domain of f is that it is defined on a
manifold M . To understand how we might do this, let’s look at classical gradient descent for
unconstrained optimization. Can we do this on a more complicated space. Everything here
will be nonconvex. The first part will be a general framework for nonconvex optimization. I’ll
show particular cases where we can actually get a global optimizer, for particular examples.

2 Optimization on Manifolds

Let’s say we can get at least critical points. If you want to think about M , think about the
sphere.

What do we do in gradient descent? We take steps along the gradient. If you are smart
about how you pick step sizes, this will converge to a point where the gradient is zero. This
may be a local optimizer. But at least you go to a critical point.

Now we do the same thing on a sphere (just the shell). Then I will argue you can do the
same thing even on an abstract manifold.

We have a cost function over the sphere. The idea is exactly the same. Locally pick the
best one. Let’s restrict our attention to tangential directions to the manifold. Among all
tangent vectors, we will pick what looks like the best direction. We follow this direction. You
could follow the generalization of line on a curved space, a geodesic. As long as you move in
right direction at first, I will be happy. I want to move in direction I chose. Then you iterate
this and it may converge to a critical point. The theory around manifolds say yes.

We only used notions of directions along which it is ok to move: tangent space, tangent
vector. The second thing I did is look at all tangent vectors in that space and compared
them, since we wanted a notion of “steepest”. So you might want an inner product on the
tangent spaces. You’re actually transforming the set into a Riemannian manifold. There’s

1

a notion of linearization (tangent space). We’re asking that on each tangent space there’s a
metric, so there’s no discontinuity in the way you pick inner products. This is a backstory
for why it makes sense to consider optimization on manifolds, it’s very nice.

We’re trying to not bring in curvature into the mix since it is not easy to work with, so you
just use line search. This is different from projected gradient - why is it different? Why do
we do approximation by hyperplane? When you do projected gradient, you use the ambient
space, you have a notion of gradient in the embedding space. If you do the same thing in the
framework of optimization on manifolds, there is an intrinsic notion of gradient on the sphere,
we separate it from the notion from the gradient in the embedding space, which may or may
not exist. If you try to use the same metric on the tangent space, you can just project the
Euclidean gradient to the tangent space. The advantage of the manifold approach is becasue
the gradient is defined intrinsically, you can do this if there’s no ambient space. Well the
Whitney embedding theorem guarantees there is an embedding, but that’s not practical to
work with. This allows us to work with the manifold directly. For optimization on manifolds,
you have retractions (approximate geodesics); the requirements there are very lax.

A geodesic is a generalization of a line. You want to extend acceleration of the line to
weird manifolds; acceleration is 0 means it’s a geodesic (FROM THE POINT OF VIEW OF
SOMEONE WHO LIVES ON THE MANIFOLD). The geodesics will be the great circles.
How do you compute a geodesic locally? A geodesic satisfies a differential equation. Either I
integrate the equation (very costly), or I think of the formula (which usually doesn’t exist).
The next best thing as a computer scientist is I’ll do something which looks like it. I’ll
use that definition of ‘close to’ and will prove some things with it. Our definition is very
lax. If I am at the current point and follow geodesic with velocity 0, I should stay at my
current point. The second requirement is that locally, up to first order, the retraction and
the geodesic should agree, locally (in the Taylor polynomial sense). This will be enough to
ensure convergence, since eventually you will make very small steps. You can say something
about projected gradient descent. Intuitively this should be a reasonable approximation of
the geodesic, and it’s true. There are some conditions and there is a paper, and this will give
you something which agrees up to second-order. Most retractions in our toolbox use exactly
this. The step-sizes matter in the analysis, so you may have to do extra work to get the same
convergence rates.

Here we want to think of optimization on a manifold in the same way we think of uncon-
strained optimization. We want to think of the manifold as the only thing that exists. You
can define all of these things even if the manifold is the only thing that exists. To optimize,
we only use that the search space is a Riemannian manifold. This works for abstract man-
ifolds and quotient spaces too. This could come up in practice as follows: Consider sensor
localization. You measure distances between pairs of people, and given these measurements,
you can try to figure out where everyone is. There is a fundamental indeterminacy in this
problem; namely, translational. There’s also rotational indeterminancy. If you look at my
unknowns which are x, y for everyone, they are redundant since there are extra degrees of
freedom you cannot account for. Now if you try to write this as an optimization problem, the
cost function will never have isolated optimizers (since points are equivalent to other points).
If you open a book about nonlinear programming, then these all start with assuming you’re
over an isolated optimizer. So these don’t apply. We’re not talking about a global conver-
gence rate, we’re talking about local convergence rate, which says that eventually gradient
descent will enter the neighborhood at a local minimum (converges exponentially fast here).

2

These require you have an isolated optimizer; this is NP-hard in general.
If you try to formulate sensor-network localization, and you want to invoke a theorem

giving fast local convergence, you can’t: There’s fundamental indeterminancy, there’s no
local strong convexity.

Well you can solve this by just quotienting out rotation and translation which happens
to be a quotient space which is a manifold (for instance, matrix completion: UV T , can just
insert an orthogonal matrix in there. You want to mod out by orthogonal matrices). You
end up with abstract space where each point is an equivalence class.

At the end of the day you represent everything with matrices anyways. You prove on
theorem once, and it applies to everything. Check out the book “Optimization algorithms
on matrix manifolds”. This was written by my PhD advisor; we wrote a program to solve
many optimization problems over manifolds.

Example 2.1. Max-Cut relaxation SDP.

min
Y :n×p

Tr(AY Y T)

with diag(Y Y T) = 1 (each row of Y has unit norm), where A is the adjacency matrix of a
graph. This is an optimization problem over a manifold. This is just a Cartesian product of
spheres. The tangent space is given by {Y · : diag(Y ·Y T + Y (Y ·)T) = 0}: a linear subspace.
If you want to optimize, you can get this function classically. Once you have your point and
your direction, you need a way to retract: Well, you can just normalize each row. The only
difference with projected gradient is the intermediate step of projecting to tangent space. In
practice, you may want to do something with fast gradient descent. There’s something called
Riemannian trust regions.

Now, note that this problem is solveable in a convex setting. However, I will argue that
optimizing over the manifold is faster than solving the SDP. In particular, for a very very
large matrix, the interior point method blows up (memory and gives nonsense!) For this
manopt library, it takes five seconds on my laptop and we have a proof that it converges
quickly.

2.1 Convergence guarantees for Riemannian Gradient Descent

The rule of thumb for optimization on manifolds is you can expect as much as you would
get in unconstrained optimization (smooth unconstrained in Rn, do gradient descent; in the
limit you will get a critical point and locally you will get linear convergence rate (gradient
descreases exponentially)). You get the same things on the manifold. You can also control the
gradient with the number of iterations. In the Euclidean case, you need 1/ε2 and Lipschitz
assumption. Similarly, you can get ‖grad(f)‖ ≤ ε in O(1/ε2) iterations under Lipschitz
assumptions. It’s proved very similarly to the other case. It gets tricky when you have
to assume Lipschitzness in the gradient. To compare gradients at different points on the
manifold is tricky, because there are different tangent spaces. So you have to parallel transport
them to each other. These are annoying concepts, so we instead used an equivalent definition
of Lipschitz gradient in Rn, which isn’t equivalent for manifolds. You basically say the
function is well approximated by first-order Taylor expansion. We started this way and
worked backwards. The Lipschitz assumption is the Taylor approximation one. We made

3

that assumption not on f , but rather on the retract of f . The retraction is a map from
the tangent space at X to the manifold. If you compose f with the retraction is that you
get a pullback (the cost function to the tangent space), now you get a function defined on
the tangent space and that’s a linear space. you assume this kind of Lipschitzness on all of
tangent spaces (you need global Lipschitz on all tangent spaces, but we control that). After
that the proof is amazingly similar.

You can also compute global convergence to second order critical points (Hessian is close
to semidefinite; second-order necessary conditions). You get a quadratic convergence rate
locally. As long as the gradient is large, you don’t need second order information. When the
gradient is small, now you need to use second-order. While Hess(x) ≥ −εI, you iterate.

3 Max-Cut Optimality

Given a graph, split nodes into two classes and select a subset of nodes of the graph and split
them. Some of the edges will go from left to right, count how many there are. We want to
choose how to put nodes on the left and right, so that there are as many edges as possible.
This is NP hard. You probably know also about the semidefinite relaxation for max cut:
minX Tr(AX) such that diag(X) = 1 for X PSD. IF this has a solution of rank 1, you get
a true global optimizer. By Goemans-Williamson and randomized projection you can get
the best cut within 87% of optimal X to {±1}n. If you want the actual value of the cut,
you replace A with the Graph Laplacian and divide by 4. This is convex, but SDPs don’t
really work when the problem is big. If you do this with a 2000-node graph on a laptop,
memory issues will come into play. But manopt solves this with 6 seconds and no memory
issues. A fair comparison would be to gradient descent: You will have to project to the cone
though, and that will kill you. You can look at Lagrange relaxation kind of things (iterate
eigenvalue). But as long as you output 2000× 2000 matrix, you’re doomed to be slow. But
you can use Multiplicative Weights method, but then you will get 1/ε instead of log(1/ε).
If you want to solve this SDP and you add that the rank must be bounded by

√
2n, it’s

not NP hard. Max-Cut SDP has a low-rank solution. The original search space is the cone
of PSD matrices, and intersect with affine plane; this is convex set. It also happens to be
compact. Now, if you optimize a linear function (concave) over a compact convex set, one of
the extreme points will be a global optimizer (linear programming: vertices of polyhedron).
So you know at least vertex is a global optimizer. Then, all exterem points of the set there
is an optimal X whose rank r satsifies r(r + 1)/2 ≤ n. Thus, r ≤

√
2n is fine. In general, n

is the number of constraints. This is not for general SDP.
If there are only one or two constraints and your search space is compact, then the SDP

always has a solution of rank 1. Consider the trust region problem:

minxTAx+ bTx+ c

with the constraint xTx = 1. Now this you can write as [xT1][A, b; b, c][x1]T . Call the middle
matrix C. Introduce matrix Z = [x1]T [x1] = [xxT , x;xT , 1]. Then we do

min
Z

Tr(CZ)

with Tr(Z) = 1, and Zn+1,n+1 = 1, with Z PSD. Recall our matrix is n× p. So p = 2 means

p(p + 1) = 6 > 4. Now p(p+1)
2
≤ 2, then p(p + 1) ≤ 4, implying p = 1 exists. Rank 1 would

4

be very useful. 2 is believable. One of the optimizers has rank 1, but there are others which
are not rank 1. Interior point methods will not find this typically maybe. There’s also a
polynomial way of reducing rank 2 solutions to rank 1, since this can only happen when the
solution is the midpoint between two extreme points, and you can use linear algebra tricks
to get the rank 1 solution.

Now, for a max-cut partial relaxation, you can relax the rank constraint partially, by
saying that rank(X) ≤ p. This is a hard problem to look at. Parametrize X = Y Y T

with Y size n × p. You can now explore this set of matrices. This is called the Burer-
Monteiro approach works fantastically well in practice, but there wasn’t much theory to
speak of. The best result I could come up with Bandeira is if you look at the problem on a
manifold, and take p big enough to include all extreme points, for almost all A, all SOCP’s
are optimal. Saddle points are escapable since Hessians must have negative eigenvalues. That
is: minY :n×p Tr(AY Y T) such that diag(Y Y T) = 1. If p(p+ 1)/2 > n, you get an explicit dual
certificate for the SDP, now you just have to show that second-order conditions imply the
other. And it works for almost A, we don’t actually have an example of a bad A. Before we
got this result, I tried to come up with a deterministic result, and the best is p > n/2; for all
A, all SOCPs are optimal.

4 Conclusion

The take home message is that optimization on manifolds applies to a wide range of applica-
tions, and it’s easy to try with Manopt. It comes with the same guarantees as unconstrained
nonlinear optimization. For some problems you get global optimality.

5

	Introduction
	Optimization on Manifolds
	Convergence guarantees for Riemannian Gradient Descent

	Max-Cut Optimality

