
What can Deep Learning learn from Liner Regression?
Ben Recht, U.C. Berkeley

Scribe: Kiran Vodrahalli
Columbia ML Talk: 09/22/17

1 Introduction

I have been doing machine learning for a very long time, this has been around for a long time,
and a machine technology since the sixties in Russia. But it’s always been complicated to
get a leg in. But, it is an end-to-end process: You have to understand how data is acquired,
normalized (turn data into numbers), which numbers are useful, and then at that point and
only that point do you run your algorithm. That’s the way things used to be. For instance,
for text, you’d do bag of words, TF-IDF, LDA, CRF or something. So before for machine
learning, you had to understand every part of these pipelines, each of which is complicated
in itself. For instance SIFT/HOG in computer vision. Building blocks of SIFT/HOG are
essentially those of convolutional networks! 5 years ago, in image processing, there was
a major advance: 10% jump on ImageNet dataset (now we’ve overfit it to roughly 0%
accuracy).

I think it is inarguable that deep learning has been a successful and mature technology:
image detection, real time translation on your phone. A lot of this can enrich humanity,
superhuman performance on Go, robotics systems, but the thing where we have to pause in
machine learning: As we push the boundaries of these things, and they start ot interact with
people, the bar for working changes. Doesn’t mean just 100% classification on a dataset: Cars
are scary. The training set for Mobileye system in Tesla wasn’t able to detect a reflection
of a truck which took a turn. This caused a crash. We have to be sure they work, and
we have to understand how they work. This is where theory has a place: ensure safety,
trust, predictable. So how can we bring that kind of understanding to machine learning:
Understand when it’s good and bad.

2 How does a theoretician approach deep learing?

Well, multilayer perceptron has been around for a while. How does this work? You get an
input z, and output φ(z;x). Then you compute the loss function, plug it in, and some deep
learning library gets you an answer. How does this work? I’m in optimization. It looks
messy, everything interacts in nonlinear way. What makes this optimization hard? Now
we’re getting into stuff from the 90s. How does nonconvex optimization work? I personally
think 1D pictures are misleading (all this spin-glass model type of stuff). The literature is
unfortunately not clarifying: three papers which say completely different things. It’s not
clear to anybody what makes the optimization work inside of deep learning. Let’s not dwell
on these contradictions. Well, do we actually believe that optimization is hard? We never
actually run this thing until it terminates. If you download standard code and turn off all the
regularization mechanisms, you can get it to 0. Deep networks are globally easy to minimize
on MNIST. It also happens on CIFAR-10. Lots of other datasets too. So now we have a
weird issue: optimization is not the hard part of deep learning. Optimization is easy. The
hard part is what happens out of sample: Error starts creeping up.

Now, when you use Alex Krizhevsky’s parameters (intricate), the train/test set error
track each other. Now, you’re NOT supposed to look at that out-of-sample performance,

1



What can Deep Learning learn from Liner Regression?
Ben Recht, U.C. Berkeley

Scribe: Kiran Vodrahalli
Columbia ML Talk: 09/22/17

but I guarantee you he looked at it. So we’re minimizing a loss (usually something we invent).
This is a softmax multinomial regression loss – and we care how many images are we giving
wrong assignment to – eventually, the line (for classification) flattens out. When we overfit
to in-sample, the classification error does NOT go up. So the issue is not optimization,
but it’s generalization. Generalization is all we really care about. That’s what all machine
learning is about. For me, the classic thing here is you have data, will use the data, and all
we care about is how we do on new data.

So if you get i.i.d. samples from some distribution D, you want ot find a good preditor
function. If you have new sample zn+1, want to do well too. So we would like to minimize
with respect to expected loss. We want Ez [loss(f, z)] to be small. Too issues: don’t know
distribution, integrals are hard. Instead we rely on law of large numbers: The sample average
should be close to the expectation if n is large enough. We minimize this using stochastic
gradient descent. Two issues: 1) is it close, 2) is SGD the right algorithm? So we care about
generalization error. We want that to be small. We don’t necessarily care about the value,
we just want to not be surprised. We can’t understand when it is a good proxy for the true
population. So we need some tests for that.

Theorem 2.1. Fundamental Theorem of Machine Learning.
R[f ] = (R[f ]−RS[f ])+RS[f ] The population risk is the generalization error plus the training
error.

We just want generalization error to be small. Zero training error does NOT imply
overfitting. The second version: R[f ] = (R[f ]−R[fH]) + (R[fH]−R[f ∗]) +R[f ∗], where f ∗

is the best in class. This is error vs. best in class (error vs. best in class, approximation
error, error of best). But you can’t calculate any of these. This however motivates the bias-
variance tradeoff. But deep learning has shown us that that is completely wrong. I think we
knew this already but didn’t propagate it down to the undergrad classes.

3 How to reduce generalization error?

In deep learning, models where p > 20n are common. You can make it super big.
How do we reduce generalization error? We’ve given up on model capacity with deep nets.

Then “regularization”: this to me seems like “just make the optimization bad”. Another
one is data augmentation: generate fake data: This essentially imposes on the algorithm
what symmetries the data obeys (by sticking it in human wise). So for instance, reflections
on image data. Or crops. This is a very powerful idea. Deep learning scales linearly with
number of data points, which allows it to take advantage of this kind of augmentation. All
of these things are sufficient but by no means necessary.

At Google, you have unbounded compute and can explore parts of deep learning that
you can’t as an academic. So we looked at this dumb dataset, CIFAR-10. People read much
too much into performance here, but it’s interesting. These are not really having anything
to do w/image classification, but whatever, it’s a benchmark.

2



What can Deep Learning learn from Liner Regression?
Ben Recht, U.C. Berkeley

Scribe: Kiran Vodrahalli
Columbia ML Talk: 09/22/17

So what happens if we turn off all regularizers. We downloaded CudaConvNet: 145578
parameters, with only 50000 datapoints. You get some non-zero training loss, and error goes
down to 18%. There is a lot of tuning to make regularization work. Note that p/n = 2.9.

So you can tune parameters, OR, you get a bigger network. MicroInception has 1, 649, 402
features, p/n = 33. Train loss is 0, train error is 14%. Then ResNet, the hot thing these
days, make 2, 401, 440 parameters, then p/n = 48, same story, reduce error. Now this is
strange, making parameters bigger seems to reduce generalization error.

Now another weird thing: Even with random labels, you get training error to zero (with
terrible generalization error). You can do other weird tests: shuffle pixels (in the same way)
for all images. You can still get training error to zero. Now test error is 50% error instead
of 14% error. Shuffling different portions of the data gives you linearly increasing test error.
But you can still get training error to zero. If you feed in Gaussian white noise, can still get
training error to zero. So they have ridiculous capacity, but when giving it real data, they
generalize.

So the point here is that it’s not just the model – that is not what contains the extra
information. It’s the model and the dataset together which generalize. Well, people think
CIFAR-10 is a toy. What if we do image net? here, n = 1.3M examples, d = 150528 (resized
to 256x256, k = 1000 classes. On ImageNet, we used actual Inception (27 million params,
p > 20n). Here we used the standard Google regularizations. Training error would be 13.7%,
Test is 23.4% accuracy. This is actually pretty good. Now if you turn off regularization,
you lose a few percent of top 1-accuracy, but it’s not too catastrophic. If you turn off both
fake data and regularization, it’s bad. I feel like fake data is what you’re supposed to pay
attention to.

Now using random labels, you get 5% error training data. I’m confident if we tuned
things, we could get 0% error (maybe with 10 GPU years). So on real datasets, you can
have these architectures get low training data and fit on random labels.

So now the question: Are neural nets learning or memorizing? I thing a little bit of both.
It used to be in Google Translate, that “you abuse our patience” is translated to a line from
Cicero. So it’s clear that they are memorizing things. As soon as you reveal a mistake, they
fix it behind the scenes (manually).

4 Recht Linearization Principle

Now, if we can’t understand what machine learning algorithm does in case of linear regression,
we have no hope of what it does in deep learning case. “Would you believe someone had a
good SAT solver if it couldn’t solve 2-SAT”?

So, why do we generalize when fitting the labels exactly? Well this totally happens in
linear models. If you run SGD, you find minimum `2 norm solution (consider least squares).
Least squares actually works quite well for classification too. There are infinite number of
global minimzers, but we find the minimum norm one with SGD. I actually spent 10 years of
my life thinking about problems like this. i.e. Compressed sensing. So the point is you have
to pick some solution. Maybe in neural nets we pick one by messing with architecture. But

3



What can Deep Learning learn from Liner Regression?
Ben Recht, U.C. Berkeley

Scribe: Kiran Vodrahalli
Columbia ML Talk: 09/22/17

there are already pretty sensible things about sparsity and smoothness that already work.
L’ets first show that things really do work for linear regression. There’s this old thing called
kernels, so you’d build a matrix with all your data (you never need more data than number
of parameters). Now these datasets that seemed large in the 90s, youc an solve in about 3
min. So what happens if we do this on MNIST. You get 1.2% test error. Now if you add a
wavelet transform, it goes to 0.6% error. So indistinguishable on the unit test.

So what about CIFAR-10: well, we get 46% error without pre-processing. If we do a
random wavelet transform (1 layer convet), then you get 16% error, + `2 regularization gets
this to 14%. But then solving linear systems scales as a factor of 2.7 or so, so it’s much
harder to use data augmentation.

5 Margins

As long as deep net doesn’t do anything weird in the middle, as long as the representations
are far apart from each other, things are nice. Data is nice, that’s great! We can do well
if there’s a margin. So what exactly is going on in deep learning? When we minimize the
norm, the inverse of the norm is the margin. So the smaller the norm, the bigger the margin
is on your data. So if you can find things with large margin, we will generalize well. The
test error is basically equal to the norm divided by

√
n. For kernels and stuff, this is a solved

problem.
Challenge: Find comparable, reasonable margin bounds for deep learning that explain

experimental phenomenon. There’s a paper by Matus Telgarsky, Peter Bartlett that people
do this. I think this can explain why deep learning can actually work. It’s not just the
model, it’s about the data.

So this Recht linearization principle is a fruitful research direction: Recurrent neural
networks (Hardt, Ma, R. 2016). Generalization and Margin in Neural Nets (Zhang 2017).
Residual Networks (Hardt and Ma 2017). Bayesian Optimization (Jamieson 2017), Adaptive
gradient, reinforcment learning as well.

6 What can deep learning learn from linear regression?

So it’s a lot easier to get in to machine learning. Just because you get something that can
work, doesn’t mean you should ship it (lesson for all software). Andrew Ng talks about
how artificial intelligence is the new electricy. I would say “Artificial Intelligence is the New
Alchemy”. It kind of worked though! It was the predecessor to chemistry (they invented
gold plating). They just had no idea why it worked. Chris Wiggins: thermodynamics before
Carnot. Or electricity before Maxwell’s equations. Maxwell had no idea that electromagnetic
waves existed, but his equations predicted it.

On the other hand, I have no idea what convolution filters do – adversarial examples. We
are builidng tools for automatic fact checking and place ads, etc. We can scale to billions
of people, but we don’t undersatnd and when it breaks bad things happen. Elon Musk goes

4



What can Deep Learning learn from Liner Regression?
Ben Recht, U.C. Berkeley

Scribe: Kiran Vodrahalli
Columbia ML Talk: 09/22/17

around saying outrageous things. The terminator is not coming to get us. There are serious
problems coming to get us threatening our democracy, and this guy is wasting time building
bots for video games. There are unforseen consequences, we need to understand why it
works.

Should not replacing mathematical modeling with robots. We shouldn’t necessarily even
replace humans following clear rules with robots unless we understand.

The positive note is the following: we’ve built airplanes, power grid, information infras-
tructure, Amazon, etc. Lots of amazing success stories. Machine learning should be one and
can be one, but we need to add robustness and introspection to these models. This is the
challenge for the next decade.

The margin view kind of renders the adversarial example view sort of trivial. But small
perturbations in `∞ are large in `2. There’s a paper from 2002: SVM for gender detection.
Support vectors look androgynous.

I think image manifold view is misleading too. Even in linear space you can leave manifold
where there is no data. Important to understand that there is something about process of
generating the data that we understand. Fun thing about data driven modeling is learning
from it and learning how to do without it.

7 Takeaways

Deep nets are powerful model classes. How is it that they can get zero error on training
data (even if you permute the labels, etc.) and still generalize? Let’s not forget about the
importance of the data on generalization. If the data, in some space, has a large margin,
then it should be able to generalize well. Can view deep learning as finding a representation
which has large margin. We don’t care what weird stuff it may do away from the margin, we
won’t lose anything perturbation wise for those examples. Only examples close to the margin
are at risk (why classification error may not rise even as surrogate loss rises). Notably, this
(to some extent) explains adversarial examples: Just construct “images” close to the margin
(?). Other reasons why it’s powerful: most powerful kind of “regularization” may have to do
with the data input: It’s possible to encode the structure of the data via data-augmentation
strategies (like in images, for example). Deep learning wins and can take advantage here
because it is a super large model class with lots of expressive power for which TRAINING
TIME IS LINEAR IN THE NUMBER OF SAMPLES via SGD. This is possibly why it wins
out over kernel methods, which require solving linear systems O(n2.7). (If that could be
improved...)

8 My Questions

1. Adversarial example question: Is the claim that adversarial examples exist because it is
easy to construct inputs close to the margin? (and thus it’s trivial they will exist?)

5



What can Deep Learning learn from Liner Regression?
Ben Recht, U.C. Berkeley

Scribe: Kiran Vodrahalli
Columbia ML Talk: 09/22/17

2. Power of deep nets from the data: I agree that deep nets have had their biggest
success on images. In fact to me it seems like almost all of the deep net successes are focused
on images. What properties of images do you think are the cause for this success? What
properties of the data do you think are most important to have for deep nets to work well?
In some sense, it feels to me like images (and perhaps speech, other natural signals) have a
lot of inherent symmetry built in and feel, to some extent, “additive”. Am I getting it right
when I say that this is to some extent what you mean by paying attention to the actual
data? What is your opinion about deep nets on natural language type tasks?

3. Do you believe that if kernels could be trained in a manner s.t. time complexity was
linear in the amount of new data they could reach a similar performance to deep nets, from
learning theory perspective? Alternatively, if you could encode the invariances of the data
in a small number of examples, performance of kernels should be as good, right?

4. How do you feel about random featurizations of data w/r/t deep nets?
5. Thoughts on algorithms to construct datasets?

6


