
Interactive Clustering
Kiran Vodrahalli, COMS 6998-4: 10/16/17

Contents

1 Interaction for Unsupervised Problems 1

2 Interactive Split-Merge Clustering 1
2.1 Example 1: Learning Interval Clusters . 2
2.2 Example 2: Learning Rectangle Clusters . 3
2.3 Example 3: Learning DNF and CNFs . 4
2.4 Generalization to Conjunctions . 5

3 Two Generic Inefficient Interactive Clustering Algorithms 6

1 Interaction for Unsupervised Problems

Thus far, we have seen interactive algorithms for supervised learning problems, where each
point had a specific label that we could query if we needed to. However, there exist setting
where such information is not readily available. It may be that before seeing all the data
points, one does not know what the labels may be, and must see several examples to even
decide what the labels are. This setup is essentially the problem of clustering, where we get
a set of documents for instance and are told to partition the documents into clusters which
unite documents under underlying themes present in the documents.

Clustering has clear ties to the equivalence query model of learning, in which after pre-
senting a candidate cluster, the algorithm receives a counter-example: A point which is in
the symmetric difference of the candidate and the true cluster. However, in the clustering
setting, we imagine that it might be difficult to come up with such a counter-example, as
it would involve identifying a specific point which might be the problem in the candidate
cluster. Thus, we restrict the kind of feedback the user/oracle may provide to only be of
yes/no variety. We assume the user will “know a correct cluster when they see it”, but are
unable to provide more details about what exactly they are looking for. Since the kind of
feedback allowed is restricted, the problem becomes more difficult than equivalence queries.
In some sense, we are parametrizing the ambiguity of the problem entirely with the user.

In contrast to most prior work, the notion of clustering we take up in this presentation
does not assume a particular generative model of the data given cluster labels. Instead, the
assumptions are entirely on the user: Namely, that the user has a hard-to-explicitly-specify
notion in their head of what a clustering should be, and also that any of the feedback that
the user gives is accurate.

2 Interactive Split-Merge Clustering

In their original work, Balcan & Blum (2008) introduced the theoretical study of the inter-
active clustering problem via split-merge feedback. The central idea is as follows: We can

1

Interactive Clustering
Kiran Vodrahalli, COMS 6998-4: 10/16/17

denote a “clustering” as a set of hypotheses {c1, · · · , cn} from hypothesis class C such that
when we apply the set of maps to some dataset S = {xi}ni=1, the hypotheses partition S
into disjoint sets. The goal is to identify a set of hypotheses such that we can achieve this
goal by making a minimal number of split-merge queries to a user. In particular, one thing
which differentiates this setting from other clustering settings is that we are looking for a
kind of worst-case guarantee: We wish to make no assumptions about the frequencies of
the various types of queries we will receive. This approach is distinct from Bayesian setting
where typically strong (and Gaussian) assumptions are made on the data, as is typical in
Gaussian mixture modeling. We instead specify two kinds of feedback which the algorithm
receives after outputting a candidate clustering (a query). A split feedback specifies a hy-
pothesis cluster in the algorithm’s outputted clustering which needs to be split into one or
more clusters, but does not specify how to split the offending cluster. A merge feedback
specifies two hypothesis clusters in the clustering which should be merged together into a
single cluster. Note that by definition, merging is a pure operation in the sense that the two
hypotheses selected to merge must be in the same target cluster. Typically, algorithms in
this setting involve specifying a way to initialize clusters and how to react when receiving a
split request between two hypotheses.

Since it is trivial to cluster in this model using only m queries (start with each point
in its own cluster and receive merge requests), we are only interested in algorithms which
depend sublinearly on m (hopefully, logarithmically). In general, we hope to find algorithms
which cluster with a number of queries of order O(poly(k, log |C|, logm)). Using this model,
it is possible to design clustering algorithms for specific hypothesis classes (e.g., intervals,
disjunctions) which take advantage of the specific structure of the hypothesis class to get
good algorithms.

2.1 Example 1: Learning Interval Clusters

In this setting, let the hypothesis class C be intervals on the line of the form [p1, p2].

Theorem 2.1. Clustering Intervals.
We only require O(k logm) split-merge queries to cluster using intervals on the line, where
k is the number of clusters, and m is the number of points in the dataset.

Proof. First, we specify how to initialize the set of clusters. We simply begin with a single
cluster containing all m points of the dataset. Next, we specify how to split clusters: Upon
a split request to cluster c := [p1, p2], we partition c into two clusters of equal cardinality by
defining bp1+p2

2
c as the new boundary.

Now, we see how this algorithm results in the desired query complexity. Consider that
the true clustering consists of k disjoint intervals which partition the line. Then, let the
boundaries of the clustering be the k − 1 points a1, · · · , ak−1, where these values do NOT
coincide with actual point values. Instead, ai is an arbitrary point between the largest point
in interval i and the smallest point in interval i+1. Let size(ai) denote the number of points
in the cluster ai is contained in, and be 0 if it is not contained in any clusters. At the start,
size(ai) = m for all i.

2

Interactive Clustering
Kiran Vodrahalli, COMS 6998-4: 10/16/17

We first bound the number of split queries. Note that split queries are only ever given to
clusters which contain some ai. Thus, since in the true clustering we must have size(ai) ≥ 0,
and there always exists at least one ai for which a split feedback reduces size(ai) by half,
we know that each size(ai) experiences at most logm splits. Since there are O(k) ai, there
are at most O(k logm) splits in total.

To bound the number of merges, note that merges only happen between clusters that do
not contain any ai. Since the number of splits bounds the total possible number of individual
clusters which do not contain any ai, we can only select merge operations from this list of
O(k logm) clusters. Thus, there are O(k logm) possible merges that can be requested (each
merge reduces the number of clusters by 1), and the total query complexity is O(k logm).

2.2 Example 2: Learning Rectangle Clusters

We can generalize the result from the previous example to higher dimensions of intervals.
In general, a d-dimensional interval is a concept defined by the product of 1-dimensional
intervals [a

(1)
1 , a

(1)
2] × · · · × [a

(d)
1 , a

(d)
2]. In general, it takes O((kd logm)d) queries to cluster

d-dimensional intervals, as shown in Awasthi & Zadeh (2010). We will show the result for
2-dimensional rectangles.

Theorem 2.2. Clustering 2-dimensional Rectangles.
We can cluster the class of 2-dimensional rectangles using O((k logm)2) queries.

Proof. We use the following algorithm due to Awasthi & Zadeh (2010). We maintain a
graph G over the m points in the dataset, initially with no edges. We also maintain a list of
x-borders [x1, · · · , xT] and y-borders [y1, · · · , yT], where T is the number of split requests.
We will essentially proceed in a manner analogous to the interval case, except on both the
x and y dimensions. We will thereby maintain a 2-dimensional grid of rectangular clusters,
starting with an initial rectangle which contains the whole space. The algorithm is given by:

(a) Start with points (a′1, a
′
2) and (b′1, b

′
2) such that all points in the dataset are contained

in the rectangle defined by these two points as its corners. Originally, the x-borders are
just [a′1, b

′
1] and the y-borders are just [a′2, b

′
2]. The graph G initially has no vertices.

(b) Define the candidate clusters according to the rectangular grid (at the first step, only
one rectangle exists and all m points are in the same cluster). If the points in two
candidate clusters form a clique in G, merge the regions. Do this for all possible
merge-able regions, and present the final clustering to the user.

(c) If the user replies with merge(c1, c2) feedback, create a clique in G according to the
points in the two clusters c1, c2.

(d) If the user replies with split(c) feedback, do the following. For reference, c refers
to a rectangle which is completely defined by its two corner points (x1, y1), (x2, y2).
Introduce a point xnew to the x-borders such that x1 < xnew < x2 and such that if we

3

Interactive Clustering
Kiran Vodrahalli, COMS 6998-4: 10/16/17

project all points in c onto the x-axis, xnew divides them into two intervals of equal
size. Define ynew analogously and add it to y-borders.

We proceed to analyze this algorithm in a similar manner to the 1-dimensional interval
case. First, we bound the number of split queries. Note that every time we get a split
request, we split in both the x and y axes, even though in reality, we may have only needed
to split in one axis. That means that there may be at most twice the number of necessary
intervals on each axis, in other words, 2k, since there are at most k necessary intervals on a
single axis (suppose all the points were on the x-axis). Therefore, since the x-axis and y-axis
each have at most 2k intervals, there are at most 2k logm split requests along the x-axis
and 2k logm split requests along the y-axis for a total of 4k logm split requests, which is
justified by the arguments for the 1-dimensional interval case. Now note that we have at
most (2k logm)2 total regions. Since each merge request reduces the total number of regions
by 1, the number of merge requests is upper bounded by the number of possible regions.
Thus, we have O(4k logm+ (2k logm)2) total queries, which is O((k logm)2).

2.3 Example 3: Learning DNF and CNFs

We now look to a different kind of concept, DNF formulas.

Definition 2.3. DNF Formula.
A DNF formula is a Boolean formula composed entirely of disjunctions (OR operators). We
begin with some set of variables z1, · · · , zn which can take on values 0 or 1. The OR of some
subset of these variables constitutes a DNF formula.

We can use DNF formulas to cluster points x ∈ S, where each x ∈ S lives in {0, 1}n. We
can vizualize x as a string of 0s and 1s, where the ith position corresponds to the value of
variable zi. The clusters are then DNF formulas: A cluster contains all the points x ∈ S
such that the associated DNF formula evaluates to true on them. Say for now that n = 6.
Then, for instance, an example DNF formula would be (z1 OR z5 OR z6). In this case, the
point 011100 would not be in the cluster associated to that formula. However, each of the
points 100000, 000010, 000001 would be, in addition to several others like 110010.

It is possible to cluster with efficient query complexity using the following simple algo-
rithm. First, begin with a cluster for each variable zi such that it contains all points x ∈ S
such that xi = 1. Respond to split requests by deleting the cluster entirely, and to merge
requests by taking the OR of the two DNF formula to construct a new cluster. However,
note that this approach may result in intermediate hypothesis clusters which are not disjoint
(this can be seen even in the case of the initial clusters, the point 100100 is in both the initial
cluster for z1 and the initial cluster for z4.)

Theorem 2.4. Non-Disjoint Query Complexity of DNF Formulas.
The algorithm described above requires at most n − k requests to cluster disjunctions over
{0, 1}n when allowed to have hypothesis clusters which are not disjoint as intermediate steps.

4

Interactive Clustering
Kiran Vodrahalli, COMS 6998-4: 10/16/17

Proof. First, note that when clusters are merged, they are never split afterwards because
the merge operation contains points only from a single cluster. Thus, split requests can only
be made to clusters associated with single variables. Recall that splitting a cluster means
you simply delete it. Then, consider that if zi is a relevant variable (in that one of the valid
cluster DNF formulas contains it), it will never be split. Essentially, if we actually need zi,
it can only be merged. Neither split or merge will ever create a situation where there exists
a point x ∈ S such that no cluster evaluates it to true: Merging two clusters just makes
it easier for a point x to belong to the merged cluster, and we only split singleton clusters
which are irrelevant. In other words, we can either throw out a variable which we don’t
need, or add a variable to a set if we don’t have the clustering we want. Each merge or split
reduces the number of clusters by 1. Since there are k clusters in truth, and n clusters at
the beginning, there are at most n− k split merge operations before reaching the goal.

It is possible to fix the disjointness issue at the cost of increased query complexity.

Theorem 2.5. Disjoint Query Complexity of DNF Formulas.
A modified algorithm exists which requires at most O(n2) queries to cluster disjunctions over
{0, 1}n while only maintaining hypothesis clusters which are completely disjoint.

Proof. We fix the disjointness issue by using as our initial clusters a single cluster for each
variable zi, such that it contains all points x ∈ S such that xi = 1 and xj = 0 for all j < i.
This ensures that there will be no overlap between the cluster zi and zj for j < i, since zj
will have x such that xj = 1, while the cluster zi necessarily has x such that xi = 1 and
xj = 0. We modify the split request step to cluster zi by deleting the variable xi from all
points in S, essentially changing the problem from a problem over {0, 1}n to a problem over
{0, 1}n−1. Then, instead of just continuing on, we treat it as a new problem to solve entirely.
Merging stays the same.

These changes allow us to avoid ever using hypotheses which overlap, since (a) merging
never causes overlapping hypotheses, (b) the initial hypotheses are disjoint, and (c) split-
ting never causes overlapping hypotheses since every split means a re-initialization of the
hypotheses.

After ` splits, there are at most n− `− k merges which can be performed before we hit
k clusters. Thus, there are a total of

∑n−k
`=0 (n − ` − k) = O((n − k)2) possible merges and

n− k splits, which is O(n2) total operations.

2.4 Generalization to Conjunctions

Thus far we have only talked about DNFs. The algorithms described above readily gener-
alize to CNFs, which are formulas of conjunctions (assume they have no negations), in the
following way. Since each true cluster is disjoint from the other clusters, we can write ci =
NOT(c1) AND · · · AND NOT(ci−1) AND NOT(ci+1) AND · · · AND NOT(ck). Since each
c is a conjunction, and NOT(c) is a disjunction of negated variables, we can write ci as a
(k− 1)-conjunction of (disjunctions of negated variables). There are at most n negated vari-
ables. The formula is equivalent to an OR over all possible acceptance states. The formula

5

Interactive Clustering
Kiran Vodrahalli, COMS 6998-4: 10/16/17

can be satisfied if there is at least one negated variable in each disjunction which evaluates
to 1. Thus, we define new variables yi1···ik−1

= x̄i1 · · · x̄ik−1
, and re-write the expression for ci

as an OR over all these nk−1 variables. Here, i1, · · · , ik−1 each loop over [n].
Thus, we have a transformation from CNFs to DNFs which have nk−1 variables, and

we can use our algorithms for disjunctions to solve conjunctions with O(nk−1) queries and
O(n2(k−1)) queries respectively.

3 Two Generic Inefficient Interactive Clustering Algo-

rithms

However, we would like to design more general algorithms for interactive clustering oblivious
to the specific concept class we are dealing with. One approach is to work explicitly over
the version space of clusterings, and with each feedback response to a query, reduce the
size of the version space by some fraction. In particular, this approach is intimately related
to the halving algorithm and is common in interactive learning theory (for instance, the
splitting index approach by Dasgupta (2005) is similar in general spirit). In particular, if
we can guarantee that we can reduce the version space by a fixed fraction each iteration, no
matter what the result of the query was, we will be able to obtain a query-efficient algorithm,
providing an upper bound to the query complexity of interactive clustering for any hypothesis
class for clusters. The first algorithm following this approach was given in Balcan & Blum
(2008). Before giving the algorithm, we define an important notion:

Definition 3.1. α-consistent.
A set S of points is α-consistent for some α ∈ (0, 1) with respect to a concept class C and
a dataset of points P if for an α-fraction of all clusterings of concepts (c1, · · · , ck) ∈ CVS in
the version space, it is true that S ⊆ ci(P) for some i ∈ [k].

This notion is critical to defining to ensuring we make progress as use feedback to prune
the version space. Algorithm 1 implements this strategy and yields a query complexity
O(k3 log |C|), where k is the number of clusters. We can see this fact since to reduce to the
case where |V | = 1, we need T iterations of the while loop where we are only guaranteed

to remove a 1
k2

fraction of the version space each round. Solving
(
1− 1

k2

)T |CV S| = 1 yields

T = k log |C|
log k2

k2−1

, noting that |CV S| ≤ |C|k−1. Seeing that log−1 k2

k2−1 = O(k2), we see the query

complexity is O(k3 log |C|).
However, we can improve this bound to O(k log |C|) using a modified, simpler algorithm

due to Awasthi & Zadeh (2010), given in Algorithm 2. To succinctly describe the algorithm,
we need the following definition:

Definition 3.2. Consistent Cluster Set.
For some set of points s ⊂ S, the consistent cluster set

CCS(s) :=
{
{c1, · · · , ck} ∈ CV S|{c1, · · · , ck} is consistent with s

}
6

Interactive Clustering
Kiran Vodrahalli, COMS 6998-4: 10/16/17

Algorithm 1 Generic Clustering (Inefficient)

1: procedure Cluster(S) . S := input dataset of m points
2: version space V := CV S . CV S := the set of all k-clusterings on S
3: while |V | > 1 do
4: Initialize buckets B1, · · · , Bk := {}.
5: Initialize output cluster list L = [].
6: for each point x ∈ S in arbitrary order do
7: for i in [1, · · · , k] do
8: if Bi ∪ {x} is 1

k2
-consistent then Bi := Bi ∪ {x}

9: if Bi is
(
1− 1

k2

)
-consistent then

10: Append Bi to L.
11: Delete Bi from the list of buckets.
12: Append {} to the end of the list of buckets.
13: end if
14: break
15: end if
16: end for
17: end for
18: Output cluster list L.
19: Receive feedback F from user.
20: if F = merge(ci, cj) then
21: Remove from V all clusterings inconsistent with ci ∪ cj.
22: else if F = split(ci) then
23: Remove from V all clusterings consistent with ci.
24: end if
25: end while
26: return V as the clustering.
27: end procedure

7

Interactive Clustering
Kiran Vodrahalli, COMS 6998-4: 10/16/17

Algorithm 2 Generic Clustering (Also Inefficient)

1: procedure Cluster(S) . S := input dataset of m points
2: version space V := CV S . CV S := the set of all k-clusterings on S
3: while |V | > 1 do
4: Initialize output cluster list L = [].
5: Initialize i = 1.
6: while clusters in L do not cover S do
7: ci = argmax

s⊂S\L
|CCS(s)|≥ 1

2
|V |

|s|.

8: Append ci to L.
9: Update i = i+ 1.
10: end while
11: Output cluster list L.
12: Receive feedback F from user.
13: if F = merge(ci, cj) then
14: Remove from V all clusterings inconsistent with ci ∪ cj.
15: else if F = split(ci) then
16: Remove from V all clusterings consistent with ci.
17: end if
18: end while
19: return V as the clustering.
20: end procedure

8

Interactive Clustering
Kiran Vodrahalli, COMS 6998-4: 10/16/17

In the case of Algorithm 2, we are guaranteed to halve the version space each time no
matter what the feedback is. Thus, we effectively are performing binary search over the
version space, and the query complexity is O(log |CV S|) = O(k log |C|).

Why does Algorithm 2 work? Let us be more specific.

Theorem 3.3. Generic Algorithm 2 can cluster finite concept classes with O(k log |C|)
queries.

Proof. The key trick is to find a largest set of points ci such that the number of clusterings
consistent with it is more than half the size of the version space. That way, if we call split
on ci, we remove more than half the version space. If we call merge on ci with some c′,
we know that ci ∪ c′ was not consistent with more than half the version space (otherwise,
we could have added c′ to ci and made a larger set of points that way). Thus, the set of
points inconsistent with ci ∪ c′ is also larger than half the size of the version space, and we
again get to remove half the version space. Thus, no matter what, we can remove half the
version space and make quick progress through the space via halving algorithm, yielding a
O(log |CV S|) = O(k log |C|) query complexity, since |CV S| ≤ |C|k−1.

One last point: Does a set exist which is consistent with more than half the clusterings
in the version space? We merely ask for the largest such set. For instance, we could always
find a set of size 1 which is consistent with more than half the clusterings.

Remark 3.4. Using VC dimension instead.
We can replace the results of the above theorem with query complexity O(kd logm), where
d is the VC dimension of the hypothesis class since Sauer-Shelah gives that the number of
different ways to split m points with members of the hypothesis class is less than md. Thus,
the size of the version space is bounded by (md)k−1 ≤ mkd and taking log gives the result.

References

Pranjal Awasthi and Reza Bosagh Zadeh. Supervised clustering. Advances in Neural Infor-
mation Processing Systems, 2010.

Maria Florina Balcan and Avrim Blum. Clustering with interactive feedback. ALT, 2008.

Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. Advances in Neural
Information Processing Systems, pp. 235–242, 2005.

9

	Interaction for Unsupervised Problems
	Interactive Split-Merge Clustering
	Example 1: Learning Interval Clusters
	Example 2: Learning Rectangle Clusters
	Example 3: Learning DNF and CNFs
	Generalization to Conjunctions

	Two Generic Inefficient Interactive Clustering Algorithms

