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1 LECTURE 1: Introduction

I will focus on the methods, theory, and perhaps sometimes algorithms for high dimensional
statistical inference. There is a long history of this topic. Most of the results probably
happened since 2000, back when I was a grad student. There were also many applications,
I will touch upon some of these. The main focus of the course is to go through some of
the typical methods and analyses from theoretical perspectives. I will show not necessarily
the deepest or sharpest, but the ones which give the most theoretical insight. A lot of the
methods we will talk about rely on the algorithm used to calculate, so we will also talk about
that.

1.1 What is high-dimensional statistical analysis?

What is high dimension? People often refer to this as “large p, small n”. We often organize
data as a data matrix. We think of each row as a sample. Typically we have a tall matrix
Rn×p. This is the setting of classical statistics. But consider gene expression data, which
started to get analyze back in the 2000s. Here you get very short, fat matrices instead.

I don’t quite like this terminology however. We are statisticians. When I hear small n, I
think there’s not much we can do. Also, you can often do similar things mathematicaly for
both matrices, when you’re doing something completely different statistically (e.g., SVD is
PCA in the first case, and something else in the second).

When you have the large p, small n situation you have to be careful. With a limited
sample size there is only so much you can do. From a theoretical side, there are other names
which are often used: For instance, finite sample analysis. This is counter to the classical
way of thinking about asymptotics. You typically use things like central limit theorem and
law of large numbers. You assume sample sizes are very large so you can do asymptotic
analysis. This allows you to neglect small-order terms. Small order terms, however, often
become important in high dimensions.

So the idea of finite-sample analysis is as follows. We are interested in parameter θ,
and construct estimator θ̂. The classical way of thinking about this is writing θ̂ − θ =
Leading term + on(·). Finite sample analysis says, let us be more precise. Let us write
θ̂−θ = f(n, p). You want f(n, p) to be the same as the asymptotic analysis when you take n
large enough. However, in practice, as a statistician, this will give you rather useless bounds
in practice if your sample size is five.

So what do I actually mean by large p small n: Really, I actually do have large sample
sizes, but I don’t want to treat this as infinity. I have even larger p. Here, I care less about
relative order between n and p: I just want both to be large. I want a lot of variables and a
lot of samples. The tricky part is often times it’s not about which goes to infinity. Rather,
it’s about the interplay between the sample size and the dimensionality.
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1.2 What is the fuss about high-dimensional inference?

The reason we are interested in this is mostly because of applications: This is why there
was an explosion of popularity about this topic. The mathematics etc. is interesting, but
there are numerous applications which we will touch upon throughout the course. There are
other interesting things: The method. There are many new ways to think about statistical
methodology. If you open a statistical textbook written before 2000, you see the following:
Someone writes down the likelihood function, write down the maximum likelihood estimate,
and proceed. Or to be fancier you can use regularization and model selection. These are
the common strategies, suppose you can solve it, and then analyze the properties you have.
When it comes to high-dimensional analysis, a key difference that becomes important is
you take into consideration computation. One of the most relevant examples is to think
about variable selection. When I was a grad student, we talked about AIC and BIC.
Nowadays we talk about Lasso. Lasso is useful and can be applied to large scale problems –
unlike AIC and BIC. Forward selection and AIC/BIC are still used actually – people tend
to just put a fancier name. But in terms of methodological development, we care about
computation a lot. In recent years, a lot of the growth in high-dimensional statistics is the
tradeoff between statistical and computational resources. Are the optimalities you saw in
introductory statistics still possible given fixed computational resources?

From a theoretical point of view, there are also a lot of new phenomena you must consider.
Most of you have probably heard of the curse of dimensionality. The reason you care about
high-dimensional statistical inference is there are a lot of new perspectives. A lot of the
problems we consider are the same as fifty years ago. But a lot of the challenges we now
encounter are different. I have a very good friend who works on numerical analysis. So I
asked him, what’s the most important question for you guys – he said, how to deal with large
scale problems. Fifty years ago, this was the same problem: What changed? The definition
of “large”. That is the same problem statisticians are facing. We will focus a lot on linear
regression: We’ve been doing this for years. But we have new challenges because of the new
types of data we have.

1.3 Specific Topics

We will have evolving content throughout this course. I have a tentative schedule for the
topics I will cover. Starting today, I will give some basic technical tools. I’ll talk a little bit
about high-dimensional geometry. I want to talk a little to give you some intuition which
is important. When we talk about high-dimensional data, you want to first build some
intuition. What can you expect from random datasets? Another category of tool which is
essential is concentration inequalities. This analogy may not be precise, but concentration
inequality to high-dim inference is kind of like law of large numbers to classical statistics.
LLN lets you derive any classical result. Similarly, concentration inequalities let you derive
high-dimensional results.

Then, we will go on to talk about sparse recovery/compressed sensing. The basic idea
here is you have a high-dimensional vector and you want to reconstruct it. You assume it
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has some sort of sparsity. This case may not have noise. From my perspective, I think this is
essentially statistics. Much of the analysis is fundamental in understanding high-dimensional
linear regression. There are several things we want to talk about in high-dimensional linear
regression. First of all, we want to talk about parameter estimation. Relatedly, we want
to talk about prediction. When you have high-dimensions, a related concept is variable
selection. In high-dimensional data analysis, variable selection may not be the right way to
phrase it: Instead, you call it support recovery (this is really the same as variable selection).
The last thing we want to talk about here is to think about uncertainty: How does uncertainty
propagate, and how do we do inference?

Then, I will talk about high-dimensional matrix problems. I will focus on three things:
First, I’ll provide background on matrix concentration inequalities. Then once we have these
technical tools, I will talk about matrix completion or more commonly known nowadays as
the Netflix problem. The right way to formulate this is not “matrix completion”, but rather
matrix regression. This is based on the assumption that the matrix is low-rank. The last
topic I will talk about here is covariance matrix estimation. The basic problem is that we
want to estimate a high-dimensional covariance matrix. We will talk about a few classes:
sparse covariance matrices and sparse inverse covariance matrices. In the Gaussian case there
is a direct correspondance between inverse covariance matrices and graphical models. Finally,
we are also interested in things you can compute from covariance matrices – particularly,
PCA.

This will be evolving content, I have these basic topics in mind. We will probably spend
two or three classes on the topics. The last four projects we will do class presentations. There
is a huge literature on high-dimensional inference. I am going to make this more systematic
in the class by choosing main areas and topics. There are numerous other topics hard to
explain in detail throughout the course. Thus I will ask you to do in-class presentation. We
will decide in a week or two how to proceed with class presentations.

1.4 Organization of the course

This is a topical class: You want to learn something here, I don’t have a strict way of
grading. I want to give you a good formula to make the best of the course. In the class, as I
mentioned, I will talk about results I find the most illustrative of a specific topic. Each class,
I will give you papers or references based on the things I discuss in class. So to make the
most of course, you don’t necessarily need to prepare in advance. In class, you try to follow
what we discuss. I don’t have written lecture notes or slides: I will go through the material
on the board. I encourage you to come and go through the lectures with me. Then follow
up and go through the papers. If you have questions, you can come to office hours, which I
am thinking of having right after the class. You can always email me to discuss further.

Regarding class presentations, make an appointment and talk to me about specifically
what you want to present in the class.
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2 High-Dimensional Data

We are interested in the dimension of the data being high. How is this different from clas-
sical statistics? High-dimensional data has some new features: some are good (can take
advantage of) and some are bad. These are the blessings and curses of dimensionality.
Bellman in 1957 invented the term curse of dimensionality: This is our inability to approxi-
mate/estimate/optimize a highi dimensional function. I want to construct an approximation
of it, or I want to estimate it, or I want to optimize it. These problems are trivial for linear
problems, but in high dimension, this can be difficult. Let me give a simple example.

Example 2.1. Suppose I have a uniform distribution between 0 and 1. If I sample at
random, I’ll get a point in [0.2, 1] with 80% chance. If I go up in dimension to a square to
sample with 80% of the chance, the smallest coordinate will be 0.45. In three dimensions, if
I look at a cube and want to sample with 80% chance, the smallest coordinate will be 0.58.

However it’s important to be careful about the subtetly of dimensionality. One of Kol-
mogorov’s more famous theorems is as follows:

Theorem 2.2. Kolmogorov’s Theorem.
Suppose I want to look at continuous one-dimensional functions on the unit interval C([0, 1]).
Suppose then I look at continuous functions on the unit square C([0, 1]2). Here it should feel
like the problem gets harder. But you can say these classes of functions are of similar
complexity. You can always find g1, · · · , g5 ∈ C([0, 1]) so that the following happens: For all
f ∈ C([0, 1]2), then you can find φf ∈ C([0, 1]) and f(s, t) =

∑5
i=1 φf (gi(s) +

√
2gi(t)).

So sometimes curse of dimensionality is not so simple. Here the curse of dimensionality
comes in terms of the modularity of the function, which is not so simple. There are ways
you can approximate multivariate functions with “simple” functions. This is actually kind
of the view of deep learning. This is also one of the answers to Hilbert’s 13th problem.

Now there are also positive things which come with dimensionality. This is the “blessing
of dimensionality”. One of the simplest examples is as follows.

Example 2.3. Consider a fat matrix in Rn×p. I can still do SVD: The main reason this
works is because p is large. This is sort of a superficial example.

Example 2.4. Your data, although in a classical low-dimensional setting, it may have
a lot of irregular behavior. In high-dimensions, the data has a certain regular behavior.
Suppose I have a random vector X ∼ U([0, 1]d), and I am interested in ‖X‖2. We know that
max ‖X‖2 = d,min ‖X‖2 = 0. The average is d/3.

In high-dimensions, most random vectors are going to be very close to d/3. The reason
is simple. Suppose I want to look at

P
{
‖X‖2 ≥ (1 + ε)(d/3)

}
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The distortion ε is small. We can use Chebyshev’s inequality to calculate that this is <
E[‖X‖2−d/3]

2

(εd/3)2
=

dE[x21−1/3]
2

ε2(d2/9)
= d(1/5−1/9)

ε2d2/9
= 4

5ε2d
which goes to 0 as d goes to infinity. So,

P
{

(1− ε)d/3 ≤ ‖X‖2 ≤ (1 + ε)d/3
}
→ 1

This is the concept of concentration behavior.

2.1 High-dimensional geometry

I want to talk about the high-dimensional cube and high-dimensional balls. `d∞ means `∞
norm in a d-dimensional space, and `d2 means Euclidean norm in a d-dimensional space. If
we want to talk about a ball of radius r, we will refer to Br(`

d
∞) = {x ∈ Rd : ‖x‖`∞ ≤ r}

and Br(`
d
2) = {x ∈ Rd : ‖x‖`2 ≤ r}.

We often want to be able to visualize and have intuition of parameter space. That’s
why it helps to know about high-dimensional geometry. When you have high-dimensional
data, a lot of interesting things happen. Most often your intuition about two-dimensional
and three-dimensional objects no longer holds. Suppose I have an `∞ unit ball and an `2

unit ball. We have B1(`d2) ⊆ B1(`d∞). You basically have a ball saturate the cube, and then
there are some corners sticking out in dimensions 2 and 3. Is this still the case when d
is large? What percentage of volume of the `∞ ball is occupied by the `2 ball? We have
Vol(B1(`d∞)) = 2d. We also want to calculate Vol(B1(`d2)). The easiest way to compute this
is to use polar coordinates. We can write this as a multiple integral over a multi-angle:

Vol(B1(`d2)) =

∫
Sd−1

∫ 1

0

rd−1drdθ =
Area(d)

d

What this says is very simple: The volume is the surface area divided by d. d = 2 is a sanity
check. Now how do we calculate A(d)? The way of computing this goes back to Gaussian
distributions. Let

I(d) =

∫
e−(x21+···+x2d)dx1 · · · dxd = πd/2

since this is the normalizing constant for a Gaussian density. This integrand is also invariant
to rotation, so we can write in polar coordinates as

∫
Sd−1

∫∞
0
e−r

2
rd−1drdθ. Realize the inner

term is the Gamma function. Then, what you’ll get is that this term is Γ(d/2)
2

A(d). Thus,

A(d) =
2πd/2

Γ(d/2)

So this means that the denominator grows much much faster: As d increases, the area goes
to zero! And since the volume is the area divided by d, the volume also goes to zero! So
something very unusual happens: In the `∞ ball, the volume increases expontentially, very
fast. But the `2 ball is growing smaller and smaller: for very large d, it essentially vanishes.
Almost every point in my `∞ ball will be different from what you expect for `2 ball. So how
do you reconcile this kind of issue?
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The main takehome message is the following: You are still cutting corners with the `2

ball and the `∞ ball: But in high-dimension, everything is a corner: The `∞ ball is super
pointy. So there is very little interior for the `2 ball.

We are still interested in the `2 ball. Historically, we love Gaussian distributions. We
impose Gaussian assumptions – not because we necessarily believe that the data follows
Gaussian distribution, but it is a good approximation; that is what the Central Limit The-
orem tells us. In high-dimension, you have to be very careful. Now, the `2 ball is related to
the Gaussian distribution. Everyone will more or less lie on the sphere of the unit `2 ball if
we have a Gaussian distribution. So we are interested in what happens. Let me make this
more precise.

Suppose you can sample from the unit `2 ball – where are the points? Where is most of
the mass? All of the mass is around the outermost shell: Most of the mass is toward the
edge. Let the radius be 1, the inner shell radius is 1− ε. Then we are looking at

Vol(B1(`d2))− Vol(B1−ε(`
d
2))

Vol(B1(`d2))
=
V (d)− (1− ε)dV (d)

V (d)
= 1− (1− ε)d

So this basically goes to 1. Why is this important and useful? Let us say we have X ∼
N (µ, I) in Rd. Maybe you would use Stein’s estimate to estimate it, or any other estimate.
We want to estimate ‖µ̂−µ‖2, but this will always be of order d if we only see one example.
This is minimax. Suppose I give prior information that ‖X‖2 = o(d). Then if you use
an esimate of 0, you incurr error of order < d, beating Stein’s estimate. But there is a
contradiction here. I’m going to handwave a bit: Uniform distribution over unit ball is
not the same as normal, but you can do a similar calculation. Anyways, you know that
X ∼ N (0, I) which has expected value d is concentrated: You know that ‖X‖2−d = op(

√
d)

– you can calculate this using χ2-random variable distribution properties. What does this
tell us? This tells us something strange. If µ2 is of order

√
d, if you ask me to test it, I

can reject the hypothesis. This is connected to the geometry we saw earlier. If you move
the center of the ball a little bit, I know you moved the ball, but I cannot tell you where
the center is, since all the volume is concentrated around the shell. So, you can tell that
something is wrong, but the best estimator is still 0.

Your minimax estimation rate is of order d. Suppose I tell you the risk is of order d.
But I’m going to tell you a priori that the size of µ is

√
d. This means that zero is the best

estimator. However, with confidence, I can definitely say the mean is definitely not zero, but
you also cannot construct any estimate which is better than zero.

The next claim is the following: Most of the point masses are not in the shell, but around
the equator. Suppose I cut some slices with height ε. Just like all point masses are around
the shell, I can also claim that most of the point masses is in this equator slice. Here, I am
computing the volume by fixing one coordinate (I’m saying x1 ∈ (−ε, ε)). Let’s calculate (do
it as an exercise):

1

V (d)

∫ ε

−ε
(1− x2

1)(d−1)/2V (d− 1)dx1

You will find that this is essentially 1. So, the mass is mostly around the equator. So
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you want to keep an open mind, there are a lot of interesting things that could happen. You
have to think about this sort of high-dimensional geometry. What kind of features do you
observe in the data? What is signal and what is noise?

There are two things I did here: The first message is in the comparing of `2 and `∞:
When you think about parameter space, you have `2 and `∞ ball: All that matters to me is
that you realize all the points in the `∞ ball, all the points are sort of “extreme” in a certain
way: The “unusual points” (the corners of a cube) become the usual points, relative to the
initial ball. If you are a geometer, the key point is that maybe the Lesbegue measure is not
maybe the right measure to calculate the volume.

You also need to think carefully about how you formulate your statistical problem. Po-
tentially there is low-dimensional structure in high-dimensional space. This is the essence
of the methods we will discuss in the course. Simply because of high-dimensional data,
you won’t have enough degrees-of-freedom to deal with all high-dimensional problems. You
want to find the flexible subclass of high-dimensional problems you can deal with. How
do you restrict the parameter space, staying in high-dimensions, so that it becomes more
manageable.

Now we will discuss the Johnson-Lindenstrauss theorem. Suppose I have a dataset with
n points. JL asks the following question: How high is the dimension of the data points?
This sounds like a weird question: You collected the data, you know the dimension. But
it could be on a low-dimensional space. Suppose your data is really really high dimension.
Their motivation is storage. Suppose all the data are high-quality images. Now the question
is, if you want to do photo analysis, I’m going to vectorize it and put it in a database. Later
on I’m doing analysis, I don’t care about the individual images, just their relative distances.
Can I put them in a lower dimensional space?

Theorem 2.5. Johnson-Lindenstrauss.
Given n points x1, · · · , xn in Euclidean space Rd, I want to preserve pairwise distances. I
want to find f : Rd → Rk with k < d such that for all i, j

(1− ε)‖xi − xj‖2 ≤ ‖f(xi)− f(xj)‖2 ≤ (1 + ε)‖xi − xj‖2

where ε is called distortion factor. If k = n − 1, there is no problem at all: You can get
this exactly because n points lie in n− 1 dimensions. However, JL can go much beyond this:
k = C

ε2
log(n) for some constant C.

This theorem means you can always project into a low-dimensional space while preserving
pairwise distances. This is kind of strange: You know that you cannot have an isometric
mapping, there must be some distortion. If you are very stringent, then there is not much
you can do: You can only get k = min(n− 1, d). If you allow for a little distortion, you can
all of a sudden do a whole lot: You can get log n. This is approximate isometry. Some people
take this as a way for using data compression. Secondly, depending on what you want to do
later on, this may not be good. This tells you about pairwise distances, but not the general
geometry. It won’t preserve any structure about points being all equidistant to each other for
instance. If you think about relative distance it makes sense, but if you think about absolute
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distances, this can be very different. Finally, the dependence k = O( 1
ε2

log n) is optimal.
There do exist examples where you can do no better. If I give you n points equidistant, if
you don’t allow for any distortion you have to put them in n− 1 dimensional space. How do
you verify this is essentially the lower bound? If you have n points in a k-dimensional space,
distances becomes (1± ε). For each point, draw a ball of radius (1− ε)/2. You want to put
all the smaller balls into a ball of size 1 + ε. This will give you the lower bound, roughly,
after some calculation.

3 LECTURE 2: High-dimensional Geometry and JL

Last time we talked about high dimensional balls and cubes. We essentially discussed the
volume of high-dimensional balls with respect to cubes: In a way, you can think of high-
dimensional balls as shrinking as dimension increases. If you think of cubes, you can fix the
volume as 1 over dimensions: The ball, on the other hand, will have its volume go to zero.
Perhaps more importantly for us is the concentration behavior: Most of the volume of the
ball, from a sampling point of view, is most likely to be in certain regions of the ball. In
particular, it could be on the sphere. We did a calculation: Most of the mass will be on a thin
shell. It will also be concentrated around the equator area, which is counter-intuitive. This
violates the 3-dimensional example. But you will get this behavior in high-dimension. It’s
concentrated both around the sphere and around the equator. I would like to emphasize we
talk about this for two reasons: Keep an open mind for weird behavior, and also get intuition
for when you analyze high-dimensional data. There are often fake figures in high-dimensional
data analysis, you have to be careful of the features you extract.

Today, we will talk about the implications of high-dimensional data. In particular, the
Johnson-Lindenstrauss theorem. Oftentimes, it is referred to as a lemma in the literature,
since in the original paper it is called a lemma. But really, I think this “lemma” deserves
status as a theorem.

Theorem 3.1. Johnson-Lindenstrauss.
I have {x1, · · · , xn} ∈ Rd, for d large. If d is large, this can be too large. We want to
compress it while compressing main features. We can find a mapping f : Rd → Rk, where we
want k to satisfy certain conditions. Here, k ≥ c · 1

ε2
log n where c is a numerical constant.

The condition this mapping satisfies is:

(1− ε)‖xi − xj‖2
2 ≤ ‖f(xi)− f(xj)‖2

2 ≤ (1 + ε)‖xi − xj‖2
2

for all i, j ∈ [n].

This theorem essentially states the following. If you have n points in d-dimensional space.
You can always find a map from Rd → Rk such that you preserve `2 distances up to distortion
ε. Now what does this theorem not say? A common mistake in interpreting JL is to think of
it as saying d-dimensional space and k-dimensional space are isometric to each other: This
is false! The key difference is that this function is for a specific set of n points: The specific
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map f does NOT hold for any set of n points. The f depends on the dataset. In fact, this
would be impossible: d-dimensional space is different from k-dimensional space.

How can we prove this result? One of the most common way of proving this is by
constructive proof. This proof is actually “seemingly” constructive. Typically, constructive
means, how do I infer from dataset how do I construct f? Basically, write a program with
dataset as input and output the function f , which applies to any data. But the proof doesn’t
work exactly like that. It is still unknown how to deterministically construct such a mapping.
What I can prove is the following: I can show a random algorithm that produces something
which I don’t know precisely, but which I can generate. This is the original idea by Johnson
and Lindenstrauss. More specifically, we can take f to be a projection. We can always write
f(x) = Ax, where A ∈ Rk×d is a projection matrix (AAT = Ik×k). So JL originally said we
can find some A such that the JL properties are satisfied. However, there is an extra scaling
factor, to adjust for the fact that we are taking the sum of squares of k things, and we want
to compare with sums of squares of d things (in the original space):

(1− ε)‖xi − xj‖2
2 ≤

d

k
‖A(xi − xj)‖2

2 ≤ (1 + ε)‖xi − xj‖2
2

Thus, to be precise, we have f(x) =
√

d
k
Ax. Johnson-Lindenstrauss said we can generate a

whole bunch of projection matrices, and then argue that at least one of them is good. Here,
we only need to know average behavior in a sense. So, you can uniformly sample from a
Grassmanian G(d, k) (these are the projection matrices k × d) to get A. If you only sample
one, you cannot be certain this works. So you want to sample a bunch of them. First, we
look at if we sample one, what kind of distribution follows.

Proof. The first step is to reduce this into a property of a projection: What do we want here?
In order to prove Johnson-Lindenstrauss, we want to show the following: If A is uniformly
sampled, then we want to show

P
{

(1− ε)‖xi − xj‖2
2 ≤

d

k
‖A(xi − xj)‖2

2 ≤ (1 + ε)‖xi − xj‖2
2

}
≥ 1− 2

(n+ 1)2
(∗)

The only randomness here is over the random projection. We will argue that this is true
for random projects, and show that this implies the theorem. The next simplification is to
focus on just one i, j pair.

Now, assuming (∗) is true, then

P
{

(1− ε)‖xi − xj‖2
2 ≤

d

k
‖A(xi − xj)‖2

2 ≤ (1 + ε)‖xi − xj‖2
2,∀i, j

}
≥ 1− 2

(n+ 1)2
·
(
n

2

)
=

1

n+ 1

by union bound. But this doesn’t solve our problem yet, this probability is pretty small.
Then we can play the following game: For any randomly sampled A, we have the above
equation. We can sample n log n different As: Then we claim that at least one of them will
work. The reason is simple: the property holds for Aj̃ for some j̃ with probability at least
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1/(n + 1), and the probability that it holds for none of the A is 1 − (1/(n + 1))n logn → 1.
This is the probability amplification technique. You can make this probability as close to 1
as you want by generating more random projections.

Thus, we only need to prove the lower bound on the probability of a uniformly sampled
Grassmanian satisfying the JL property. Recall, we want to prove:

P
{

(1− ε)‖xi − xj‖2
2 ≤

d

k
‖A(xi − xj)‖2

2 ≤ (1 + ε)‖xi − xj‖2
2

}
≥ 1− 2

(n+ 1)2

for randomly sampled A. This is a scale-free statement, since we can multiply by any scale.
Let us re-write

(1− ε) ≤ d

k
‖A
(

xi − xj
‖xi − xj‖2

)
‖2

2 ≤ 1 + ε

Then we can consider w =
xi−xj
‖xi−xj‖2 , which is a point on the unit sphere. Thus we want to

prove

1− ε ≤ d

k
‖Aw‖2 ≤ 1 + ε

Now we need to talk about uniform Grassmanians: This theorem can be seen as a statement
about them.

The second step is to draw the following observation. We are going to think in a different
way: What if we fix a projection, and uniformly sample a point? Let point u be uniformly
distributed on d-dimensional unit sphere, and take P ∈ G(d, k). Then, Pu will have the same
distribution as Aw, where A is randomly sampled from G(d, k) and w on the d-dimensional
unit sphere is fixed. We can say this by uniformity: When you do uniform sampling from
projection, you are doing uniform sampling from sphere.

For intuition, let’s make it simpler. Suppose d = 3, k = 3: We are going to uniformly
transform a point uniformly over the unit sphere. What uniformly sampled projection does
is move it around the same unit sphere. No matter where you start, because you’re doing
uniform random sampling, you will end up with a uniform random variable.

So, what does the Grassmanian do? It will move the point around the sphere in a uniform
fashion. This is clear for d = k. If k < d, you can think of this as random rotation in d-
dimensional space, and then truncate the coordinates. This is a very powerful idea. If you
really think about this proof, this is the key. The key difference is ‖Aw‖: we don’t know how
to calculate the probability for uniformly sampled Grassmanian. But now, all of a sudden,
we are looking at a uniformly sampled point on a sphere, which we have a much better idea
of how it works. So, we only need to show that

P
{

(1− ε) ≤ d

k
‖Pu‖2 ≤ 1 + ε

}
≥ 1− 2

(n+ 1)2

Here, the probability is with respect to u, and not P (above, when we wrote this expression,
the probability was with respect to A). Now, how do we do this? This holds true for any
projection. We will define Pu = ((Pu)1, · · · , (Pu)k)

T = (ũ1, · · · , ũk)T . We extra the first k
coordinates, and we want to know how big its norm is.
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Note: For more rigorous proof of the trick for uniform sampling used above, see this
Wikipedia article, section “Associated measure”: We use the Haar measure over the or-
thogonal group, where the measure is invariant under group actions (e.g. rotations). You
can sample a normal random matrix and take the singular vectors: This a uniform random
variable in the Grassmanian. Intuition is the same as sampling uniformly from the sphere,
using Gaussians.

This is what we will do in Step 3: We want to know the norm ‖Pu‖2 = ũ2
1 + · · · + ũ2

k.
Now we would like to characterize the uniform distribution on the sphere: Essentially, x ∼
N (0, Id×d) has x

‖x‖2 is uniform on the unit sphere in d-dimensions: U(Sd−1). You could prove
this algebraically, but it’s much easier to think about it geometrically. The reason this holds
because the multivariate normal distribution is spherically symmetric. Therefore,

‖Pu‖2 ≡d x
2
1 + · · ·+ x2

k

x2
1 + · · ·+ x2

d

for normally distributed xi ∼ N (0, 1) drawn i.i.d. We show

P
{
d

k

x2
1 + · · ·+ x2

k

x2
1 + · · ·+ x2

d

≤ 1− ε
}
≤ 1

(n+ 1)2

and

P
{
d

k

x2
1 + · · ·+ x2

k

x2
1 + · · ·+ x2

d

≥ 1 + ε

}
≤ 1

(n+ 1)2

These imply the desired statement. The proof for both of these statements is the same. It
comes down to some linear algebra.

d(x2
1 + · · ·+ x2

k) ≤ k(1− ε)(x2
1 + · · ·+ x2

d)

(k(1− ε)− d)(x2
1 + · · ·+ x2

k) + k(1− ε)(x2
k+1 + · · ·+ x2

d) ≥ 0

(k(1− ε)− d)χ2
k + k(1− ε)χ2

d−k ≥ 0

What is the probability that the left-hand expression is greater than zero? We can take
exponent on both sides since it is monotone, for λ > 0:

P
{

exp(λ
(
(k(1− ε)− d)χ2

k + k(1− ε)χ2
d−k)

)
≥ 1)

}
≤ E

[
exp(λ

(
(k(1− ε)− d)χ2

k + k(1− ε)χ2
d−k)

)]
applying Markov’s inequality. Now we have reduced things to calculating the moment gen-
erating function of χ2, which is known. We have

E
[
exp(λ

(
(k(1− ε)− d)χ2

k + k(1− ε)χ2
d−k)

)]
= E

[
exp(λ

(
(k(1− ε)− d)χ2

k)
)]
×E

[
exp(λ

(
k(1− ε)χ2

d−k)
)]

= (1− 2λ(k(1− ε)− d))k/2 × (1− 2λ(k(1− ε)− d))(k−d)/2

Then, by taking a derivative with respect to λ to minimize this quantity, and choosing the
appropriate λ (since we know the inequality holds true for all λ), we see that we can get the
desired result that this probability is upper bounded by 1/(n+ 1)2.
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The key idea here is random projections. A huge idea nowadays is random sketching.
You have a high-dimensional linear regression problem, and solve a low-dimensional linear
regression problem. You want to know if you can get a solutions which is at least qualitatively
comparable to the real one. The answer is yes, which may be surprising. A lot more goes
into this when you do random projection. The second reason we want to talk about this is
that the proof itself is very useful. Many of the ingredients in the proof apply to many other
high-dimensional problems. The first one is the random projection part. When you want to
prove the existence of something, we want to do constructive proof. This method gives you
a way of showing you can find one. This is commonly used in randomized algorithms, which
is a huge area in computer science.

Here, we proved a statement about the probability that the ratio of two chi-square random
variables is greater than 1 − ε. It often seems like high-dimension is hard: But, from a
concentration perspective, it is actually a good thing! It often happens in high-dimension
you can do the X/Y trick, even though X and Y are not independent. Because of high-
dimensionality, the expectation is close to 1. Summing a lot of things makes things centered
around the expectation, and everything becomes relatively easy to compute and get an idea
of where things are. Thus concentration inequalities are really good.

Back to JL: This construction is due to Johnson and Lindenstrauss. This particular
proof is due to Gupta and Dasgupta, and is much more simplified, so the idea becomes much
clearer. There are many other ways to construct this sort of linear transformation, instead
of doing a uniformly sampled random projection. There are many ways to do this though.
Here is a list of possible “f”:

• uniformly sampled projection (what we saw)

• random ensemble: f(x) = c · Ax, A = (aij): 1 ≤ i ≤ k, 1 ≤ j ≤ d. Here, aij can be
i.i.d. ∼ N (0, 1),∼ Bernoulli(1/2), and so on. These are essential properties of random
matrices. In general, subGaussian random variables will work.

I would suggest you to do some simple calculations yourself. If every entry of A is a
Gaussian standard normal random variable, can you verify that this is true?

Two other points:

• optimality: k = Ω( 1
ε2

log n). Choose n equidistant points and do a volume calculation.
This proves a lower bound, showing you must be of order log n.

• is `2 necessary here? We have x1, · · · , xn ∈ Rd. We want to preserve the distances (for
some distance metric) between points up to distortion ε. When does this work? In
particular, we could replace all the distances with `p distance. If 1 ≤ p ≤ 2, you can
use the same construction, just with a different scaling factor. For p > 2, this is active
research. Note that here, we are NOT embedding `2 into `1: We replace all norms in
the statement with the `p norm. There are impossibility results (see Brinkman and
Charikar (2005)) for JL statements with (1− ε)‖ · ‖1 ≤ ‖ · ‖2 ≤ (1 + ε)‖ · ‖1.
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3.1 Concentration Inequalities

Suppose we have X1, · · · , Xn ∼ F i.i.d. with E [X] = µ. Then let Sn = X1 + · · ·+ Xn, and
E [Sn] = nµ. Here, we are concerned with bounding P {|Sn − nµ| ≥ t}. We essentially want
to reduce things to calculating moment generating functions. Fortunately for us, usually we
can do this. We can do the following typical thing with Markov’s inequality, taking λ > 0:

P {Sn ≥ nµ = t} = P {exp(λSn) ≥ exp(λ(nµ+ t))}

=
E [exp(λSn)]

exp(λnµ+ λt)

= (E [exp(λX)])n exp(−λnµ− λt)
= exp(n logM(λ)− λnµ− λt)
≤ inf

λ>0
exp(n logM(λ)− λnµ− λt)

(1)

where M(λ) is the moment-generating funtion (MGF). This is sometimes referred to as the
Cram’er device.

3.1.1 Chernoff bounds

We only need things to be independent in order to apply the tricks above.

Example 3.2. Binomial random variables.
We have Xi ∼ Bin(1, pi) and Sn = X1 + · · ·+Xn, with E [Sn] = p1 + · · ·+ pn = µn. Then,

P
{
Sn ≥ (1 +

ε

λ
)µn

}
= P

{
eλSn ≥ eλ(1+ε)µn

}
= e−λ(1+ε)µn

n∏
i=1

(E
[
eλxi
]
)

≤ e(eλ−1)µn−λ(1+ε)µn

≤ e(eλ−1−λ(1+ε))µn

≤ inf
λ>0

e(eλ−1−λ(1+ε))µn ≤ e−
µnε

2

3

(2)

since pie
λ+1−pi = 1+pi(e

λ−1) ≤ epi(e
λ−1), and where the last part is by Taylor expansion.

You can do the calculation for 1 − ε, instead of the 1/3 factor in the exponent, you get
factor 1/2. This calculation is fairly standard, you should give it a try after the class. The
idea is simple and is just calculus.

Notice that the dependence on ε is ε2: Imagine binomial trial, they are all sort of inde-
pendent. Then if all pi are the same, then µn = np0. Then, you can take ε as small as 1/

√
n.

This reminds us of the central limit theorem. For instance, we can look at 1√
n
(Sn−np0)→d

N (0, p0(1− β))→ P {
√
nN (0, p0(1− p0)) ≥ εnp0} = P {N (0, p0(1− p0)) ≥ ε

√
np0}. So this

can be viewed as a generalization of central limit theorem.
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Now how can we use this in a more statistical setting.
We can suppose we get X1, · · · , Xn are i.i.d. Then let the null hypothesis H0 be that

Xi ∼ N (0, 1), and Ha be the hypothesis that Xi ∼ (1−πn)N (0, 1)+πnN (µn, 1): a mixture of
Gaussians. You can think of the Xi as z-scores for n different hypotheses. If for every single
one the null hypothesis holds, then it follows a standard normal distribution by definition
z-score. Under the alternative hypothesis, they will still have a normal distribution, just
with a different mean. πn, µn are the only differences between H0, Ha. We are interested
in what happens in large n situation with very small proportion as π − n goes to zero.
You think of this as data generating mechanism. You have πn > 0, but you don’t know
it. How do you estimate πn. In high-dimension problem, it’s important to ask the right
question. Estimating πn is much more difficult problem than estimating this thing. In the
high-dimensional setting testing and estimation are very different problems.

The setting we are considering here is the simplest one – testing. Suppose you are in the
alternative, then you can estimate πn, µn. In the classical setting, these two questions are
the same. The third question would be the most difficult: Not interested in global testing,
but interested in multiple testing. You want to now identify indices i such that you can
tell which distribution is followed for each i: This is a mixture model case, where for each
distribution you can attach a label. This is genuine multiple testing. In the classical setting,
the differences between these three are quite small. In the high-dimensional setting, these
are very different. If you want to do multiple testing, then there is a subset of all indices
such that the distributions follow the H0 distribution rather than the Ha distribution. We
will assume that L = 0 with probability 1 − πn and L = 1 with probability πn. Then we
have Xi|L = 1 ∼ N (µn, 1), and Xi|L = 0 ∼ N (0, 1). Then we can re-write our hypotheses
as H0,i : Li = 0 and Ha,i : Li = 1. If you do these hypothesis tests many times, you are
going to end up making mistakes just by chance. Hypothesis tests are always a probabilistic
statement. If you do this many times, you almost surely are going to make a mistake.
If you don’t want to make any mistakes, then you have to keep increasing the bound on
the probability. For every single one of them, you’re only going to be right in rejecting a
hypothesis 95% of the time – this gets reduced to a very small probability if you repeat the
experiment many times. Let’s do a quick calculation: If we have X1, · · · , Xn drawn i.i.d.
from N (0, 1). Then, maxiXi =

√
2 log n(1± op(1)).

Thus, in the regime µn =
√

2r log n, πn = n−β there is no way to do consistent individual
hypothesis testing (meaning individually test). But, it is possible to do consistent global
hypothesis testing (meaning, look at the original H0, Ha).

4 Lecture 3: Higher Criticism

This is a paper by Donoho. What we are going to look at is the following. We will look
at the maximum value. We have two classes of observations, we don’t know which comes
from which. In order to differentiate them, we want to find a small subset with elevated
means. These will tend to be the larger observations. We don’t necessarily want to look at
the largest one observation, we want to look at the largest bunch and analyze their collective
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behavior. Collectively, they appear as a bigger cluster that tends to be large enough. We
have Xi which we can view as z-scores. We then convert them into p-values. We want to look
at the largest bunch of z-scores, or the smallest bunch of p-values. So we sort the p-values
in increasing order: p1, · · · , pn. These are like order statistics of uniform random variables.
We expect pk to be essentially like k/n. Then, we will normalize it. We have a r.v., and
subtract its mean and standardize by standard deviation. We write

√
n(p(k) − k/n)√
p(k)(1− p(k))

How do we choose the k? Well, we can take a maximum over max1≤k≤αn, where α is arbitrary
fraction kind of. This is called higher criticism test statistics (HC∗). There are many test
statistics seem to make sense which break down in higher dimension. How do we argue this
works in high dimension? We need to decide on the rejection region in a consistent manner.
Note that you can always simulate from the null distribution using Monte Carlo and decide
when to reject to ensure certain significance levels. How do we decide on it? One of the
basic properties is the law of the iterated logarithm.

Let HC∗ =
√

2 log log n(1 + op(1)). Reject H0 iff

HC∗ ≥
√

2(1 + δ) log log n

Under the null hypothesis, with probability tending to 1, this is true. Under Ha, we can
apply Chernoff bound. First, we want to make Chernoff applicable to this setup. Instead of
converting Xi into p-values, we convert it into an indicator random variable Xi → 1(Xi ≥
x) = zi(x). So, we look at H̃C

∗
= supx

∑n
i=1 zi(x)−(1−Φ(x))√
n(1−Φ(x))Φ(x)

where Φ is the CDF of a standard

normal distribution. This is like a modification of higher criticism. We want to show that

P
{
H̃C

∗ ≥
√

2(1 + δ) log log n
}
→ 1

We need to think about how x∗ needs to be:

x∗ =
√

2q log n

We will find the right q. We write

P

{∑n
i=1 zi(x

∗)− (1− Φ(x))√
n(1− Φ(x))Φ(x)

≥
√

2(1 + δ) log log n

}
→ 1

This looks like Chernoff bounds. We have
∑
zi(x∗) ≥ n(1−Φ(x∗))+poly log(n)

√
n(1− Φ(x∗))Φ(x∗).

Then,
E [zi(x∗)] = (1− πn)(1− Φ(x∗)) + πn(1− Φ(x∗ − µn))

Then, we have

1− Φ(x∗) =

∫ ∞
x∗

φ(u)du ≈ poly log(n)n−q
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(Calculation is an exercise.) Then, (1 − Φ(x∗ − µn)) is the same story. This will also be
poly log(n)n−(

√
q−
√
r)2 . Putting everything together∑

i

zi(x∗) ≥ poly log(n) · n1−q + poly log(n)n(1−q)/2

Basically, the RHS of the inequality is (1− δ)µ in a Chernoff bound. The first term is

n
(

(1− n−β)poly log(n)n−q + n−βpoly log(n)n−(
√
q−
√
r)2
)

= poly log(n)n1−q+poly log(n)n1−β(
√
q−
√
r)2

All we need to make sure is that 1− β − (
√
q−
√
r)2 ≥ 1−q

2
. Suppose this holds. In both

cases, the leading term is poly log(n)n1−q. If δµ is the second term, it is at least the square
root of the first term. The probability that

∑
zi(x∗) ≥ poly log(n) ·n1−q+poly log(n)n(1−q)/2

therefore goes to 1.
The goal is to make sure that 1− β− (

√
q−
√
r)2 ≥ 1−q

2
has a solution for q. Recall that

r is a parameter determined by the regime of µn. Then we get a quadratic equation in q:
Let s :=

√
q. We get

s2 − 4s
√
r + (2β + 2r − 1) < 0

If it has roots, we want 16r > 4(2β + 2r − 1) which implies r > β − 1/2. Recall that β
represents the fraction that the alternative holds. r is how big you want to be. Since this
is a parabola, it can have two roots. You want one root to be between 0 and 1. Thus, you
want

4
√
r −
√

8r − 8β + 4

2
< 1

So

r >
(

1−
√

1− β
)2

Higher criticism is basically taking supremum of a standardized binomial trials process. We
only care about larger values. Under null hypothesis, we know that it’s going to be of the
order

√
2 log log n. We need to make sure that the value under alternative, after we binarize

the test statistics, is large enough. So we just need a combination of β and r such that under
the alternative, higher criticism exceeds that value.

The only trick in the calculation is approximating the survival function of the normal:
It’s of the same order as the density. Then the rest is just Chernoff bounds. The idea is
fairly simple.

We are not going to spend much time talking about multiple testing in this course. But
nevertheless, it represents a lot of the challenges posed by the high-dimensional setting. So
it is a big part of high-dimensional data analysis. I want to use this example to illustrate
how things will tie to what we discuss in the class. Many of the results are recent and the
result is elegant, but the main technique is sort of more simple.
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4.1 Concentration Inequalities

There are many concentration inequalities, some of which are useful in various settings. I
talked about Chernoff bounds: Here are some others.

Theorem 4.1. Hoeffding’s inequality.
We have Xi independent, such that they have distributions on bounded intervals [ai, bi]. Then

P

{
|
∑
i

Xi − E [Xi] | ≥ t

}
≤ 2e−t

2/(2
∑
i(bi−ai)2)

Now you can forget about dealing with binomial trials.

Theorem 4.2. Bernstein’s inequality.
For bounded random variables and for unbounded random variables. It is same spirit of
Hoeffding, but takes into account how large the random variables can be. Unbounded replaces
the condition that variable needs to be bounded with moment conditions. This applies to
subGaussian r.v.’s.

These are both examples of Bennet inequalities.
A third category is bounded difference inqualities. The most well-known is

Theorem 4.3. Azuma’s Inequality.
Say we have X0, X1, · · · , Xn. No i.i.d. assumption. We want |Xk −Xk−1| ≤ ck. When the
increments are independent, then you expect

P {|Xn −X0| ≥ t} ≤ 2e−t
2/(2

∑
c2k)

You can apply this to general functions. You can also sometimes get rid of the indepen-
dent increments assumption: McDiarmid’s Inequality, which can be applied in the martingale
setting.

If you are really interested in concentration, there is also Talagrand’s inequality. Tala-
grand asks can you get concentration with a sup over all x – it turns you can. This is used
in empirical process theory.

These are the tools we will be using.

5 Sparse Recovery (Compressed Sensing)

This is a main topic of the course. The problem is deceptively simple. Forget about the
statistics part for now. Say we want to sovle a system of linear equations. Suppose we
have y = Φx, where y ∈ Rm, x ∈ Rn,Φ ∈ Rm×n. In statistics we immediately relate this
with linear regression. When m < n, this has many many solutions. What if we look at a
particular solution, suppose the sparsest one? We may want to solve

min ‖x‖0 s.t. y = Φx
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where ‖ · ‖0 is the `0 “norm”, in other words the count of non-zero entries of x.
The first question to address is under what conditions this equation has a unique solution.

When is the sparsest solution well-defined? Donoho and Huo in 2001 identified the following
example.

Example 5.1. Suppose Φ = [Φ1,Φv], both orthogonal bases. Φ1 is the time domain, Φv is

the frequency domain. Look at
[
IM ,

(
1√
M

exp(2πj
M

)
)]

. If you have a signal sparse in the time

domain, it cannot be sparse in the frequency domain and vice-versa: This is the uncertainty
principle.

We want to say things like if things are sparse enough, there is a unique solution. A
useful concept for doing this is coherence.

Definition 5.2. Coherence.
Define

µ(Φ1,Φ2) := max
φi∈Φ1,φj∈Φ2

〈φi, φj〉

assuming the two matrices are orthonormal bases. Since the columns are normalized, we
always have 1√

M
≤ µ ≤ 1. To see this we can write one matrix in terms of the other as

orthonormal basis.

The lower bound is achievable in the time-frequency domain case.
We will use the uncertainty principle in some of our proofs.

Definition 5.3. Uncertainty principle.
Suppose Φ1w1 = Φ2w2 and w1, w2 6= 0. We must have

‖w1‖0 + ‖w2‖0 ≥
2

µ(Φ1,Φ2)

Theorem 5.4. If the sparsity is ≤ 1
µ(Φ1,Φ2)

, the solution must be unique.

Proof. By contradiction. Suppose we have Φz = Φx∗. Then ‖z‖0 = ‖x∗‖0, z 6= x∗. This
implies that Φ(x∗− z) = 0. Then look at coordinates of x∗− z corresponding to first system
and second system. Call this value δ. Then,

[Φ1,Φ2]

[
δ1

δ2

]
= Φ1δ1 + Φ2δ2 = 0

Thus,

‖z‖0 + ‖x∗‖0 ≥ ‖δ‖0 = ‖δ1‖0 + ‖δ2‖0 ≥
2

µ(Φ1,Φ2)

using the uncertainty principle.
But we had that the sparsity is ≤ 1

µ(Φ1,Φ2)
, so the sum ‖δ1‖0 +‖δ2‖0 cannot be ≥ 2

µ(Φ1,Φ2)
.
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6 Lecture 4:

Recall that last week we used Chernoff bound to show the consistency of Higher Criticism
for multiple-testing. We have H0 : X1, · · · , Xn ∼i.i.d. N(0, 1) and Ha,i : X1, · · · , Xn ∼i.i.d.
(1 − εn)N(0, 1) + εnN(µn, 1). We have εn ∼ n−β, µn ∼

√
2r log n. HC is consistent iff

r > max{β − 1/2, (1−
√

1− β)2}.
Another thing we could have done was EM algorithm (maximum likelihood estimate and

make inferences) because this is a parametric problem. But an issue here is that our problem
happens right at the boundary (when εn → 0, or µn → 0). If our mixture is right around
1/2, it’s an easier problem. But as εn → 0, this problem becomes irregular and a standard
MLE argument doesn’t work so well.

Then we started about sparse recovery. The main idea is we want to solve a linear system
y = Φx, where Φ is m× n with m < n. We want the sparsest representation.

6.1 Uncertainty Principle

How do we prove the uncertainty principle?

Theorem 6.1. Uncertainty Principle.
We have two orthonormal bases φ1, φ2. Suppose φ1α = φ2β 6= 0. Then

‖α‖0 + ‖β‖0 ≥
2

µ(φ1, φ2)

Proof. WLOG suppose ‖α‖2 = 1. Then ‖φ1α‖2 = 1 which implies ‖β‖2 = 1. Then,

1 = ‖φ1α‖2
2 = αTφT1 φ1α = αTφT1 φ2β ≤ ‖α‖1‖β‖1µ(φ1, φ2)

because we are summing over all coords of α, β, and multiplying by an entry from the
correlation matrix. So you can pick the maximum (the coherence) and remove the sums.
Thus we get

1

µ(φ1, φ2)
≤ ‖α‖1‖β‖1 ≤

1

2

(
‖α‖2

1 + ‖β‖2
1

)
and we can replace ‖α‖2

1 ≤ ‖α‖0‖α‖2 = ‖α‖0 by Cauchy-Schwarz and since ‖α‖2 = 1.

This case (orthonormal bases) gives us all the intuition we want about why coherence is
important.

6.2 Applying Coherence

Now suppose we have y = Φx where Φ is m× n with m < n. Let

µ(Φ) = max
i 6=j

|〈φi, φj〉|
‖φi‖‖φj‖
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Suppose
√

n−m
n(m−1)

≤ µ(Φ) ≤ 1. In the case that Φ is a Gaussian ensemble (each entry is

an i.i.d. standard normal) then µ(Θ) ∼
√

log(mn)
m

. What’s the main result here in terms of

sparsest solution?

Theorem 6.2. Φx∗ = y. If ‖x∗‖0 <
1
2

(
1 + 1

µ(Φ)

)
there is a unique solution. This isn’t as

sharp as the two orthonormal case: If you take Φ as two orthonormal bases, you will be off
by a factor of 1/2. This is what you sacrifice for generality. So this bound is not always
sharp, but it is general.

Proof. In the original proof by Donoho, they used the notion of Kruskal rank.

Definition 6.3. Kruskal rank.
The Kruskal rank krank(Φ) is

max {|S| : φS is linearly independent }

This is more of a uniform requirement for rank. If you take any |S| columns, they are all
linearly independent.

This concept was first identified by Kruskal in the study of the identifiability of tensors.
This is useful for us as well. We have x∗, we want to show that x∗ is the sparsest solution.
Let us assume the contrary, and try to derive a contradiction. Suppose Φx∗ = Φz. Then
Φ(x∗ − z) = 0. If both x∗ and z are both sparse, so is the difference between the two.
Then, krank(Φ) ≤ ‖x∗ − z‖0 − 1 ≤ ‖x∗‖0 + ‖z‖0 − 1 by definition of Kruskal rank. Thus it
suffices to show that krank(Φ) ≥ 1

µ(Φ)
to show the contradiction of there existing two sparse

solutions x∗, z: You’d get krank(Φ) < 1 + 1
µ(Φ)
− 1 = 1

µ(Φ)
as well, which is the contradiction.

Let’s assume that all φi have unit norm. Let’s look at A = ΦTΦ. Suppose S ⊆ [n]. Then
ASS = (φTi φj)i,j∈S. Then if ASS is invertible (if it’s positive definite instead of just PSD),
such that |S| ≤ k, this automatically implies krank(Φ) ≥ k. Let’s look at ASS: The diagonal
is 1. If we show that this is diagonally dominating, then it will be positive definite. Thus
look at the sum of the off-diagonals. There are at most k − 1 of them, and each is at most
µ(Φ). Thus if (k − 1)µ(Φ) < 1, ASS will be positive definite. Thus k < 1

µ(Φ)
+ 1 implies a

constraint on the sparsity which we wanted. This is the general result using coherence to
show uniqueness.

6.3 Summary of coherence

So first, coherence is easy to compute relatively: You just look at the off-diagonal correlations
of the design matrix. It’s also easy to use in analyzing algorithms.

There also disadvantages. One is specifically because this is generally applicable: It
doesn’t give you the best result. Too general in a way. Secondly, the worst case result is
sub-optimal. If we have µ(Φ) > 1/

√
M , then ‖x∗‖0 <

√
M , which is not optimal. You can

get around this result with different design matrices.
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6.4 Computational Considerations

Now, the `0 optimization problem is NP-hard. Also we will assume normalized columns.
When m,n are large, this problem becomes hard. People have come up with various algo-
rithms which have had varying success. What can you say when an algorithm works and
when it doesn’t work? We will highlight a few of them, the ones most commonly used in
practice.

The first one is called one-step-thresholding (OST) or marginal screening. The
idea is simple: Suppose you know the sparsity k of the sparsest solution. For j = 1, · · · , n,
we write rj = φTj y. Then define set Λ = {j : |rj| is in the top k}. Basically take the largest
k. You can think of rj as a p-value. Then define x̂Λc = 0, x̂Λ = (ΦT

ΛΦΛ)−1ΦT
Λy, a.k.a. linear

regression. In what kind of situations does this algorithm work?

Definition 6.4. Support.
The support of a vector v is defined

supp(v) = {j : vj 6= 0}

Then k = |supp(x∗)| = ‖x∗‖0.

Theorem 6.5. OST (one-step thresholding) works (x̂ = x∗) if ‖x∗‖0 <
1
2

(
1 + 1

µ(Φ)
· xmin
xmax

)
.

Here, xmin is the minimum absolute value of x∗ over the support and xmax is the `∞ norm
of x∗.

Proof. All you need to show is that Λ is the support of x∗. We have vj = ΦT
j Φx∗. All we need

to show is that if you take any index from the support, you’ll get a larger correlation than if
you take from anyone outside the support. We treat these two situations separately. What if

j 6∈ supp(x∗)? Then |vj| =
∣∣∣∑i∈supp(x∗)

φTj φix∗,i

∣∣∣ ≤∑i∈supp(x∗)
|φTj φi||x∗,i| ≤ ‖x∗‖∞ · k · µ(Φ).

Now, if j comes from support what happens? If j doesn’t, everyone behaves the same
way. If it does, then we want to single out the jth index. We will end up with |vj| =∣∣∣x∗,j +

∑
i∈supp(x∗),i 6=j φ

T
j φix∗,i

∣∣∣ ≥ |x∗,j| − (k − 1)µ(Φ)‖x∗‖∞ ≥ x∗,min − (k − 1)µ(Φ)‖x∗‖∞.

Thus, we have
x∗,min − (k − 1)µ(Φ)‖x∗‖∞ ≤ |vj| ≤ ‖x∗‖∞ · k · µ(Φ)

to get the result.

In sparse recovery, we haven’t talked about noise yet. It turns out you can do the same
type of calculation if you do have noise. What happens in the regression setting? Say we have
y = Φx+ ε, where εi ∼ N(0, 1). Do same calculation. Only difference is rj = φTj Φx∗ + φTj ε.
Note that φTj ε will still follow N(0, 1). So in addition to the things we saw before, we’ll get
a noise term. You’ll end up with if rj 6∈ supp(x∗),

|rj| ≤ kµ(Φ)‖x∗‖∞ + max
j 6∈supp(x∗)

|φTj ε|
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We know this maximum is upper bounded by
√

2 log(n− k). If rj ∈ supp(x∗), then |rj| ≥
· · ·
√

2 log k. Then you play the same game to see when marginal thresholding will work.
Thus, once you understand sparse recovery setting, adding subGaussian noise is fairly easy
to handle when focusing on coherence. It could get more complicated in other settings.

Now we talk about stepwise regression (forward or backwards). It’s easier to do forward
regression. You can always fit a smaller model. The next idea is forward selection. In
signal processing literature, it’s called orthogonal matching pursuit (OMP). Now it’s an
iterative procedure. Here, r stands for residual. We have r0 = y. Then Λ0 = φ. Let us write

sj = φTj r
iter

Instead of taking top k, we will take top 1. We will take

j∗ = argmaxj 6∈Λiter{|Sj|}

Then, Λiter+1 = Λiter ∪ {j∗}. Now we run linear regression on this set:

xiter+1 =
(
ΦT

Λiter+1ΦΛ

)−1
ΦT

Λy

We also have xiter+1
j = 0 for all j not in Λiter+1. Then, viter+1 = y−Φxiter+1. We then update

iter. What is the stopping criterion? In sparse recovery, we will recovery the exact solution.
So here, the stopping criterion will be r = 0. This is the difference between regression and
sparse recovery.

Theorem 6.6. If ‖x∗‖0 <
1
2

(
1 + 1

µ(Φ)

)
, then OMP recovers x∗. Thus, x̂ = x∗.

Thus OMP works to some degree. This matches perfectly with coherence.

Proof. As long as you don’t reach 0, at any iteration, the one you selected is going to be from
the support of x∗. We will prove by induction. Suppose that the current set doesn’t use this
variable. I want to make sure I don’t select something from outside the support. We proceed
by proof by induction over Λ always being a subset of the support of x∗. There are only k
things I can select from, so after k steps I am done. In the first step the selected set is empty.
We want to prove Λiter ⊆ supp(x∗). Then, riter = y−Φxiter = y−ΦΛxΛ. We write y = Φx∗.
Either we have a coordinate in Λ or outside Λ. All we care about are the following: we can
write this expression as Φz. The support of z ⊆ supp(x∗) since Λ is a subset of the support
of x∗. This turns out to be good enough for our proof. Sufficient sparsity allows us to show
uniqueness. Now look at φTj Φz: if j is not from the support of x∗, then |Sj| ≤ kµ(Φ)‖z‖∞
as in one-step thresholding. Then if j ∈ supp(x∗), |Sj| = |zj| − (k − 1)µ(Φ)‖z‖∞. We want
to show the one we selected is from the support. We select j that gives the maximum. Then
the one we selected will be at least be bigger than the value achieved at this particular j.

In one-step thresholding, you want to make sure the weakest among your group is selected
ahead of others. That’s why you end up with xmin. Here you want to make sure the best
you selected is better than the rest. If you take a particular j, you’ll ensure that the OMP
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condition will make yours better than the rest. This will show that it comes from the support
of x∗. You could keep selecting the same variable again and again, but we need to ensure
this does not happen. You are projecting the other entries on the set of Λ. The correlation
must be 0 on the projection of Λ, because you are running least squares. What this does is
make sure that your residual is orthogonal to anyone from your current active set. (There
is also matching pursuit, where there is no such guarantee).

7 Lecture 5: (Get notes from Rishabh)

8 Lecture 6: (Get notes from Rishabh)

9 Lecture 7:

Last time, we finished talking about sparse recovery. The idea basically is we talked about
how to use RIP to get around the square root bottleneck. If we want to solve y = Φx,
minimizing ‖x‖0 or ‖x‖1 such that equality holds, then x = x∗ if δ2k + θ2k,k < 1, where δ2k is
the restricted isometry constant. Thus for Gaussian ensembles, k := ‖x∗‖0 ∼ m

logn
. So this

is much better than a coherence type analysis.
We talked about high-dimensional linear regression. Now we look at a linear equation

y = Xβ + ε, where y ∈ Rn×1, X ∈ Rn×d, and β ∈ Rd×1. Here, we assume ε ∼ N (0, σ2I). We
want to exploit the sparsity of β. We are interested in the case where d >> n. There is no
hope you can solve this without additional constraints. The interesting thing here is that
what we are interested in is not just exact sparsity, since these models are approximations
to reality. So we want to talk about potential sparsity of β, and study how well we can do
to quantify how difficult the problem is.

We discuss

Definition 9.1. Parameter spaces for approximate and exact sparsity.

(a) approximate sparsity: We will look at β ∈ Θr,R = {v ∈ Rd : ‖v‖`r ≤ R}, for r > 0.
This is one parameter space.

(b) exact sparsity: β ∈ Θ0,k = {v ∈ Rd : ‖v‖0 ≤ k}.

These cases are related. We can incur some bias by solving the approximate case, and
treat it as an approximation to the exact space. We want to know how difficult this problem
is. So what is the most difficult case? Typically, this is easier to construct from the exact
sparse situation. Then we’ll consider the approximate sparse case.

In high-dimensional linear regression, we have different situations: we could have a ran-
dom design situation, where the columns are generated from a random distribution. We can
also have fixed design, meaning that X is not stochastic. We will make a distinction between
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the two. In the analysis, we’ll be conditioning on X. We will also normalize each of the
columns of X = (x1, · · · , xd) so that ‖xi‖2

2 = n. This makes the sample standard deviation
to be 1. If the standard deviations are very different, the interpretations of β will be very
different as well. We want to look at things on the same scale. In the high-dimensional case
when d is large, this is very important – you could have different columns which scale very
differently. Thus we scale.

9.1 Regression

So how do we do estimation and inference in this particular setup? Let us first look at
estimation. Let us look at several loss functions: Consider ‖β̂ − β‖q`q , where q ≥ r and

β ∈ Θr,R (otherwise, if q < r, the thing we estimate may not be in our parameter space).
We can look at a minimax risk bound:

Rq(Θr,R) = inf
β̂

sup
β∈Θr,R

Eε
[
‖β̂ − β‖q`q

]
The infimum is taken over all estimates you could get. We want to know how big this is.
This amounts to a lower bound. We also want to construct an estimate which can achieve
this rate – this is the upper bound, and can be achieved by Lasso or Dantzig selector. Can
we establish a lower bound? Let δn = δ/

√
n. We have the following: Let

λmm,r =

{
δn
√

2 log(d/k) r = 0

δn

√
2 log( δ

r
nd
Rr

) r > 0

This represents the weakest signal that you can just estimate. If your signal is smaller than
this, then if you look at the magnitude of βj, it becomes impossible to recovery. This is the
threshold, and depends on the parameter set which is why it depends on r. Once we have
this, the bound is fairly easy:

Rq(Θr,R) = Rrλq−rmm,r(1 + o(1))

This result is due to (Ye and Zhang, 2010). The main technical step is due to an earlier
paper. How to deal with the general regression setting? The main idea is as follows: We
want to do a sup and an inf. You have to get rid of one of them first. One typical way of
doing this is to get rid of the sup part first: How bad can the estimation be? You can use
a Bayesian prior on β. We want this distribution to be defined over the parameter space.
For simplicity, we can just take some distribution which has non-zero mass on the parameter
space. Let the prior be denoted as π. Then,

inf
β̂

sup
β∈Θr,R

E
[
‖β̂ − β‖q`1|β

]
≥ inf

β̂
Eπ
[
E
[
‖β̂ − β‖q`1|β

]]
= inf

β̂
Eπ

[
d∑
j=1

E
[
|β̂j(x, y)− βj|q|βj

]]
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Now we want to decouple these β̂j. We can write zj = xTj (y − x−jβ−j)/n = βj + xTj β/n ∼
N (βj, σ

2
n) ≥ inf β̂ Eπ

[∑d
j=1 E

[
|β̂j(x, y, β−j)− βj|q|βj

]]
= inf β̂ Eπ

[∑d
j=1 E

[
|β̂j(zj)− βj|q|βj

]]
.

Thus we are able to de-couple. Then, Donoho-Johnston in 1994 look at the following
problem (this is most of the heavy lifting). We have x ∼ N (0, σ2

nId), which is a Gaussian
sequence model, which is different from the regression model we have. But you can do the
same kind of derivation. The only difference is in our case, the zjs are correlated. It doesn’t
matter if they are dependent because we are computing an expectation over the prior. So
what Donoho-Johnston showed was that

inf
µ̂

sup
µ∈Θ

E
[
‖µ̂− µ‖qq

]
= Rrλq−rmm,r

They do this by appropriately choosing a prior: There is a lot of mass on the parts of the
distribution which end up being hard to estimate. So given we know what λmm,r is, we can
assign a lot of mass to the threshold area. So,

βj =

{
λmm,r(1− ε) w.p. p

0 w.p. 1− p

If you choose such a prior, it really does not matter if you are doing regression or Gaussian
sequence case. Thus

inf
β̂
Eπ

[
d∑
j=1

E
[
|β̂j(zj)− βj|q|βj

]]
= Rrλq−rmm,r(1 + o(1))

But I cheated a little bit: this all holds if our prior distribution is supported on the set. It
may not be though! So, we need to argue that with probability tending to 1, β is going to
come from Θr,R under the prior π. This has to do with how we choose p, so that β indeed
comes from that set. If we look at ‖β‖rr � λrmm,r(1− ε)r · d · p. We can then use a Chernoff
bound to show that the probability of belonging in the set is concentrated around 1, provided
we choose p so that (1− ε)rp ≤ Rr.

9.2 Prediction

Let’s suppose we want to evaluate the error of prediction. If our design matrix is very well
conditioned on the subset supp(β) = S. This is exactly the premise of restricted isometry.
We will have a more general way of dealing with this.

Definition 9.2. Restricted Eigenvalue.
Let φk,+ denote the eigenvalue as follows:

φk,+ = sup
‖u‖≤1,‖u‖0≤k

1

n
‖Xu‖2

2
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You can think of this as the max eigenvalue of a sparse u. You can also interpret it as a
property of the Gram matrix: It’s the largest eigenvalue of the k × k principal of the Gram
matrix. Similarly, we can define

φk,+ = inf
‖u‖=1,‖u‖0≤k

1

n
‖Xu‖2

2

We have 1
n
‖Xu‖2

2 = 1
n
uT (XTX)u, where Σ̄ = (1/n)XTX. This actually holds true

regardless of whether or not you center your observation. In some applications, it makes
sense to not center it. In regression model for prediction, you indeed may want to center it
for interpretation purposes. This is more of a Gram matrix more than a covariance matrix.

So if you think about RIP, the constant is going to be related to these constants very
directly.

inf
β̂

sup
β∈Θ0,k

E
[
‖Xβ̂ −Xβ‖2

]
≥ O(kλ2

mm,0)

But you can actually say a bit more than this – you can get the constant right as well.
The constant is

φ2k,−
4
· 1 + o(1). Minimax analysis is about uniform performance over a

whole subset. This φ doesn’t show up in the estimation case because you’re looking at all
directions. Here, it shows up in the prediction risk because multiplying by X will change
the scale: only a small number of directions might matter! However, we do require that
φ2k,− > 0: otherwise, the result is completely meaningless since we would essentially be
predicting onto a zero direction, and there would be no way to measure prediction error
at all: everything would be zero! Also remember that this is a lower bound, not an upper
bound: The lower the scale, the more things are possible. It doesn’t mean that the upper
bound is not large.

9.3 Estimating the Support

Let’s make the parameter space a bit different. Consider Θ̃k =
{
v ∈ Rd : ‖v‖0 = k,minr:vj 6=0 |vj| ≥ β∗

}
.

The magnitude of each non-zero entry needs to be β∗. We have Y = Xβ + ε. Now suppose
we want to estimate the support of β. In the high-dimensional case, the relationship between
these two problems is much murkier: You can construct a good estimator of β that does not
give a good estimator of the support of β. In the case where d is very very large, things
will be bad. In low-dimensional setting, the probability is bounded and you can do well. In
high-dimensional case, the probability can be arbitrarily bad. So what is the probability for
us to estimate the support well? We look at

inf
β̂

sup
β∈Θ̃k

P
{

supp(β̂) 6= supp(β)
}
≥ 1− 2β2

∗ + δ2
n log 2

δ2
n log(d− k)

Ideally you want this probability to go to 0 for consistent selection. Thus, you want 2β2
∗+δ

2
n log 2

δ2n log(d−k)

to go to 1. Thus, if β∗ is large, that’s a good thing! This is a lower bound. How large should
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β∗ be? It needs to be at least of order δ2
n log(d− k) to get consistent selection. So β∗ should

be of order δ
√

log(d−k)
n

, and we want d/k → ∞. Thus, in order to recover any signal, the

β-min condition is required to recover, β∗ is the smallest non-zero entry.
The way to prove this is via Fano’s lemma.

Lemma 9.3. Fano’s lemma.
You have a parameter set and you want to establish a lower bound. This is a covering type
of argument. If two probability measures are sufficiently different then we can distinguish
between them. If KL divergence is small, it’s hard to distinguish. For any given pair, we
want to be able to distinguish between the two of them. There are two determining factors.
One is how close are any two points. The other factor is how many points there are in total.
We kind of want them to be spaced apart. So Fano’s lemma says the following: Suppose
we have random variable Z, and we have probability measures P1, · · · , Pm for Z. Then

Kullback-Leibler distance gives KL(Pj, Pk) = EPj
[
log

dPj
dPk

]
. Then, let δ(z) → [m] be the

function telling us which probability measure the sample comes from. Fano’s lemma tells us
the probability we are correct.

1

m

m∑
j=1

Pj {δ(z) = j} ≤
1
m2

∑
1≤j,k≤mKL(Pj, Pk) + log 2

log(m− 1)

This is a classical tool for establishing minimax lower bounds.
So how do we prove selection lower bounds? We just need to find the m probability

measures. The z here are just our x, y, what we observed. All these probability measures
are induced by β. So we need to figure out m different sets of β so that each of them are
sufficiently similar so that I cannot tell. Then apply Fano’s lemma.

In this case, it is simple to construct all these β. We can draw a line from 1→ d. First,
we fix the last k−1 to be just β∗. Then look at the first d−k+1 of them. We define P` as the
case where βj = β∗ for j = ` and 0 otherwise. Keeping in mind that y is normally distributed

with respect to the noise with mean Xβ, KL(Pj, Pk) =
‖Xjβ∗−Xkβ∗‖22

2σ2 ≤ 2nβ2
∗ . Then you use

Fano’s lemma, and you get the result with log d− k since you have m = d− k + 1.
In order to get upper bounds, you will need conditions on the design matrix. To get

lower bounds, you typically don’t except for the case of prediction.
Also, we have so far been only looking for perfect recovery. What if we allow for some

error? What if we change the metric? That’s still a subject of research. What’s the minimax
lower bound under a general loss function?

9.4 Upper bounds

Now we would like to get upper bounds on the estimation, prediction, and support errors.
We will use the Lasso algorithm. We want to optimize

min
β

1

2n
‖y −Xβ‖2

2 + λ‖β‖1
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which gives you the Lasso estimate β̂(λ). The biggest advantage of this approach is that
this is a convex optimization problem. Lλ(β) is convex, and is also separable. It also has
disadvantages. The main disadvantage of using Lasso is biased-ness. Why is it biased? The
`1 penalty is

∑
|βj|. It doesn’t matter if βj is large or small, you penalize them the same way.

For small ones, it is probably helpful. When βj is close to 0, you’re better off just shrinking
it to 0. If your βj is large, you’re pretty sure it’s not zero – but you’re still shrinking it. This
the cause of bias: You don’t take the magnitude of the coefficient into account. The other
disadvantage is the fact that there is very little known about β̂j – it’s hard to make a specific
estimate about a specific coordinate. If you want to make inference about βj, it seems it is
not a good starting point. Say you want to construct a confidence interval for βj, how do
you do it? You start with a unbiased estimate, calculate standard deviation, and construct
the interval. But here, you don’t have the variance or unbiasedness. You also cannot run
Lasso one time and develop a confidence statement for βj.

Let’s explore the advantage of Lasso, and see what kind of properties we have. Basically,
we have 0 ∈ ∂Lλ(β̂). Here, ∂f(x) = {v : f(x+h)− f(x) ≥ vTh}. Consider linear regression:
f(β) = ‖y − Xβ‖2, then ∂f(β) = −2XT (y − Xβ). Another example, suppose f(β) = |β|.
Then this is not differentiable. We have

∂f(β) =


−1 β < 0

[−1, 1] β = 0

1 β > 0

Then,

∂Lλ(β) = − 1

n
XT (y −Xβ) + λsgn(β)

where sgn(βj) = ∂|βj|.

10 Lecture 8: Low-rank Matrix Estimation

We would like to recover a low-rank matrix from measurements. There are several different
settings:

(a) Standard regression setting. You have a matrix M ∈ Rm1×m2 , which is unknown to us.
Then, we have a measurement matrix X ∈ Rm1×m2 . In the simplest case, X’s entries
are standard Gaussians. Then, the output is Y = 〈M,X〉+η, where the inner product
is taken in Euclidean space (treating the matrices as vectors) and η is random noise.
After observing i.i.d. copies (X1, Y1), · · · , (Xn, Yn), we want to recover M .

This is not much different from the sparse regression problem: The only difference is we
have a low-rank assumption on M , rather than a sparse assumption on M . Actually, if
you apply the techniques from the sparse regression setting, they will work here as well:
You can naturally generalize RIP and restricted eigenvalue to the low-rank setting as
well.

(b) Matrix completion setting.
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10.1 Matrix Completion

10.1.1 The Netflix Problem

Ten years ago, Netflix publicized a dataset of users × movies matrix of rating data: The
goal is to predict users’ ratings for movies they have not yet seen. We have a rating matrix
M ∈ Rm1×m2 , where m1 is the number of users and m2 is the number of movies. Every entry
is assumed to be non-negative (in particular, ratings may be integers from 1to5). The entry
M(i1, i2) denotes the rating of movie i2 from user i1. We only observe a subset of the entries.
Let Ω ⊂ [m1]× [m2] denote the subset we see. The goal is to recover M from Ω (fill in the
unobserved entries).

The winner of Netflix contest won with an algorithm called collaborative filtering. Every
user i1 is assumed to be characterized by a feature vector ri ∈ Rk. Every movie i2 is also
characterized by a feature vector cj ∈ Rk. Then, they assume that the rating M(i1, i2) =
〈ri1 , ci2〉. Then, the goal is to solve the optimization problem

min
r,c

∑
(i1,i2)∈Ω

(M(i1, i2)− 〈ri1 , ci2〉)
2

They solve the optimization problem by gradient descent. You can choose k by cross-
validation. This formulation is equivalent to solving the following problem:

min
X∈Rm1×m2 ,rank(X)≤k

‖(M −X)Ω‖2
F

Note that this is a non-convex program, which is in general difficult to compute. In re-
cent years, there’s a lot of important progress towards solving this problem. For the first
formulation, some people have proven that every local optima is a global optima.

10.1.2 Quantum State Tomography

One fundamental problem is to estimate the state of a quantum system in quantum comput-
ing. You may have a single qubit: an electron, or an ion. Each qubit has a state given by a
matrix ρ ∈ H2, called the density matrix, which is the set of 2×2 Hermitian matrices (ρ is
conjugate). This is important for quantum computing. Some properties of ρ: It is positive
semidefinite and its trace is 1. These properties are just a way of imposing the notion of a
probability distribution over matrices.

The measurement of a single qubit is written as a matrix X ∈ H2. We would like
to measure the density matrix. If X = λ0P0 + λ1P1 (called spectral decomposition), by
measuring X on density matrix ρ, the output Y is a random variable and the distribution
of Y has form

P {Y = λ0} = 〈ρ, P0〉

P {Y = λ1} = 〈ρ, P1〉

Thus, E [Y ] = 〈ρ,X〉.
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Definition 10.1. Pauli measurement.
There are four Pauli measurements:

(a) σ0 = 1√
2

[
1 0
0 1

]
.

(b) σx = 1√
2

[
0 1
1 0

]
.

(c) σy = 1√
2

[
0 i
−i 0

]
.

(d) σz = 1√
2

[
1 0
0 −1

]
.

These constitute an orthogonal basis.

Since the Pauli measurements are an orthogonal basis, estimating ρ is just a matrix
completion problem. If there are b qubits, then the density matrix ρ ∈ H2b . Thus, the Pauli
measurements become the tensorizations of the Pauli measurements: {σ1 ⊗ σ2 ⊗ · · · ⊗ σb :
σi ∈ {σ0, σx, σy, σz}}. There are 4b different Pauli measurements.

10.1.3 Statistical Properties of Matrix Completion

An unknown matrix M ∈ Rm1×m2 has rank(M0) = r0. Let B(m1,m2) be an orthonormal
basis of Rm1×m2 .

Example 10.2. B(m1,m2) = {ei1 ⊗ ei2 : i1 ∈ [m1], i2 ∈ [m2]}.

Example 10.3. B(m1,m2) = {σ1 ⊗ σ2 ⊗ · · · ⊗ σb : σi ∈ {σ0, σx, σy, σz}}, the Pauli basis.

Basically, the setting is fixed w.r.t. an orthonormal basis. Measurements are taken
according to the basis.

Now, let (X, Y ) be a random sample such that X is uniformly sampled from B(m1,m2)
then E [Y ] = 〈M0, X〉. The data is (X1, Y1), · · · , (Xn, Yn) i.i.d. copies of (X, Y ). Our goal is
to estimate matrix M0.

Consider the expectation E [Y X] = EX [〈M0, X〉X]. Since X has a uniform distribution
over orthonormal basis: So, we can write

EX [〈M0, X〉X] =
1

m1m2

∑
B∈B(m1,m2)

〈M0, B〉B =
1

m1m2

M0

since B is an orthonormal basis. Therefore, m1m2Y X is an unbiased estimator of M0. We
can then average over all data points. Consider

Mdata :=
m1m2

n

n∑
i=1

YiXi
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as our unbiased estimator. We now want to take into account the rank constraint.
We begin with estimator 1 as a rank-constrained estimator: We minimize

1

n

n∑
i=1

(〈M,Xi〉 − Yi)2

subject to rank(M) ≤ k, where we assume k is pre-determined. Because we are looking for
low-rank solutions, we have to restrict M : But how do we do this? This is nonconvex. Let’s
modify it by first changing the objective function. We can rewrite it as

1

n

n∑
i=1

〈M,Xi〉2 −
2

n

n∑
i=1

Yi〈M,Xi〉

(the last term doesn’t matter because it doesn’t depend on M). By central limit theorem, we
have that 1

n

∑n
i=1〈M,Xi〉2 should concentrate, since these are independent random variables.

We have

E
[
〈M,X〉2

]
=

1

m1m2

∑
B∈B(m1,m2)

〈M,B〉2 =
‖M‖2

F

m1m2

because B is orthonormal bases. Thus, we can instead try to minimize

‖M‖2
F

m1m2

− 2

n

n∑
i=1

Yi〈M,Xi〉

It is equivalent to minimize ∥∥∥∥∥M − m1m2

n

n∑
i=1

YiXi

∥∥∥∥∥
2

F

such that rank(M) ≤ k. The solution has an explicit form M̂k = SV Dk

(
m1m2

n

∑n
i=1 YiXi

)
,

where SV Dk(A) =
∑k

i=1 σi(A)uiv
T
i . So this is good for computation, for instanceO(km1m2).

Tropp has also given methods of order O(m1m2 log k). How good is it statistically?
So first, what is an upper bound for ‖M̂k−M0‖2

F ? We have that rank(M̂k−M0) ≤rank(M̂k)+rank(M0) ≤
k+r0. Thus, ‖M̂k−M0‖F ≤

√
k + r0‖M̂k−M0‖op. Thus, we only need to bound the operator

norm of the matrix. We have

‖M̂k −M0‖op =

∥∥∥∥∥SV Dk

(
m1m2

n

n∑
i=1

YiXi

)
−M0

∥∥∥∥∥
op

≤

∥∥∥∥∥m1m2

n

n∑
i=1

YiXi −M0

∥∥∥∥∥
op

+

∥∥∥∥∥SV Dk

(
m1m2

n

n∑
i=1

YiXi

)
− m1m2

n

n∑
i=1

YiXi

∥∥∥∥∥
op

=

∥∥∥∥∥m1m2

n

n∑
i=1

YiXi −M0

∥∥∥∥∥
op

+ σk+1

(
m1m2

n

n∑
i=1

YiXi

)
(3)
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Then by Weyl’s theorem, we have σk(A+B) ≤ σ1(A) + σk(B). Therefore,

σk+1

(
m1m2

n

n∑
i=1

YiXi

)
= σk+1

(
m1m2

n

n∑
i=1

YiXi −M0 +M0

)
≤ σk+1(M0)+σ1(

m1m2

n

n∑
i=1

YiXi)

Then, if k ≥ r0, we have σk+1(M0) = 0. Now, we assume that k ≥ r0. Thus,

‖M̂k −M0‖op ≤ 2‖m1m2

n

n∑
i=1

YiXi‖op

where the latter term is an unbiased estimator for the matrix M0. What can we conclude?
If k ≥ r0, then

‖M̂k −M0‖F ≤ 2
√
k + r0

∥∥∥∥∥m1m2

n

n∑
i=1

YiXi

∥∥∥∥∥
op

Now, what is the operator norm of the unbiased estimator? Now, we need to introduce one
of the most important tools for analyzing random matrices in statistics: Matrix-Bernstein
inequality. This inequality allows us to control the operator norm of Z1 + · · · + Zn, where
Zi are random matrices.

Theorem 10.4. Matrix-Bernstein inequality (bounded version, Tropp 2012).
Suppose that Z1, · · · , Zn ∈ Rm1×m2 are independent with E [Zj] = 0. Suppose that ‖Zj‖op ≤
U a.s. Let σ2 = max{‖

∑n
j=1 E

[
ZjZ

T
j

]
‖op, ‖

∑n
j=1 E

[
ZT
j Zj

]
‖op}. Then for all t > 0, with

probability at least 1− e−t,

‖Z1 + Z2 + · · ·+ Zn‖op ≤ 2 max
[
σ
√
t+ log(m1 +m2), U(t+ log(m1 +m2))

]
Now let’s try to apply this bounded version of Matrix-Bernstein to this problem. Let

Zj = m1m2

n
YiX − M0

n
, then E [Zj] = 0. Now we will assume that if Y is uniformly bounded

by some U almost surely, then ‖Zj‖op ≤ m1m2

n
U +

√
m1m2U

n
, noting that E [Y ] = 〈M,X〉 and

thus since |Y | ≤ U and X is a basis, we have |〈M,X〉| ≤ U =⇒ ‖M‖F ≤
√
m1m2U (and

keeping in mind that ‖M‖op ≤ ‖M‖F ). Thus, we can upper bound ‖Zj‖op ≤ m1m2U
n

.
Then, we need

‖E
[
ZZT

]
‖op = ‖E

[
m2

1m
2
2

n2
Y 2XXT − M0M

T
0

n2

]
‖op

≤ m2
1m

2
2

n2

∥∥E [Y 2XXT
]∥∥

op
+
m1m2U

2

n2

Now we need to get ‖E
[
Y 2XXT

]
‖op = supu∈Rm1 ,‖u‖2≤1 E

[
〈Y 2XXT , u⊗ u

]
. We have

|Y | ≤ U a.s., so this expression is

≤ U2 sup
u

E
[
XXT , u⊗ u

]
= U2 sup

u
‖XTu‖2

2 = U2 sup
u

m2∑
i=1

E
[
〈X, u⊗ ei〉2

]
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= U2 sup
u∈Rm1

m2∑
i=1

‖u⊗ ei‖2
F

m1m2

=
U2m2

m1m2

=
U2

m1

Thus,

m2
1m

2
2

n2

∥∥E [Y 2XXT
]∥∥

op
+
m1m2U

2

n2
≤ m1m

2
2U

2

n2
+
m1m2U

2

n2
≤ 2

m1m
2
2U

2

n2

We also need to bound σ2: I’ll skip the steps for now, and just state

σ2 ≤ 2 max{m1m
2
2U

2

n
,
m2

1m2U
2

n
}

Finally, applying Matrix-Bernstein with these bounds gives∥∥∥∥∥m1m2

n

n∑
i=1

YiXi −M0

∥∥∥∥∥
op

≤ U max

{
2

√
m1m2(m1 +m2)(t+ log(m1 +m2))

n
,
m1m2(t+ log(m1 +m2))

n

}

interpolating between the cases where m1 > m2 and vice-versa.
If n ≥ (m1 + m2)(t + log(m1 + m2)), we get the first term of the max function as the

smaller upper bound. Then in this case, we get

‖M̂k −M0‖F√
m1m2

≤ 4U

√
(m1 +m2)(k + r0)(t+ log(m1 +m2))

n

holds with probability at least 1−e−t. The term on the left-hand side is the average Frobenius
norm. Note that (m1 +m2)(k + r0) is essentially the degrees of freedom. To summarize the
conditions required for this to work again:

(a) ‖Y ‖ ≤ U a.s. (for Bernstein)

(b) k ≥ r0

(c) n ≥ (m1 +m2) log(m1 +m2)

We still haven’t figured out how to determine k, if the rank is unknown. Are there more
efficient ways? This is why some people consider the matrix nuclear norm, which is a convex
relaxation for the rank function. We may not have time to cover that right now.

Let me introduce an unbounded version of the Matrix Bernstein inequality.

Theorem 10.5. Matrix-Bernstein inequality (unbounded version, Kultchinskii, 2012).
Suppose that Z1, · · · , Zn ∈ Rm1×m2 are independent with E [Zj] = 0. Suppose that ‖‖Zj‖op‖ψα ≤
Uα for α ≥ 1, where ‖η‖ψα = inf

{
E
[
exp( |η|

α

cα

]
≤ 2
}

(sub-Gaussian if ‖η‖ψ2 < ∞ or sub-

exponential tail if ‖η‖ψ1 < ∞). Let σ2 = max{‖
∑n

j=1 E
[
ZjZ

T
j

]
‖op, ‖

∑n
j=1 E

[
ZT
j Zj

]
‖op}.

Then for all t > 0, with probability at least 1− e−t,

‖Z1+Z2+· · ·+Zn‖op ≤ C1 max

[
σ
√
t+ log(m1 +m2), Uα log(1/α)

(
Uα
σ

)
(t+ log(m1 +m2))

]
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11 Lecture 9: Low-rank Matrix Estimation Continued

First, note that one requires symmetric matrices to apply matrix Bernstein. However, if you
have a non-symmetric matrix X, note that you can apply the dilation property and write[

0 X
XT 0

]
. Then apply Matrix-Bernstein to this matrix instead.

Now, suppose X is a symmetric matrix. Let f : R → R be a function. We define
f(X) = Uf(Σ)UT where X = UΣUT (eigen-decomposition).

11.1 Proving Matrix Bernstein

Let’s give a sketch of the proof of Matrix-Bernstein (Tropp, 2012) from last time.

Proof. Let λmax be the largest singular value operator. Then for θ > 0,

P

{
λmax(

n∑
j=1

Zj) ≥ t

}
= P

{
λmax(θ

n∑
j=1

Zj) ≥ θt

}
= P

{
eλmax(θ

∑n
j=1 Zj) ≥ eθt

}
≤ e−θtE

[
eλmax(θ

∑n
j=1 Zj)

]
= e−θtE

[
λmax(e

∑n
j=1 θZj)

]
≤ e−θtE

[
Tr(e

∑n
j=1 θZj)

]
(4)

Thus, we would now like to obtain an upper bound on E
[
Tr(e

∑n
j=1 θZj)

]
. Here we will need

a very important lemma by Lieb:

Lemma 11.1. (Lieb).
Let H be a fixed symmetric matrix. Let X be a random symmetric matrix. Then

E
[
Tr(eH+X)

]
≤ Tr(eH+logE[eX])

This is kind of similar to Jensen’s inequality, but more powerful. There are some simple
proofs for this inequality.

We can write

E
[
Tr(e

∑n
j=1 θZj)

]
= E

[
Tr(e

∑n−1
j=1 θZj+θZn)

]
= EZ1,··· ,Zn−1

[
EZn

[
Tr(e

∑n−1
j=1 θZj+θZn)

]]
≤ EZ1,··· ,Zn−1

[
Tr(e

∑n
j=1 θZj+logEZn [eθZn ])

] (5)
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Then, you can apply this lemma recursively, peeling off one-term at a time to eventually
obtain

E
[
Tr(e

∑n
j=1 θZj)

]
≤ Tr(e

∑n
j=1 logE[eθZj ])

Then we can apply this upper bound to the probability:

P

{
λmax(

n∑
j=1

Zj) ≥ t

}
≤ e−θtTr(e

∑n
j=1 logE[eθZj ]) ≤ e−θt ·m · λmax

(
e
∑n
j=1 logE[eθZj ]

)
Since the trace is less than the number of terms on the diagonal times the maximum singular
value,

= me−θteλmax(
∑n
j=1 logE[eθZj ])

Now, we use the following lemma:

Lemma 11.2. If E [Zj] = 0 and ‖Zj‖op ≤ 1, then E
[
eθZj

]
≤ e(eθ−θ−1)E[Z2

j ].

Proof. Note that fθ(x) = 1
x2

(eθx − θx− 1) is an increasing function for 0 ≤ x ≤ 1.

Now, we can apply the lemma to the RHS of the previous bound:

P

{
λmax(

n∑
j=1

Zj) ≥ t

}
≤ me−θteλmax(

∑n
j=1(eθ−θ−1)E[Z2

j ])

= me−θt+(eθ−θ−1)λmax(
∑n
j=1 Z

2
j )

= me−θt+(eθ−θ−1)σ2

(6)

where σ2 = λmax(
∑n

j=1 Z
2
j ). Then minimizing over θ gives the bound

P

{
λmax(

n∑
j=1

Zj) ≥ t

}
≤

{
me−3t2/8σ2

t ≤ σ2

U

me−3t/8U t ≥ σ2

U

Note that in order to get the U in there, we need to apply the previous lemma to UZj – this
will result in θ/U appearing everywhere, yielding the desired results.

11.2 Back to Matrix Completion

Now we return to the matrix completion problem. Let M0 ∈ Rm1×m2 , rank(M0) ≤ r0. Let
X ⊂ Rm1×m2 be an orthonormal basis of Rm1×m2 . Let X be uniformly sampled from X , and
take output Y : E [Y ] = 〈M0, X〉.

Given (X1, Y1), · · · , (Xn, Yn), our goal is to recover M0. Last time we introduced the
low-rank projection estimator. We had

M̂k = Projk

(
m1m2

n

n∑
i=1

YiXi

)
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as the solution to minimizing over M , subject to rank(M) ≤ k, ‖m1m2

n

∑n
i=1 YiXi −M‖2

F .
We also showed

‖M̂k −M0‖F√
m1m2

≤ C · U
√

(m1 +m2)K(t+ log(m1 +m2))

n

if |Y | ≤ U a.s. and n ≥ (m1 +m2) log(m1 +m2), k ≥ r0. However, this estimator is optimal
only when k = r0. In other words we need to know the true rank.

11.3 Nuclear Norm estimator

Here, we introduce a different estimator based on the matrix nuclear norm, which is actually
similar to the `1 norm in compressed sensing. The true rank r0 is unknown. So M̂k is not
statistically optimal if k 6= r0.

We have

M̂λ = argminM∈Rm1×m2

∥∥∥∥∥m1m2

n

n∑
i=1

YiXi −M

∥∥∥∥∥
2

F

+ λ‖M‖∗

Let the objective function be denoted fλ(M).

Definition 11.3. Matrix Nuclear Norm ‖ · ‖∗.

‖M‖∗ =

min(m1,m2)∑
i=1

σi(M)

where σi are the ordered singular values of M . Equivalently,

‖M‖∗ = sup
‖T‖op≤1

〈M,T 〉

We can easily show it’s a convex function (it’s a norm). We can write

‖λ1M1+λ2M2‖∗ = sup
‖T‖op≤1

〈λ1M1+λ2M2, T 〉 ≤ sup
‖T‖op

λ1〈M1, T 〉+ sup
‖T‖op

λ2〈M2, T 〉 = λ1‖M1‖∗+λ2‖M2‖∗

Then, both terms in the objective are convex: Indeed, the first term is strongly convex.
Thus, there is a unique solution and furthermore there are fast algorithms to find it. So M̂λ

is a global minima of fλ(M). However, this function isn’t smooth, so we need to look at
subgradients.

11.3.1 Sub-gradient for fλ(M)

We want 0 ∈ ∂fλ(M̂λ) as an optimality condition.

Definition 11.4. If f : Rm → Rt is convex, then the subgradient of f at x ∈ Rm is defined
as

∂f(x) = {y ∈ Rm : f(z)− f(x) ≥ 〈y, z − x〉∀z ∈ Rm}
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This is a generalization of the definition of the gradient. Let us now calculate ∂‖M‖∗:

Lemma 11.5. For M ∈ Rm1×m2, rank(M) ≤ r. Then

∂‖M‖∗ =
{
UV T + U⊥WV T

⊥ : ‖W‖op ≤ 1
}

If M = UDmV
T , where U ∈ Rm1×r, V ∈ Rm2×r and U⊥ and V⊥ are the orthogonal com-

plements of U and V respectively (the components which make up the full SVD). Also recall
that ProjU⊥ = U⊥U

T
⊥ .

Proof. We will show set containment in both directions. For now, we will only show that
every element of the set defined in the lemma belongs to the subgradient.

Consider a matrix W ∈ Rm1×m2 , ‖W‖op ≤ 1, we show that UV + PU⊥WPV⊥ is indeed a
subgradient. For any matrix Y ∈ Rm1×m2 ,

〈Y −M,UV + PU⊥WPV⊥〉 = 〈Y, UV + PU⊥WPV⊥〉 − 〈M,UV + PU⊥WPV⊥〉

≤ ‖Y ‖∗‖UV T + PU⊥WPV⊥‖op − 〈UDmV
T , UV T + PU⊥WPV⊥〉 = ‖Y ‖∗ − ‖M‖∗

by Holder inequality, and noting that the second term is equal to ‖M‖∗.
The second direction is by contradiction, but it is more involved.

So, the subgradient for fλ(M) is given by

∂fλ(M) =

{
2(M − m1m2

n

n∑
i=1

YiXi) + λ(UV T + PU⊥WPV⊥) : ‖W‖op ≤ 1

}
Since M̂λ is the global minimizer, then 0 ∈ ∂fλ(M̂λ). Actually, we can show that M̂λ =
S+
λ/2

(
m1m2

n

∑n
i=1 YiXi

)
, where S+

λ is the soft-thresholding function:

Definition 11.6. Soft-thresholding function.

S+
λ/2(x) = max {x− λ/2, 0}

11.3.2 Optimality of M̂λ

Now we can just show that 0 will be in the subgradient.
Let T = m1m2

n

∑n
i=1 YiXi = UDV T . Let M̂λ = US+

λ/2(D)V T , and then plug everything

into the formula for the subgradient. Then M̂λ − T =
∑

j:σj(T )≥λ/2(−λ/2)uj(T )vTj (T ) −∑
j:σj(T )<λ/2 σj(T )uj(T )vTj (T ). Then,

∂‖M̂λ‖∗ =

 ∑
j:σj(T )≥λ/2

uj(T )vTj (T ) + PU⊥WPV⊥


where we write U = [u1, · · · , uj] such that σj(T ) ≥ λ/2, and V likewise. Then you can
see that you can cancel by choosing W with operator norm ≤ 1. Other terms will already
cancel.
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11.3.3 Statistical Performance of M̂λ

We have

M̂λ = S+
λ/2

(
m1m2

n

n∑
i=1

YiXi

)
Theorem 11.7. Statistical Performance.
If λ ≥ 2

∥∥M0 − m1m2

n

∑n
i=1 YiXi

∥∥
op

, then∥∥∥M̂λ −M0

∥∥∥
F
≤ λ

√
2rank(M0)

This is a deterministic theorem, but we have a random term – thus, we want to apply
Matrix-Bernstein inequality.

Theorem 11.8. If λ = 2U
√

m1m2(m1+m2)(t+log(m1+m2))
n

, then with probability 1 − e−t, you

have
1

√
m1m2

‖M̂λ −M0‖F ≤ 4U

√
(m1 +m2)rank(M0)(t+ log(m1 +m2))

n

when n ≥ (m1 +m2) log(m1 +m2).

Thus here, we did not need to know the true rank. We only needed to know the uniform
upper bound U .

To summarize, there is a huge literature on matrix completion. Here I did not pose any
condition on incoherence – originally, they assumed incoherent type conditions. This kind of
condition is useful for establishing exact matrix completion. In this case, we’re not interested
in exact recovery because we have stochastic errors here. We end up not needing incoherence
conditions here.

12 Student Presentations: Sparse PCA

12.1 Inconsistency of regular PCA

This is the first paper that observed in high-dimension that you have interesting behavior –
it’s historically interesting. Your estimates in high-dimension are perpendicular to the truth,
so it’s useless! This articulates this behavior.

The thresholding approach in this paper is very simple: Look at diagonal elements and
check how big they are. The other presentations are either relying on difficult estimators or
SDP relaxations. This is the simplest approach which is easiest to implement.
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12.1.1 On Consistency and Sparsity for Principal Components Analysis in High
Dimensions

Basically, this title tells you everything about this paper. The problem is classical PCA will
get into trouble under high dimensions, because it won’t be a consistent estimator.

First, the model we consider is xi = viρ+ σzi for i ∈ [n] where ρ ∈ Rp, vi ∼ N (0, 1), zi ∼
N (0, Ip). ρ is the top principal component we want to get.

There’s something called smoothed PCA:

max
u

Var(uxi)

‖u‖2 + λ‖θ2u‖2

We have S = 1
n

∑n
i=1 xix

T
i , where ρ̂ is an eigenvector of λmax(S). Our distance matrix is the

sin of ρ̂, ρ. We have the assumption that pn/n → c as n → ∞. Then also limn→∞
‖ρ‖2
σ2 →

ω > 0 – your principal component is detectable.

Theorem 12.1. Almost surely,

lim
n

cos2(A(ρ̂n, ρ)) =
[ω2 − c]+
ω2 + cω

When ω2 ≤ c, i.e. limn
p
n

σ4

‖ρ‖4 ≥ 1, then cosA(ρ̂n, ρ) → 0, and thus the sin goes to
1 – so the estimated principal component will be almost orthogonal to the true principal
component!

They then propose a new estimator: What if you only consider a part of the ρ: The
key idea is to use sparsity. Use limn

k
n

σ4

‖ρk‖4
, where ρk is a k-sparse subset. So, we assume

some sparsity of the principal component. Namely, your principal component has a sparse
representation in an orthogonal basis. Now, we want to only consider part of the principal
component because we know it’s sparse. How do we decide to threshold? Well, we can look
at {v : σ̂2

v ≥ σ2(1 + αn), σ̂2
v = 1

n

∑n
i=1 x

2
iv}.

Theorem 12.2. If log(max p, n)/n → 0, and ‖ρn‖ toL > 0 and each ρn is weak `q decay,
then the distance between ρ̂ and ρ goes almost surely to 0.

Proof. l is the estimated subset. We have triangle inequality to decompose into d(ρ̂l, ρl) and
d(ρl, ρ), where l is the chosen subset. The first term will go to zero because limn(k/n)(σ4/‖ρ‖4)
and k = o(n) goes to zero, by sparsity assumption on l. How about the second part? We
can upper bound it by something else which will go to zero.

The algorithm stated by the paper is as follows:

(a) First compute the basis for each xi.

(b) Then calculate the sample variances and threshold the variance, using the median of
the variances. This gives l.
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(c) Do PCA on the submatrix inexed by set l.

(d) Then filter the estimator by hard thresholding – they don’t prove this, it’s just empir-
ical.

(e) Then reconstruct to original signal domain.

12.2 Minimax Lower Bounds

12.2.1 Minimax sparse principal subspace estimation in high dimensions

The first paper discussed is “Minimax sparse principal subspace estimation in high dimen-
sions”, by Vincent Vu and Jing Lei from 2013. It’s a pretty heavy paper. What I’m trying
to do to present on time is skipping lots of details and presenting the result in a very special
case.

In general, PCA is the problem of finding lower dimensional subspaces. We have observa-
tions X1, · · · , Xn ∈ Rp. These are i.i.d. with unknown mean µ and covariance matrix Σ. We
are looking for a lower subspace to project onto to get maximum variance on that subspace.
If Gp,d is the Grassmanian manifold of d-dimensional subspaces on Rp. If we look at the
eigenvalue decomposition of the covariance matrix: Σ =

∑p
i=1 λiviv

T
i , sorted λ1 ≥ · · · ≥ λp.

We are looking for maximum variance on projection. This space is spanned by first d eigen-
vectors. The classical approach to this problem is to just look at the empirical mean of the
covariance matrix and taking the SVD. The problem in high dimension is v̂i is an inconsistent
estimator. So we’re going to add additional assumptions to the problem – namely sparsity,
which I will define. Instead of solving the problem over the whole Grassmanian manifold,
we will show it for only a part of the space. We will show for this definition of sparsity that
we can get the optimal minimax rate.

We need a distance over the Grassmanian in order to compare the estimation with the
true subspace. It is defined as follows: E ,F ∈ Gp,d, and E,F orthogonal projections. Then
we can look at EF⊥ = E(I − F ). If we look at the singular vluaes of this matrix, we’ll
get s1, · · · , sd – at most d are nonzero. If we sort them, then θi = arcsin(si) are called
“canonical angles” between E and F . We have Θ(E ,F) = diag(θ1, · · · , θd). In the case of
d = 1, it is the usual angle between two lines. The distance between E and F is defined as
‖ sin(Θ(E ,F))‖2

F = ‖EF⊥‖2
F . All results in this paper are presented in the square form. It

can be shown that the square root of the distance is an actual metric on the Grassmanian.
The Stiefel manifold, described by Vp,d is the space of all unitary matrices in Rp×d.

The notions of sparsity we will deal with are row-sparsity and column-sparsity.

Definition 12.3. Row sparsity.
If A ∈ Vp,d, and you look at rows of A as [a1∗, · · · , ap∗], then

‖A‖2,0 = ‖(‖a1∗‖2, · · · , ‖ap∗‖2)‖0

Note that ‖A‖2,0 ≤ R0, and it’s invariance under multiplication by unitary matrix. We have
that d ≤ R0 ≤ p.
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Definition 12.4. Column sparsity.
Analagously,

‖A‖∗,0 max
1≤j≤d

‖a∗j‖0

We want to solve the problem max
∑n

i=1 ‖ΠG‖2. This is equivalent to max〈Sn, UUT 〉 s.t.
U ∈ Vp,d. They give results for both ‖U‖2,0 ≤ R0 or ‖v‖∗0 ≤ R0.

We also assume that our data is coming from the distribution X = µ+ Σ1/2Zi, where all
Zi are sub-gaussian variables. They also need some control on the effective noise variances,
which are defined as following: They need a gap between λ1λd+1/(λd − λd+1)2 ≤ σ2.

The minimax rate is given as following:

inf
Ŝ

sup
P0(σ2,R0)

d(Ŝ, S) ≥ c(R0 − d)
σ2

n
(d+ log

Rd

R0 − d
)

They argue this error happens because of variable selection. The d-term is the variance
on each coordinate. Their claim is tha thtese rates are fundamental. They prove that any
solution of the row-sparse problem, and we have n ≥ 36R0(d+ log p), then

d(Ŝ, S) ≤ cR0
σ2

n
(d+ log p)

with probability 1− 4
n−1
− 6 logn

n
− 1

p
.

12.2.2 Sparse PCA: Optimal rates and adaptive estimation

12.3 Estimation under Polytime Computational Resources

12.3.1 Optimal detection of sparse principal components in high dimension

Today we’re interested in finding the level at which we can do sparse PCA in the first place.
I’m not going to focus on the estimation side of things; we’ll just look at the threshold at
which we can do it in the limit.

I’m going to talk about a special case, but you can extend things in the obvious way; i.e.
normal ≈ sub-gaussian.

We can think of it as a hypothesis testing problem. We have as our null hypothesis
as H0 : X ∼ N(0, Ip), H1 : X ∼ N(0, Ip + θvvT ). If we can tell these things apart, we
can do PCA. If we can’t tell them apart, doing PCA is kind of meaningless. We know
that the empirical covariance Σ̂ = 1

n

∑n
i=1XiX

T
i → Σ. We can look at the maximum

eigenvalue of the estimation matrix λmax(Σ̂). Classically, things work out. In high-dimension,
λmax(Σ̂)→ (1 +

√
α)2 under the null a.s. if p/n→ 0, so it’ll go to infinity. So you can’t do

this anymore in high dimensions.
What we’re going to do instead is assume that vector v, ‖v‖2 = 1, is k-sparse. Then,

what we’re going to look at instead is the k-sparse maximum eigenvalue. This is defined
by looking only at k-sparse norm 1 vector for maximizing over the quadratic form. We will
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argue that we get separation between these quantities and thus a detection threshold with
some low-probability of error in the sparse case, under both the null and the alternative.

It’s usually easier to look at the alternative case first. We basically want to find a lower
bound of this quantity. We can just choose some vector x and hope it’s a good guess. Our
good guess would be to choose v. Then we can get a lower bound

λkmax(Σ̂) ≥ vT Σ̂v =
1

n

n∑
i=1

(XT
i v)2 ∼ N (0, 1 + θ)

Using the usual concentration stuff, we’ll get a bound of the form ≥ 1 + θ−2(1 + θ)
√

log(1/δ)
n

with probability 1− δ.
Under the null hypothesis, if you get ‖u‖2 = 1, k-sparse. Let’s say u ∈ Rk, S ⊆ [p], and

let ûj = uj if j ∈ S, 0 otherwise. In that case, we find that
(
uT Σ̂Su

)−1

= 1
n
Σn
i=1((ûTXi)

2−1).

We then end up wanting to take a union bound over all the choices of S. Then we do ε-net
arguments, and take a union bound over vectors and only pay a constant price for doing so.
Then under the null, you can get an upper bound

λkmax(Σ̂) ≤ 1 + 4
√
η + η

where η = k log(9ep/r)+log(1/δ)
n

. And it turns out that this is minimax optimal.
It turns out you can reduce this problem to an NP complete problem. So the estimation

problem is hard. However, you can relax it to solving the following SDP:

λkmax(A) = max Tr(AZ)

such that Tr(Z) = 1, Z � 0, |Z|0 = k. This is non-convex, but you can relax to look at |Z|1
instead. The SDP is easy enough to analyze, and you get an upper bound of the form

SDPk(Σ̂) ≤ 1 + 2

√
k2 log(4p2/δ)

n
+ · · ·

So to summarize, we can show that λkmax(Σ̂) or SDPk(Σ̂) are ≤ 1 + Cα

√
rα log(1/δ)

n
with

probability 1− δ.
So now the question is whether there’s a computation and statistics tradeoff. There

is – we cannot do better using an SDP type method, otherwise you’ll end up breaking a
conjecture to do with a certain graph detection problem. They have a paper which came out
a year after this one where they go into more detail. They want to reduce down to what’s
known as the planted clique problem, and then argue that if you have this bound, you have
the planted clique problem in a certain regime, and it’s conjectured that there is no polytime
algorithm to solve it. But because you’re doing the SDP, you have a polytime algorithm.

This paper is quite important: Previous two presentations focused on minimax optimality,
which is traditional in statistics. This took into account the computational component,
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reducing to a computational conjecture – if this is how much computation you have, this is
the best you can do. There’s a lot of follow up work based on this. A lot of the follow-up
work reduces to planted clique. The main value of this work is that there’s a new way to
think about minimax optimality, taking computational cost into consideration.

12.3.2 Do semidefinite relaxations solve sparse PCA up to the information
limit?

This paper proves that SDP method can recover at the same level as diagonal thresholding
for the first principal component. Their method shows that SDP method performs similarly
to diagonal thresholding. In the end, they propose a covariance thresholding method which
can recover well. Exhaustive search can reduce n ≥ k log p, no methods work n ≤ k log p.
Diagonal thresholding works for n ≥ k2 log p. We study the SDP method.

Here we have xi =
√
βuiz + εi, where β is signal strength. We have a planted spike z as

a k sparse unit vector.
The relaxed SDP version of the sparse PCA problem, at the same sparsity level as

diagonal thresholding, can recover the support. Under a rank-one condition, SDP can reach
the information limit of the sparse PCA problem. Thus SDP is optimal at rank 1 constraint
since it reaches the information limit.

But, unfortunately, this paper proves that the SDP solution is not rank 1. Thus, at
sparsity level k = Ω(

√
n), SDP will not obtain a rank 1 solution. They propose a covariance

thresholding method, which is consistent for k = O(
√
n) – the proof is not given, but it is

proved in a different setting in Montanari’s papers.
It turns out that ‖X − zzT‖ ≥ 1/3 with probability tending to 1 for p ≥ 1504n, where

X is solution of SDP. The constant 1504 can be reduced. It’s possible to bound 〈Σ̂, X〉 both
below ((1− ζ)∗ (1 +p/n) and above (1 + ζ)(1 +

√
β+

√
p/n)2): The ratio between the upper

and lower bound tends to 1 as p, n → ∞. Every solution of SDP method has this bound.
However, every rank 1 solution of SDP method is bounded 〈Σ̂, Y 〉 ≤ 8

9
p
n
. So SDP solution

cannot be rank 1.
The covariance thresholding method outperforms diagonal thresholding empirically.
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