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1 Introduction

Learning polynomials has two areas of difficulty: 1) sample complexity and 2) computational
complexity. This work will focus on analyzing algorithms for learning restricted classes
of polynomials in order which achieve both good sample complexity and computational
complexity which does not depend on pd, where p is the dimension of the vectors in the
space and d is the degree of the polynomial. We will proceed by first summarizing the work
in the field in terms of their assumptions and their complexities in both the statistical sample
regime as well as the computational complexity regime.

1.1 Motivation

Before we begin discussing the other background work, we motivate why we want to even
learn polynomials. Recent work by Hazan et al. (2017) suggests that sparse polynomials
are good function approximators for learning maps from hyperparameters in complicated
machine learning models (for instance, neural nets) to eventual output.

Polynomials are also interesting in terms of discrete-time models, as there is a very natural
interpretation. We can think of learning a d-degree polynomial model as a linear model over
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time chunks of with d. To make this more concrete, consider n-gram models in natural
language processing (NLP) (here, we will take n = d: No relation to n, the number of data
points). A common approach to featurizing sentences and documents is to build a sparse
vector of counts lying in dimension |V|d, where V is the total vocabulary of the training and
test corpuses. Each coordinate corresponds to a sequence of d words which appears in the
corpus, known as a d-gram. The d-gram representation is simply the normalized counts of
the d-grams in the document or sentence (whatever is being represented). If we concatenate
the i-gram representations from i = 1, · · · , d and then learn a linear model on top of it, we
are essentially learning a polynomial over the original space |V| where here, the monomials
correspond to different i-grams.

2 A Greedy-ish Method for Learning Sparse Polyno-

mials Exactly

2.1 Overview

Our work is directly inspired by the paper of Andoni et al. (2014), which manages to learn
sparse polynomials (that is, polynomials with few coefficients) via a greedy algorithm ap-
proach in time which does not depend on pd where p is the dimension and d is the degree
of the polynomial. Here, they learn the polynomial exactly and do not invoke improper
learning. Notably, we focus in this paper on learning polynomials over non-discrete domains
(in particular, this leaves out the Boolean hypercube — in the noisy case, even learning
monomials over random Rademacher variables is cryptographically hard). Therefore, for
now, imagine that we are considering data generated by a standard Gaussian or a uniform
distribution on a box in Rd with identity covariance, scaled appropriately. Notably, both of
these distributions are product distributions, a fact whose importance will become apparent
later.

The algorithm of Andoni et al. (2014) is called Growing-Basis. The authors assume a
correlation oracle for 〈f, f ∗〉 and 〈f, (f ∗)2〉 where f ∗ is the polynomial we are trying to learn,
and f is the input polynomial. The main idea is to consider polynomials in the orthogonal
basis, and to use the trick of a) looking at the moments of the squared function and b)
cleverly proceeding to eliminate high-degree terms of the polynomial first. Squaring the
function allows us to retain interaction some terms in expectation (e.g., not everything in
the expectation will be independent and become 0). By the orthogonality of the basis, we
will be able to use correlation oracles in order to determine whether or not a particular
monomial exists in the true function. If we find it exists, we keep it. If not, we remove the
monomial from the set of monomials we consider.

There are essentially two settings of this algorithm. In one case, we assume we have
access to the correlation oracles defined previously. In this setting, we require only O(kpd)
calls to that oracle in order to learn the polynomial. In the other case, we assume that we see
a sequence of (possibly noisy, possibly non-noisy) samples (x, f ∗(x)). In this case, we need
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to estimate the oracle and we in fact have an associated sample complexity. For the sample-
based algorithm, the Growing-Basis algorithm has sample complexity O(poly(p, k, 1/ε,m)),
where m = 2d if the distribution is uniform over a box and m = 2d log d if the distribution is a
product Gaussian. The time complexity of the algorithm is O(pd · poly(p, k, 1/ε,m)), which
is just the number of samples times pd. In the noisy case, the sample complexity experiences
an additional multiplicative factor of poly(1 + σ), where the noise is assume to be from an
independent Gaussian with variance σ2.

However, the algorithm is not simple, and is not easy to implement. Furthermore, it
seems very specific to the sparse, product-distribution setting. We would eventually like to
be able to learn polynomials which are “low-dimensional” in other ways as well, or perhaps
even learn other classes of functions. Growing-Basis does not lend itself to this kind of
generalization easily. Thus, in this research project, we wish to discover and analyze more
general and more simple algorithms which solve this problem, so that we may generalize the
techniques found to other classes of problems.

2.2 Understanding Growing-Basis

The algorithm is given in Algorithm 1. In this section, we will give some deeper intuition
for why this algorithm works and what its limitations are.

Algorithm 1 Growing-Basis

1: procedure Growing-Basis(degree d, 〈·, f ∗〉, 〈·, (f ∗)2〉)
2: f̂ := 0 . The variable we will update until it equals f ∗.
3: while 〈1, (f ∗ − f̂)2〉 > 0 do . As long as correlation is non-zero, grow the basis.
4: H := 1, B := 1 . H keeps track of square correlation, B is the actual basis term.
5: for r = 1, · · · , p do . Search in lexicographic order, going from large degree

down to small degree.
6: for t = d, · · · , 0 do
7: if 〈H ·H2t(xr), (f

∗ − f̂)2〉 > 0 then . The key correlation test.
8: H := H ·H2t(xr), B := B ·Ht(xr)
9: break out of double loop.
10: end if
11: end for
12: end for
13: f̂ := f̂ + 〈B, f ∗〉 ·B . Update the function.
14: end while
15: return f̂
16: end procedure

We first explain the algorithm in the oracle setting. The key idea in the oracle setting
is to greedily build a polynomial in an orthonormal polyomial basis which depends on the
distribution, one basis function at a time. Because of the properties of the basis, we can
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identify first the existence of variable xi using correlation, and then find its degree in the
basis function. We always consider the leftover correlation, finding the next basis term and
its coefficient in the polynomial until the amount of leftover correlation is zero.

This strategy will work for the following reasons:

• We can work in an orthonormal basis and pay a factor 2d increase in the sparsity of
the representation.

• An orthonormal polynomial basis for a product distribution decomposes into terms of
different degress with no overlapping variables. That is, we can construct an orthonor-
mal basis for a product distribution by taking a product of the 1-dimensional bases in
each variable.

• We can identify the degree of a variable in a particular basis function by examining the
correlation of several basis functions with (f ∗ − f̂)2 in an iterative fashion. Note that
f ∗ − f̂ can be thought of in terms of “remaining correlation”. This search procedure
takes time O(nd).

To make the intuitions precise, let us give some definitions.

Definition 2.1. Inner product 〈h1, h2〉 is defined with respect to a distribution D over the
data X as ED [h1(x)h2(x)]. We also have ‖h‖2 = 〈h, h〉.

Definition 2.2. A correlation oracle pair calculates 〈f ∗, f〉 and 〈(f ∗)2, f〉 where f ∗ is the
true polynomial.

Definition 2.3. Consider inner product space 〈·, ·〉D for distribution D, where D = µ⊗p is a
product measure over Rp. For any coordinate, we can find an orthogonal basis of polynomials
depending on distribution D by Gram-Schmidt. Let Ht(xi) be the degree t basis function
for variable xi. Then for T = (t1, · · · , tp) such that

∑
i ti = d, HT (x) =

∏
iHti(xi) defines

the orthogonal basis function parametrized by T in the product basis.

Therefore, we can write

f ∗(x) :=
∑
T

αTHT (x)

for any polynomial f ∗.

2.2.1 Controlling Sparsity Blowup

We now describe how we control the blowup in monomial-sparsity that happens if we shift
to a different (orthonormal) basis.

Lemma 2.4. Suppose f ∗ is k-sparse in product basis H1. Then it is (k2d)-sparse in product
basis H2.
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Proof. Write each term H
(1)
ti (xi) of f ∗ in basis H1 in basis H2: each will have ti terms. Since

each monomial term in H1 is a product of such Hti(xi), there will be
∏

i(ti+ 1) ≤ 2
∑

i ti ≤ 2d

terms for each monomial. Since there are k monomials, there are at most k2d terms when
expressed in H2. Said another way, that means that there are at most k2d terms in the sum∑

T αTHT (x).

2.2.2 Detecting Degrees with Correlation Tests in the Oracle Case

We will now see the importance of the properties of orthogonal polynomial bases over product
distributions to Growing-Basis. There are two key properties which will allow us to design
an algorithm to detect the presence of a variable in a basis term as well as find its degree,
namely

• Orthogonal basis elements have zero correlation.

• Orthogonal basis elements can be factored into orthogonal basis terms in one variable.

We now give a lemma which suggests the correctness of the search procedure used in
Growing-Basis.

Lemma 2.5. Let d1 denote the maximum degree of variable x1 in f ∗. Then, 〈H2t(x1), (f
∗)2(x)〉 >

0 iff t ≤ d1.

Proof. We have

(f ∗)2(x) =
∑
T

α2
T

p∏
i=1

Hti(xi)
2 +

∑
T 6=U

αTαU

p∏
i=1

Hti(xi)Hui(xi)

Note that if t > t1, Ht1(x1)
2 will only be supported on basis functions H0, · · · , H2t1 . This

set does not include H2t since 2t > 2t1, so 〈H2t(x1), Ht1(x1)
2〉 = 0. Likewise for second term

if t > u1, thus, if t > d1, correlation is zero. If t = d1, the correlation is nonzero for the first
term, but zero for the second term. Let’s look at〈

H2t(x1),

p∏
i=1

Hti(xi)
2

〉
=

〈
H2t(x1),

p∏
i=1

(
1 +

2ti∑
j=1

ct,jHj(xi)

)〉
Since ti = t (for T such that t1 = d1), the coefficient of the term H2t(x1)

∏p
i=2H0(xi) is the

only thing that remains since everything else will get zeroed out. Then just sum over T such
that t1 = d1.

The second term does not contribute since either i 6= 1 or ti + ui < 2t since ui 6= ti. Note
that for the first case (i 6= 1), we are using the fact that x1 will not show up in another
orthgonal basis for a different variable. Then, we will get〈

H2t(x1),
n∏
i=1

Hti(xi)Hui(xi)

〉
= 0
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This lemma shows that if we proceed from the largest degree possible, we will be able to
detect the degree of x1 in one of the basis functions in the representation of f ∗. With some
more analysis of a similar flavor, we can extend this to finding a complete product basis
representation. The key idea is to proceed through degree lists T in lexicographic order.

Definition 2.6. Lexicographic order.
We say T � U if T is lexicographically superior to U . For instance, 1544300 � 1544000 since
0 < 3.

One can check that if T = T1 · · ·Tr0 · · · 0 and there is no S such that HS has a nonzero
coefficient while S1 · · ·Sr � T1 · · ·Tr, and there is some other U such that U � T1 · · ·Tr0 · · · 0,
then we are done with the variables x1, · · · , xr and it is time to move on to the next variable,
xr+1. Essentially, we move from checking correlations of H2t1,··· ,2tr−1,2t,0,··· ,0 and (f ∗)2 to
checking correlations of H2t1,··· ,2tr−1,2tr,2t,··· ,0 and (f ∗)2.

The lemma proved above shows that this general procedure works to detect the correct
HT for the case r = 1. It is not so hard to generalize this to arbitrary r by induction –
the analysis is almost the same. It thus follows that we can detect basis elements HT in
descending lexicographic order, where the lexicographic order is on the T . Thus, we find the
maximal T first, followed by the second most maximal, and so on.

2.2.3 Learning from Samples Instead of Oracles

In the sampling case, we no longer receive a correlation oracle pair. Instead, we receive
true samples, which may also be corrupted by noise. In this case, we must simulate the
correlation oracle, using the following estimator:

Definition 2.7. Correlation oracle estimator.
We wish to estimate CH = 〈H, (f ∗)2〉. For n random samples, we estimate

ĈH =
1

n

n∑
i=1

H(xi)(f
∗)(xi)

2

By Chebyshev, one can get a constant probability estimate with O
(

E[H2(f∗)4]
ε2

)
samples,

where the top term is just the variance. To increase the probability of successfully estimating
arbitrarily large to 1 − δ, just repeat the estimator log(1/δ) times and take the median, a
standard trick in approximation algorithms.

Since we have approximation error, an additional issue arises: when the correlation is
truly 0, we may not be able to recognize it due to the approximation! Thus, in the sampling
version of the algorithm, a cutoff is necessary below which values are declared 0.

The sample complexity therefore depends on maxH,f∗ E [H2(f ∗)4], as we saw from the
Chebyshev bound, which is dependent on the distribution. Here, H is a degree 2d basis
function and f ∗ is a degree d, k-sparse polynomial, as we see from Algorithm 1. It turns
out that the Legendre polynomials (the orthonormal polynomial basis which arises when
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we work over D = [−1, 1]n uniform) have bounded basis monomials: |Hdi(xi)| ≤
√

2di + 1.
Therefore,

|HS(x)| ≤
∏
i

|HSi
(xi)| ≤

∏
i

√
2Si + 1 ≤

∏
i

2Si ≤ 2d

and thus
|f ∗(x)| = |

∑
S

αSHS(x)| ≤ 2d
∑
S

|αS| ≤ 2d
√
k

by Parseval’s identity, which is essentially the Pythagorean theorem for inner product spaces
and the fact that there are only k monomials since f ∗ is k-sparse. Therefore,

max
H,f∗

E
[
H2(f ∗)4

]
≤ 26dk2

It turns out that a similar fact holds for Hermite polynomials, which arise when D is
a Gaussian product distribution. In this case, the constant depending on d will be 2d log d

instead.

2.3 Why Does Growing-Basis Not Generalize to Non-Product Dis-
tributions?

The methodology in the algorithm and proof in the previous sections has the following
properties:

• It relies heavily on orthogonal properties of polynomials.

• It is “term-by-term”: we examine and find each basis function one at a time.

• There is a 2d dependence in the sample complexity because

– Transforming to an orthogonal basis only causes 2d blow-up in sparsity

– A fact about the structure of the coefficients of Legendre/Hermite polynomials.

• It has a key weakness, relying heavily upon the product distribution assumption in
order to construct orthogonal polynomial bases over p variables.

What could we do to generalize to non-product distributions? First of all, it is possible to
create orthonormal polynomial bases for non-product distributions by using Gram-Schmidt
orthogonalization procedure. In fact, efficient methods for finding these representations are
studied in the context of polynomial chaos expansions in the simulation of various differential
equations in science Navarro et al. (2014). However, a key difficulty remains: There is no
guarantee (and it is in fact extremely unlikely) that each of the basis functions contains only
one variable. We saw in the proofs above that we needed to use this fact at one point. The
fact that this is probably not true prevents us from simply proceeding in lexicographic order,
detecting each variable and its degree one-by-one for each monomial basis term. Instead,
we would somehow have to use facts about the particular orthogonal basis derived: Namely,
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which variables are in which term and so on, probably some properties about the factorization
as well. We would then also have to invent some method of detecting clusters of monomials
at a time.

This approach seems difficult but perhaps possible on a case-by-case basis. It might be
that for some particular product distributions it is possible to find a nice form for the orthog-
onal basis by which means one might develop an analagous algorithm to Growing-Basis.
Therefore, one might pursue this direction as one method of generalizing. However, it also
seems brittle.

3 Other Related Work

There are several categories for papers in the literature related to learning polynomials
efficiently. Roughly, they can be broken down into categories by the following dichotomies:

(a) exact or improper learning;

(b) statistical and/or computational speed-up;

(c) dimension reduction/sketching in p, the dimension of data, or n, the number of data
points

(d) Boolean domain or not

We can also allow improper learning: In other words, we may not necessarily care about
learning the exact function, but will be happy enough with a predictor which does about as
well as the true function. Our goal is also to consider both statistical and computational
efficiency, and hopefully find cases in which one can speed both up.

There are so far two aspects of our work: the actual sketching/dimension-reduction of
the regression, and also the method of analysis.

We describe work related to sketching first.
Pham & Pagh (2013) describes a method for applying sketches of tensors to the poly-

nomial regression problem. The idea is to use random dimension reduction (Johnson-
Lindenstrauss, or fast Johnson-Lindenstrauss) and to learn on the dimension-reduced space.
This allows the authors to provide an extra term in the bound which is due to the error of
approximation due to the dimension reduction.

The work of Maillard & Munos (2009) and Maillard & Munos (2012) introduces the
notion of compressed least squares : Essentially, they perform Johnson-Lindenstrauss linear
dimension reduction on the data points, and then run regular linear regression. They analyze
this setup and get an error bound. Kabán (2014) improves the analysis to generalize to a
broader class than just JL linear dimension reduction, and specializes the bound.

However, recent work by Slawski (2017a) and Slawski (2017b) demonstrate that the
conclusions reached in these earlier papers are not entirely accurate. In particular, in the
generalization bounds from the prior work, there are terms which in some settings of the
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optimal linear regression coefficients implies a worse statistical bound than regular ordinary
least squares regression. These papers connect compressed least squares to the analysis of
principal components regression (PCR) and show that the JL approach, as well as the column
subset selection approach to dimension reduction, which are both computationally cheaper
than using PCA, require a few more samples than PCR does.

Another aspect of the literature is computationally focused, and focuses on sketching the
kernel matrix of kernel ridge regression using a bounded number of queries to the kernel
matrix. Our focus will likely not be in this direction during this project.

Finally, we mention that Avron et al. (2014) provides methods for applying oblivious
subspace embeddings (OSE) to kernel learning, in particular, they discuss the case where
the kernel is polynomial. In the past, the main issue was that OSEs only applied to situations
where one had an explicitly provided matrix, which one does not have in the case that one
implicits performs regression (via kernel trick). They also apply their techniques to principal
component regression (PCR).

3.1 Bounds from Principal Components Regression and Johnson-
Lindenstrauss

We will give more specifics for two methods in this domain, both in the realm of improper
learning: That is, we will not try to learn the exact polynomial, only a good predictor.
First, we will consider kernel polynomial regression as an efficient approach to regression
in the high-dimensional space. We will then focus on the dimension reduction paradigm:
Namely, perform a regression in a lower-dimensional space created by a dimension reduction
procedure on the data. The hope is then that either a) the dimension reduction reduced the
data into its “correct space” and we can procede with regression without losing anything,
or b) the bias induced by the dimension reduction is small, and that we can tolerate it as
an approximation error. It seems necessary to therefore make assumptions about the initial
space so that it is in some sense “lying on a low-dimensional manifold”. Indeed this seems
to be the case.

3.1.1 Polynomial Kernel Regression

Mohri et al. (2012) gives basic bounds for linear and kernel regression. For kernel ridge
regression, the sample complexity bound holds with probability 1− δ:

R(h) ≤ R̂(h) +
8r2Λ2

√
m

√Tr[K]

mr2
+

3

4

√
log 2

δ

2


where K is the kernel matrix which satisifes K(x, x) ≤ r, the hypothesis h is a linear
function of the kernel embedding, and the true function f is bounded: |f(x)| ≤ rΛ. This
bound follows from a standard Rademacher complexity bound on the regression task. The
application to kernel regression is achieved by bounding the data-dependent Rademacher
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complexity under the constraints imposed upon the kernel. This sample complexity bound
is bad (essentially, O(pd) unless strong assumptions are made upon the degredation of the
spectrum of the kernel matrix: Eigenvalues need to become exponentially small.)

Regular kernel ridge regression takes time proportional to O(n3) or O((pd)3), depending
on which formulation of the kernel regression problem one uses (one can write it in terms
of XXT or XTX). Recall n is the number of data points and p is the dimension while d is
the degree of the polynomial in the kernel. This approach can be very expensive, and we
see that unless the data matrix X has a quickly decaying spectrum, the actual number of
samples to learn is large and depends on pd – so this is very bad.

3.1.2 Dimension Reduction and Regression

In the dimension reduction setting, Slawski (2017a) gives the following theorem:

Theorem 3.1. (Slawski (2017a)).
For r ∈ [min(p, n)], let dimension reduction (from Rp → Rk) matrix R ∈ Rp×k be (2nr, ε1/

√
r, δ1)-

JL (this just means it satisfies JL with error parameter ε1/
√
r with probability 1− δ1 for 2nr

points). Let R also be (r, ε2, δ2)-restricted isometry (the RIP property) from sparse recovery.
Then with probability 1− δ1 − δ2,

‖(I − PXR
)X‖2F ≤

(
1− ε21

(1− ε2)4

)
‖∆r‖2F

where PXR
denotes the projection onto the top r principal components of X and ∆r is ev-

erything but the top r principal components of X. Conditioned on this event holding, we
have

min
v∈Rk

E
[
‖Xw∗ −XRv‖22/n

]
≤
(

1− ε21
(1− ε2)4

)
‖w∗‖22

‖∆r‖2F
n

+ σ2 k

n

where σ2 is the variance of the noise of the labels.

This theorem suggests that if we want to apply dimension reduction to the pd-dimensional
space, the data matrix in pd space (i.e., the original data matrix which has been tensored d
times) must either

• Obey a strong decay on the spectrum (this is the ∆ term), in which case principal
components regression (PCR) is optimal, or

• Obey a restricted isometry property (RIP) like condition, which may be unlikely to
hold for X⊗d.

Thus neither of these methods are satisfactory. It may still be interesting to look into
characterizing the structure of X⊗d, however. There are several conditions in the compressed
sensing literature which are weaker than RIP (for instance, nullspace property) which may
hold on X⊗d for some assumptions on X. As Andoni et al. (2014) noted, there is also
a literature on making compressed sensing methods computationally efficient as well, via
sketching methods, though these tend to depend on the structure of the design matrix.
Nevertheless, it is a possible future direction.
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4 Appendix: Considering the Single Monomial Case

In this section, we will outline some progress on the goal of estimating a single monomial.
We will outline the sample complexity of the approach and mention the computational
complexity. This section is a part of ongoing work with Rishabh Dudeja, Alex Andoni, and
Daniel Hsu.

In order to create a more general algorithm, we can consider a simple case first: The case
where the polynomial we are learning is a single monomial. If we develop some techniques
in this simpler regime, we might be able to see a way to generalize the analysis beyond
product distributions. Note that this problem is essentially an identification problem if the
polynomial is multilinear: We want to identify which variables are in the monomial. If it is
not multilinear, we also must learn the degrees.

Our learning task is to learn f ∗(x) =
∏

i∈S x
di
i , for some set S ⊆ [p] of the variables. We

also have di ∈ Z+ and
∑p

i=1 di = d, since the degree of f ∗ is d. Let us begin by assuming
there is no noise. We are also placing ourselves in the random design setting, where we
assume something about the distribution of x (as in Andoni et al. (2014)).

4.1 Analyzing the Sample Complexity of ERM

First, we can consider the computationally inefficient empirical risk minimization (ERM)
algorithm, which literally searches over all possible choices. In our case, since we consider
monomials over Rp with integer degrees with total degree bounded by d, there are only a
finite number of hypotheses in the hypothesis class H. There are

|H| =
min(p,d)∑
i=1

(
p

i

)
·#( partitions of length i summing up to d)

Assuming that d << p, we get that
(
p
i

)
≤ O(pd). By a theorem of Hardy & Ramanujan

(1918), we get that the partition number of d is bounded by O(1
d
e
√
d). Thus, log |H| ≤

O
(
d log p+ log(1/d) +

√
d
)

.

Then, by Mohri et al. (2012), we have the following theorem:

Theorem 4.1. Let L be a loss function bounded by M . Assume that hypothesis class H is
finite. Then for any δ > 0 with probability at least 1− δ, for all h ∈ H, we have

R(h)− R̂(h) ≤M

√
log |H|+ log(1/δ)

2n

where n is the number of samples, R is the risk function (taken over the expectation of the
data) and R̂ is the empirical risk function (taken over the sample dataset).

Thus, we only need to bound M to be done. For data x on a finite support, this depends
on the chosen loss function (possibly `2 loss). The bound is then M ≤ L(maxx f

∗(x) −
minx f

∗(x)). For other assumptions we can get different bounds.
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Sample complexity wise, this bound seems like a good result, assuming L is reasonable.
However, the algorithm is completely intractable, and we want both good sample complexity
and good computational complexity.

4.2 A Log-Space Transformation

ERM is not computationally efficient. In light of that, suppose we consider the transforma-
tion (x, f ∗(x))→ (log |x|, log |f ∗(x)|). Then, we would have

log f ∗(x) =
∑
i∈S

di log(|xi|)

and we would would now have a linear problem in p-dimensional space. In particular, this
problem can be solved efficiently with `1 minimization techniques like the Lasso. Note that
after we take log transforms, we are considering the relaxed case of linear hypothesis classes
with ‖w‖1 ≤ d. Our relaxation is essentially allowing the powers of the variables in the
monomial to be fractional.

There is a key issue to watch out for with this method. By taking the log transform, we
convert the space that x is supported on to something which is unbounded, if the support
of x contains 0. It may have been that the support of x was already unbounded in the first
place: For instance, if x ∼ N (0, Ip), x ∈ (−∞,∞)p. However, in this case, the probability of
x being at the extremes goes to zero quickly. When we take the log-transform, we mess up
the locations at which the value of x diverges. So, we need to find a way to deal with this.

Another issue is that by transforming the data, after solving the problem in the trans-
formed space, we would need some approach to revert back to the original space. In the
case that the polynomial had all even degrees, there would be no issue with respect to the
| · |. There would also be no issues in the multilinear case. In other scenarios however,
this detail would present an issue. However, we would still need to control the error in
the linear case after reverting to the original space by taking exponents: Namely, we would
get a multiplicative error eε, where ε was the error incurred in the transformed space, since
log f ∗(x) = log f̂(x) + ε implies

f ∗(x) = eεf̂(x)

Noise is also difficult to consider in this setting. Supposing we had multiplicative noise
1 + η at the beginning, we would get a noise term of log(1 + η), which will not have zero
mean. Thus, there is an inherent bias which presents a difficulty. For now we ignore noise.

4.2.1 A Truncated Log

We can present a partial fix for the issue of the log transformation by considering a “trun-
cated” log term.

Definition 4.2. Truncated Log.

Let ˜logλ(x) :=

{
log(x) if x ≥ λ

log(λ) if x < λ
.

12
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This prevents log from going to infinity, but also amounts to being a threshold at which
we throw out data. We will also need to figure out how to undo this process, or how to view
this procedure as a kind of rejection sampling.

4.3 A Rademacher Analysis of `1-Minimization

We now present the beginning of a Rademacher analysis of the sample complexity of this
approach, and outline the issues which still need to be resolved. First, we have the follow-
ing theorem bounding the sample complexity of a regression problem with respect to the
Rademacher complexity of the hypothesis class, from Mohri et al. (2012):

Theorem 4.3. Assume that ‖f − f ∗‖∞ ≤ M for all h ∈ H. Then for any δ > 0 with
probability at least 1− δ over a sample S of size n, the following holds for all h ∈ H:

E
[
(f(x)− f ∗(x))2

]
≤ 1

n

n∑
i=1

(f(xi)− f ∗(xi))2 + 4MRn(H) +M2

√
log(1/δ)

2n

Then, a theorem from Kakade et al. (2009) bounds the empirical Rademacher complexity
of a linear function class with `1-norm bounded by d. Call this function class G.

Theorem 4.4.

R̂n(G) ≤
d ∗
(
supi∈[n] ‖xi‖∞

)√
2 log(2p)

√
n

where R̂n is the empirical Rademacher complexity for a dataset of n points.

To get the non-empirical Rademacher complexity used in the bound, we have to take an
expectation over the data distribution:

Rn(G) = Exk∼Dn
k=1

[
R̂n(G)

]
Essentially, this means that we must bound

Exk∼Dn
k=1

[
sup
i∈[n]
‖xi‖∞

]

If we bound this quantity with respect to some distribution D (which may perhaps be
non-product), we will be able to get a non-trivial bound on the Rademacher complexity. We
are in the process of developing approximations to this bound first for N (0, σ2I), where we
can recognize that this becomes a problem of finding

E{yk∼N (0,σ2)}np
k=1

[
sup
k∈[np]

| ˜log(yk)|

]

13
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We can calculate this term by way of analogy to calculating the expected value of the
maximum of the absolute value of a normal variable, and can handle the truncated log term
by splitting up the expectation into two integrals.

We can then plug this bound into the formula from Mohri et al. (2012) to get a sample
complexity bound. On to this sample complexity bound we will need to determine how many
samples from the original distribution were rejected, and add that upon to the bound. We
also will still need to figure out how to return from the transformed space to the original
space.

References

Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning sparse poly-
nomial functions. SODA ’14 Proceedings of the 25th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 500–510, 2014. URL http://www.mit.edu/~andoni/papers/

learnpoly.pdf.

Haim Avron, Huy L. Nguyen, and David P. Woodruff. Subspace embeddings for the poly-
nomial kernel. NIPS ’14 Proceedings of the 27th International Conference on Neural
Information Processing Systems, 2:2258–2266, 2014. URL http://www.cs.cmu.edu/afs/

cs/user/dwoodruf/www/anw14.pdf.

G. H. Hardy and S. Ramanujan. Asymptotic formulae in combinatory analysis. Proceedings of
the London Mathematical Society, 17:75–115, 1918. URL http://ramanujan.sirinudi.

org/Volumes/published/ram36.pdf.

Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter optimization: A spectral
approach. arXiv preprint, 2017. URL https://arxiv.org/pdf/1706.00764.pdf.

Ata Kabán. New bounds on compressive linear least squares regression. AISTATS 2014 The
17th International Conference on Artificial Intelligence and Statistics, Journal of Machine
Learning Research–Proceedings Track, 33:448–456, 2014. URL http://proceedings.mlr.

press/v33/kaban14.pdf.

Sham M. Kakade, Karthik Sridharan, and Ambuj Tewari. On the complexity of linear predic-
tion: Risk bounds, margin bounds, and regularization. Advances in Neural Information
Processing Systems, pp. 793–800, 2009. URL http://ttic.uchicago.edu/~karthik/

rad-paper.pdf.
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