The Platform Design Problem

Christos Papadimitriou, Kiran Vodrahalli, Mihalis Yannakakis

Columbia University
Strategic ML Workshop @ NeurlPS 2021

The Data-Collection Problem

* Modern machine learning requires large amounts of high-quality data
* Collecting supervised labels is expensive

* Unsupervised learning is challenging to use

* s it possible to create environments which generate useful data?
* Ex: Reddit users provide sarcasm labels using the “/s” tag

The Data-Collection Problem
* Modern machine learning requires large amounts of high-quality data

* Collecting supervised labels is expensive

* Unsupervised learning is challenging to use

Qt possible to create environments which generate useful d@
* Ex: Reddit users provide sarcasm labels using the “/s” tag

Modern tech companies try to solve this problem.

Economics of the Online Firm

>0 >0

’ o F X
User data A %
3‘na= Pk

Services
Online firm Users
* User data feeds revenue * Online services bring value
 Better demand segmentation Convenience
 Ad/recommendation revenue Knowledge

e Better models => better services

Platform Design

* Key ldea: Google builds various

Proble.m- . apps (Maps, Search, Social Network,
Model the revenue-maximization problem of etc.) and profits based on usage of
today’s online firms (e.g. Google, FB, etc.) these apps.

and understand computational tractability.

* The usage of apps modifies the
transitions of the Markov Chain of
the user’s life

Bi-Level MDP Optimization Model
Agent: participates in Life MDP

Designer: tweaks the Life MDP by

building platforms. . .
* Assume the Designer has linear
Goal: Designer wants to indirectly

optimize its reward via Agent’s re.wa.rds .OVEI“ the Steady .State
optimal behavior! (Find Stackelberg) distribution of the resulting Markov
chain (agent policy + Life MDP)

Formal Problem Statement

* An agent lives in an irreducible Markov chain with A = [n] states.
* The designer chooses S € A states to add platforms to.

* The agent may adopt or not adopt the platform at each state:

* If adopt, the transitions change. Otherwise they do not.

e Assume the chain remains irreducible.

Formal Problem Statement
* Assign a utility rate for the agent (¢;) and the designer (d;) ati € [n].

* The agent solves the resulting Markov Decision Process.
* Resulting steady-state probabilities are given by .

* The designer optimizes over §:

pI‘Oﬁt(S) = Zdz y WZ(S) — ZCOStz’

€S €5

General Case

Picture of the General Case

Shopping online

Driving Exercising

Eating lunch
Studying

Watching movie
Reading news

Agent’s Life

What platforms
should I build?

9 Online firm Y

Picture of the General Case

Shopping online

Driving Exercising

Eating lunch
Studying

Watching movie ¢ .
Reading news

Agent’s Life

What platforms
should I build?

\

q°

\ Online firm Y

At a cost, the firm can add
an opt-in action to
platforms they create (ex:
Google Maps).

Picture of the General Case

Shopping online

Driving Exercising

Eating lunch
Studying

Watching movie
Reading news

Agent’s Life
changes

Maybe we
should create
Maps
technology....

9 Online firm Y

Builds platform
Maps at a cost.

v

[Opt in to Maps]

Computational Tractability |: General Case

* It is strongly NP-hard to decide whether the Designer can obtain
positive profit — and therefore hard to approximate.

* Reduction from Set Cover
e Designer builds platforms which each solve subset of Agent’s problems.
* Most cost-effective covering set is NP hard.

* In economic terms, the reduction exploits the complexity of
“complementary goods.”

e Ex: Brick-and-mortar retail ads help the Agent discover the store, Maps helps
the Agent get to the store.

Tractable “Flower” Case

A More Tractable Case: The Flower

Life MDP

1-q =y /. ~Pn

o Pr 1-gq,~- J’n f‘\}
Gn + Yn

q, + ¥

Tweaked MDP via y;

A More Tractable Case: The Flower

* Problem can be solved by an FPTAS

* Why tractable?

* Substitutes rather than complements
» Allocate time spent in each platform

» Simpler low-level behavior (greedy agent is optimal)

 Admits a DP upon discretization (knapsack DP)

The Designer’s Dynamic Program

* Designer’s profit function for set of platforms S:

Pi

2 icAgent(s) & " T=g =,
profit(S) := 5 di 5 cost;
B+ ZiEAgcnt(S) “i ?,EZS

* Assume z is discretized and costs are polynomially bounded
* Goal: (1 - €) approximate algorithm in polynomial time.

The Desigher’s Dynamic Program
» Key Idea: Use a (poly-sized) hash table with rounded rewards

* Difficulty comes from profit scale and non-discretized z;

 Hash function:

hash(S) := (25521, [54521, D(S)/5)

 Similar to standard Knapsack FPTAS (lbarra & Kim, 1975)

Extensions

Multiple Agents

* Replace designer objective with summation over agents:

d;
j€Agent, (S) “J T 1— Qz —Yi
profit(.S) := 3 L E. cost;
() Z B +Zl€Agent (S) Zil Jze;g

* An exact polytime DP exists if #agents is constant.
* Exponential in #agents
* Also require potentials ¢; to be discretized by &' with poly size.

* No FPTAS for 2 agents if ¢; not polynomial size.

Designer Competition

Driving

Eating lunch

Watching movie

Shopping online

AT

Exercising

A /\

Agent’s Life

¥ Studying

Reading news

What platforms
should | build to
compete?

_ Competing firm y

Future Work

* Designer vs. Designer
* Complexity of pure Nash
* Repeated game settings

* Privacy/fairness questions for Agent

* Unknown rewards for Designer and Agent
* Learning in games
* Strategic Agents

* And many more... please reach out at kiran.vodrahalli@columbia.edu

if you would like to chat!

mailto:kiran.vodrahalli@columbia.edu

