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Deep RL vs. Human Intelligence

Given a task and environment.... What are you doing? Can you modify it?

Heat olive in a large soup pot.
Add chopped onion and cook
for 5 minutes.

Add ground beef and break it
apart with a wooden spoon.
Cook for 6-7 minutes.

Can you cook the

No problem!
minutes and replace

meat for another 2

the vegetable oil
with olive oil?
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Goals

Given a task and environment.... What are you doing? Can You Modify It?

Heat olive in a large soup pot.
Add chopped onion and cook
for 5 minutes.

Add ground beef and break it
apart with a wooden spoon.
Cook for 6-7 minutes.

Can you cook the No problem!
meat for another 2
minutes and replace
the vegetable oil

with olive oil?
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Make plans that are... Interpretable Composable

(and optimal!)



The Logical Options Framework

Interpretability Composability Optimality

Formal logic to specify Hierarchical model with a Reasonable modeling
rules and tasks composable low level assumptions



Working Example

X ‘
“Go grocery shopping, pick up the kid, and go home, unless your partner caIIs telling you that they will pick
=4 -

up the kid, in which case just go grocery shopping and then go home. And don’t drive into the lake.”
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Related Work

Not Composable

Probabilistic Automata
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Araki et al., Deep Bayesian Nonparametric Learning of Rules and Plans from
Demonstrations with a Learned Automaton Prior. AAA/ 2020.

Rewalrd Machines

m. 0]

{a) Patrol A, B. C,and 2 (b) Deliver a coffee and the mail
Toro Icarte et al., Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning. ICML 2018.

LTL Formulas

M, : 4 States M,,,: 3 States

Mig):5 States

Ankit Shah et al., Planning with uncertain specifications (PUnS). R-AL 2020.

PDDL Operators
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George Konidaris et al., From skills to symbols: Learning symbolic representations

for abstract high-level planning. JAIR 2018.

Not Satisfying

The Options Framework

Time ——

MDP /\/\/_ lsm
SMDP f\/\{
Options = -

over MDP %

Richard Sutton et al., Between mdps and semi-mdps: Learning, planning, and representing
knowledge at multiple temporal scales. JAIR 1998.

Policy Sketches
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Jacob Andreas et al., Modular Multitask Reinforcement Learning with Policy Sketches
ICML 2017.
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Figure 2: A task graph for the Taxi problem.

Thomas Dietterich et al., The MAXQ Method for Hierarchical Reinforcement Learning
ICML 1998.

Not Optimal

Composing LTL Operators

Feature extraction network
Iy
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Yen-Ling Kuo et al., Encoding formulas as deep networks: Reinforcement learning for zero-
shot execution of LTL formulas. IROS 2020.

Neuro-Symbolic Planning
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Borja Leon et al., Systematic Generalisation through Task Temporal Logic and Deep
Reinforcement Learning. arXiv 2020.



The Logical Options Framework

Interpretability Composability
Formal logic to specify Hierarchical model with a
rules and tasks composable low level
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Optimality

Reasonable modeling
assumptions

Optimal

\FJ, 2 Reward: -5
ﬁ -5 Greedy
Reward: -7




How to Unify these Three Goals?

Interpretable

Composable

1. Model the high-level as an
automaton derived from an LTL
formula

2. Model the environment as a
composable semi-MDP

3. Place reasonable restrictions
on the model and solve using
value iteration

Formal logic to specify
rules and tasks

Hierarchical models with
a composable low level

LVI and assumptions for
optimality



Overview of LOF

Interpretable

high level
Step 0: Define the SMDP L
P
(a) Environment MDP £.
Composable
[«] option option option low level
Step 1: Learn an option for
each subgoal 3
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Step 2: Make a meta-policy w Horg Goal
P State




Overview of LOF

Inputs

Algorithm

Discrete or continuous

state/action spaces Composable Output

Options

Optimal

Product

Find Policy using : :
SMDP — mmy Optimal policy

Interpretable | SRR eIyt ER i



Linear Temporal Logic

* Set of atomic propositions I1

*Syntax: ¢ =p | p | P APy [PV P, [Fp |XP |GP|p,U P,

 Semantics interpreted infinite words over 211
* Boolean operators: — (negation), A (conjunction), V (disjunction)
 Temporal operators: F (eventually), X (next), G(always), U (until)

Formal logic to specify
rules and tasks



Temporal operators
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Representing a Task

X
“Go grocery shopping, pick up the kid, and go home, unless your partner calls telling you that they will pick
=4 -

up the kid, in which case just go grocery shopping and then go home. And don’t drive into the lake.”
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Formal logic to specify
rules and tasks




LTL to Automata

e All LTL formulas can be converted to Buchi automata
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Formal logic to specify
rules and tasks



Liveness and Safety Properties

 All Buchi automata can be decomposed into liveness and safety properties
* Liveness property: tasks that the agent must achieve
 Safety property: things that the agent must avoid
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Formal logic to specify
rules and tasks



Propositions

* Three types of propositions — subgoal, event, and safety propositions
* Every subgoal is associated with an option

Safety Event
Subgoal propositions proposition proposition
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Formal logic to specify
rules and tasks



MDPs vs. Semi-MDPs

* Current state depends on previous state/action
e Actions take variable amounts of time

* High-level actions called options take variable
amounts of time. The current state/action
depends on the identity of the option, which may
have been chosen multiple time steps ago.

Hierarchical models with
a composable low level



MDPs vs. Semi-MDPs

Time ———

MDP /\/\/, I sae  ® 1he Options Framework extends MDP
planning to SMDP planning
* Introduces hierarchical action space with high-

SMDP U/\/—\f level actions called options

* Options can be trained on continuous
state/action spaces

Options -, _
over MDP % * Options can be composed arbitrarily

Hierarchical models with
a composable low level



Logical Options

Initiation set

Termination
condition

Sub-policy

Transition model

Reward model

R, (s) =E[Re(s.a) + yRe(s',a') + v*Re(s”.a”) + ...

Hierarchical models with
a composable low level

[«] option option option
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For every p in Pg, learn an option for achieving p, o, = (Z,,. 7, . 3o, . Ro (5). 15 (5']5))
Z,, =S
5 — 1 it Tp(s,p) =1
oor 0 otherwise
T, = optimal policy on £ with rollouts terminating when Tp(s) = p
T, (5']s) = AF if T'p(s") = p, where k is number of time steps to reach p
0 otherwise



Transition and Reward Models

 Reward model is equivalent to a value function

Ry(s) = E[”’“tﬂ T YT e42 T - -’Yk_l”'“Hk}

Note: Safety propositions must be assigned costs and incorporated into the reward function of the
environment when learning the policy and value function

* Transition model can be simplified by setting gamma=1 and by
assuming the option always reaches its subgoal

To(s']s) = Zp(s', k)'}’k
k=1

Hierarchical models with
a composable low level



Review: How LTL Fits into the Picture

* Three types of propositions — subgoals, event and safety propositions
 Specification divided into liveness and safety properties

* Associate every subgoal with an option

* Find highest-reward path through the liveness FSA

J_* g Safety propositions: { g .} Subgoal propos {g ﬁ, }
i - *

Hierarchical models with
a composable low level



Logical Value Iteration
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LVI and assumptions for
optimality



Assumptions for Optimality

* Every subgoal is associated with a single state

e Every option can reach its associated subgoal from any other state in
the environment

* The goal state of the automaton is reachable from every other
automaton state via subgoals

LVI and assumptions for
optimality



Experiments

(d) Reacher domain.

(g) Pick-and-place domain.
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(b) Satisfaction performance.
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(h) Satisfaction performance.
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(f) Composability performance.
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Conclusion

Given a task and environment.... What are you doing? Can You Modify It?

Heat olive in a large soup pot.
Add chopped onion and cook
for 5 minutes.

Add ground beef and break it
apart with a wooden spoon.
Cook for 6-7 minutes.

Can you cook the
meat for another 2
minutes and replace
the vegetable oil
with olive oil?

No problem!
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Make plans that are... Interpretable Composable

(and optimal!)



Conclusion

Interpretability

Formal logic to specify
rules and tasks

(F J & F(\Ll& F (X)) |

(G! J &F(\l&F(g &F (1))
&G!@

Composability

Hierarchical model with a
composable low level
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Optimality

Reasonable modeling
assumptions

Optimal
Reward: -5
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