Hi, I'm Kiran Vodrahalli.

Highest-Order Bits:

 Final year Ph.D. Candidate @Columbia
 Advisors: Alex Andoni and Daniel Hsu
e Research: Theory & Practice of ML

e  Website: https://kiranvodrahalli.github.io

 Job Search: Industry Research or Postdocs


https://kiranvodrahalli.github.io/

Main Research Topics:

Resource-Efficient Learning:
e Sample & Time Complexity
 Sparse Models
* Low-Rank Models
* Streaming Settings

Controllable & Interpretable Agents:
 Platform Design
* Online & Reinforcement Learning
 Algorithmic Game Theory




| also worked on applications:

* Neuroscience
* NLP

* Robotics

* Economics

* Systems




Resource-Efficient Machine Learning

Very large models

Modern ML challenge
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Sample & Time Complexity of Nonlinear Models

Low-rank models?

a(dix’”’ x)




Algorithms for Efficiently Learning Low-Rank Neural Networks

Kiran Vodrahalli, Rakesh Shivanna, Mahesh Sathiamoorthy, Sagar Jain, Ed Chi
Google Brain Research Internship

(in submission + arXiv soon!)



Low Rank Deep Models

Replace full-rank layers with low-rank parameters.
Given weights of layer i:
w; = U; V'

Standard initialization: SVD of full-rank init.



Nonlinear Kernel Projection (NKP)

For each layer W € R™*™ ~ D with nonlinearity o

min Ex-nonlllo(Wx) — o(UVTx)||5]

UERm XT,VER" XTr

Empirical gains over SVD init!



Main Results
* Efficient optimal alg for NKP.

e L-IVh(p)-pl}

* Efficient learning alg for NKP.

 NKP outperforms SVD init.

* Especially with:
* Larger width networks
 Lower rank approx.
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Main Results
* Efficient optimal alg for NKP.

e L-IVh(p)-pl3

* Efficient learning alg for NKP.

 NKP outperforms SVD init.

* Especially with:
* Larger width networks
* Lower rank




The Platform Design Problem

Christos Papadimitriou, Kiran Vodrahalli, Mihalis Yannakakis
WINE 21, NeurlPS Strategic ML Workshop ‘21



Economics of the Online Firm

>0 >0
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User data A %
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Services
Online firm Users
* User data feeds revenue * Online services bring value
 Better demand segmentation  Convenience
 Ad/recommendation revenue  Knowledge

e Better models => better services



Picture of the General Case

Shopping online

Driving Exercising

Eating lunch
Studying

Watching movie
Reading news

Agent’s Life

What platforms
should I build?

9 Online firm Y
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At a cost, the firm can add
an opt-in action to
platforms they create (ex:
Google Maps).



Picture of the General Case

Shopping online

Driving Exercising

Eating lunch
Studying

Watching movie
Reading news

Agent’s Life
changes

Maybe we
should create
Maps
technology....
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Builds platform
Maps at a cost.
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A Stackelberg Game

* Designer moves first:

* Adds platforms which modify transitions to an existing Markov
Chain

* Agent moves second:
* Receives MIDP from Designer, plays optimal behavior

* Bi-level MDP optimization



Grand Vision

* Design environments which generate useful, sampleable data

* Model economics of companies dependent on information economy
* Model strategic behavior of online firms and their users

* Reinforcement learning aided by environment design

* Manipulation and resistance of learning agents



